

Journal of Engineering Science and Technology Review 5 (1) (2012) 63-71

Review Article

Overview of Real-Time Antivirus Scanning Engines

L. Radvilavicius*, L. Marozas and A. Cenys

Information Security Laboratory, Dept. of Information System, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University

Sauletekio al. 11, SRL-I-415, LT-10223, Vilnius, Lithuania

Received 16 March 2012; Accepted 10 July 2012

Abstract

Malicious code is one of the biggest problems in the world of networks. There exist various methods and techniques
stating that they protect user. For quite some time the most popular protection method against viruses was on-demand
scans. Various attempts to implement on-access or real-time scanning mechanisms were either consuming too much
valuable system resources such as memory or offering too little protection.
In this article we review a number of open-source and patented methods of real-time antivirus scanning describing their
methods of work, advantages and disadvantages. Such kind of research is needed in order to gather in one article and to
demonstrate the methods and attempts to successfully implement real-time scanning mechanism and to overview this
sphere of application development. In what direction could the next step in developing real-time antivirus scanners be
made and what problems are common in such cases

 Keywords: Real-time, antivirus, on-access, scanner.
 __

1. Introduction

Viruses, worms, malware and other sorts of malicious code
are one of the biggest threats to computer systems since the
first virus detected in 1970s. In the current age of the
Internet they spread and propagate faster and easier than
ever before despite the improvements in antivirus software
and their wide choice. Two most important factors from the
end-user’s point of view are performance and antivirus
software ability to quickly and correctly distinct infected
files from the healthy ones. Two types of scanner engines
are used by antivirus applications –on-demand scanners that
are activated only by user in order to scan a part or all of
computer and on-access (otherwise called real-time,
background guard, resident shield, autoprotect) scanners that
monitor data real-time i.e. while data is coming into
computer, files are being opened and during similar actions.
In latter case when malicious activity is detected, the
antivirus system is able to block it before it does any harm to
computer system. Another field of modern technology that is
prone to malicious activities is mobile technologies. While
phone is not only a tool, but has become a part of business
life, it usually consists of most sensitive information and
thus became a target of malicious software and attackers.
Having in mind the power capabilities and memory
resources on these devices, antivirus software must find a

way to secure people using modern mobile operating
systems such as Android.
 Most modern antivirus systems offers real-time
protection for their users since monitoring and analyzing
files while they are being accessed lets protect the user better
than on-demand scans. Different antivirus systems have
different methods for doing that, but the main disadvantage
of real-time monitoring is high system resource
consumption. According to performance tests in [1],
application launch time with functioning antivirus software
might be extended up to almost 5 times and idle memory
usage – up to almost 150 times! Thus the creators and
designers of antivirus software must find the golden mean
between the effectiveness of antivirus scanner and
consumption of system resources. It is not possible to
analyze and present the methods that commercial antivirus
systems are using for they are patented, closed source and
hidden from the public eye. That’s why in this article there
are also several patents are overviewed, described and
presented in order to have an idea how the engines work and
the ways how commercial and/or closed source antivirus
system real-time scanning engines function.
 Our goal in this article is to review some of existing open
source real-time scanning engines, to analyze the way they
are performing and to present their differences. We are also
presenting several patents and the principles of how
commercial antivirus systems are designed. In the final
chapter we are presenting researches that were done in
mobile technologies in order to protect mobile users from
viruses and malware.

Jestr

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

 * E-mail address: lukas@fmf.vgtu.lt
ISSN: 1791-2377 © 2012 Kavala Institute of Technology. All rights reserved.

L. Radvilavicius, L. Marozas and A. Cenys /Journal of Engineering Science and Technology Review 5 (1) (2012) 63-71

 64

2. Open source real-time scanning engines

Viruses are capable of various actions when they are able to
penetrate the system. This includes any sort of undesired by
end-user activity from simple propagation to sending out
contacts, damaging operating system and so on. This is why
it is of utter importance to block such activities before they
are capable of doing any damage. Many antivirus systems
perform scanning or takes action only when post factum –
when file is opened, closed or executed. It is inefficient in
respect of used resources and it is even worse that they may
detect virus after it was already executed or written to stable
storage. Y. Miretskiy et al. [2]. This is the reason why the
true power of antivirus software lies in real-time scanner
engines they are using, it's ability to balance used resources
and to perform their actions silently, but efficiently.

2.1 Stackable file system – Avfs and Oyster virus
scanning engine

Avfs is stackable file system that is based on open-source
ClamAV scan engine. Stackable file systems offer easier
development of file systems by offering mechanisms for
incremental development as stated in [3] by E. Zadok et al.
They are kernel-resident file systems that are based on
Virtual File System (VFS) thus they don't fall neither in
category of native file systems that directly interact with low
level media though are difficult to develop and debug, nor
user-level file-systems that usually suffer from poor
performance due to the number of context switches serving
user requests. E. Zadok et al. [4]. In case of Avfs, it is
mounted over existing file-system and becomes a bridge
between existing file system and VFS (see fig. 1). Avfs
performs virus scanning and state updates during calls of
VFS that are passed to corresponding underlying file system
via Avfs bridge. From Y. Miretskiy et al[2]. Oyster is a
virus-scanning engine, residing in Linux kernel that exports
API used for scanning files and buffers of data. Virus
scanning is performed during individual page reads and
writes.

Fig. 1. High level view of Avfs infrastructure [1]

Oyster is an enhancement to ClamAV virus scanner.
Firstly it removed scalability problems that were present
when dealing with ClamAV scanner by redesigning data
structures. Secondly it improved memory usage by
modifying trie construction algorithm. And thirdly kernel
integration was added. Oyster uses data units native to
kernel and does not scan entire files as ClamAV scanner

does. Avfs as on-access scanning “addition” to Oyster
engine performs partial and non-repetitive scanning. It has
two states for performing real time virus protection. One
allows access to files through read and write methods,
tracking patterns across page boundaries. It's computed by
Oyster engine and maintained by Avfs. Second state, in
order to avoid repetitive scanning, is stored as part of file by
Avfs. Y. Miretskiy et al [2]. State design divides file into
two parts. Oyster, as well as Avfs has separate methods for
storing these states. Operations on files are shown in fig. 2.
Simplified Avfs operations on files Avfs are as follows:
1. Unknown file opened. No state associated.
2. Page 1 is read, data scanned, state S1, corresponding to

the page is computed by Oyster.
3. Reading next page. S1 used for scanning.
4. File closed. Serialized form of state is stored in state file.
5. Another opening of file. State being brought back to

memory.
6. The file is scanned completely or sequential read

according to previous state.
7. If the file is scanned completely, the latest state is written

and the file is marked clean and won't be scanned unless
modified.
Two scanning modes exist – full mode that scans for all

patterns in Oyster's database and regular states Y. Miretskiy
et al [2]. The latter is faster though less accurate. Also two
forensic modes exist – immediate and deferred. Immediate
mode returns error to process if malicious activity is found
(e.g. infected file is being read) thus not letting virus to be
written to disc. Deferred mode records malicious activity
and defers error notification. Both modes quarantine the files
and denies access to them. Any combination of scanning and
forensic modes can Avfs be mounted with. Various tests and
benchmarks were shown in Y. Miretskiy et al. [2] that shows
that this engine is capable of decent performance though still
needs optimization for it is still slower than optimized
commercial engines. This was the very first implementation
of on-access state-oriented anti-virus solution, scanning
input files on reads and writes.

2.2 Hash-AV

Hash-AV is a technique that uses bloom filters and hash
functions that fit in L2 cache and accelerates the virus
scanning for it does not require direct access to main
memory. Bloom filters were first introduced in 1970s by
Burton Bloom. It is a simple space-efficient randomized data
structure for representing a set in order to support
membership queries as stated by Andrei Broder et al in [5].
When string X is given, Bloom filter computes k hash
functions on it producing k hash values from 1 to m. Then it
sets k bites in a m-bit long vector at the addresses
corresponding to the k hash values. Same procedure is
repeated for all members of the set. In S. Dharmapurikaret al
[6]. Data structures used by multi-pattern string matching
algorithms cannot be fit in CPU cache and remain in main
memory. Main idea behind hash-AV is to exploit the speed
gap between access to main memory and L2 cache (in O.
Erdogan et al [7]). It uses a filter that fits in cache as a first-
pass scan in order to determine if data need to go through the
further algorithm.
 Hash-AV constructs a bloom filter from the set of plain-
text signatures. Bloom filter is a vector of N bits, all set to 0.
For each plain-text signature, k number of hash functions
applies to first portion of bytes with results of hash functions
in range 1 to N. The bits at the positions are then set to 1.

L. Radvilavicius, L. Marozas and A. Cenys /Journal of Engineering Science and Technology Review 5 (1) (2012) 63-71

 65

When scanning, Hash-AV moves over the input data stream
in a step of one byte at a time. For each byte block, the
algorithm applies the first hash function and then compares
the bits with the bloom filter. If the bit is 1, then it goes to
the next hash function, if not – to the next byte and starts
applying hash functions for the next byte block. O. Erdogan
et al[7]. When all functions have positive filter matches,
Hash-AV pre-constructs a “secondary hash table” with the
last hash function, holding a linked list of signatures. It is
important how to set up the Hash-AV. Experiments showed
that 4 hash functions do good (J. A. L. Fan et al[8]). so it is
important to choose these hash functions, the size of bloom
filter and the number of bytes hashed in prefix. Selections
were made in [7]. Mask, xor+shift, fast hash and sdbm were
chosen for hash functions. To select a size of bloom filter is
rather difficult for it depends on a couple of factors such as
relative ratio of cache size and the size of the filter. Speed
test while choosing the size of byte block hashed in prefix is
presented in fig. 3.

Fig. 2. Operations on files

Fig. 3. Performance of Hash-AV for different prefixes [6]

 Tests, made in O. Erdogan et al [7] showed that on-
access scanner can examine input stream at throughput of
over 200Mb/s thus making this technique suitable for
network-based on-access scanning. However, when using
Hash-AV with ClamAV and the front-end bloom filter fails,
it still relies on ClamAV scanner to perform the exact
matching. Nen-Fu Huang et al [9].

2.3 Dazuko

Dazuko is an open-source –project. It’s an interface for third
party applications to control file access (it cannot scan for
any sort of viruses itself).J. Ogness [10]. Dazuko works
directly with operating system kernel to intercept file-
accessing system calls. Application using Dazuko interface
first registers and communicates with Dazuko that it is ready
to execute file access control. Once the file access occurs,
Dazuko notifies the application by sending file name,
number of flags etc. Antivirus software in such situation
scans the file and allows or denies access to it depending on
the scan results. Depending on the decision of software,
Dazuko notifies operating system to either continue the
process or to return an error. It is important that Dazuko
operates in transparent mode thus the application or process
receives error codes in case of viruses from operating
system. This interface is also capable of working with
multiple threads from the same application (J. Ogness [10]).
Also it supports cascading that allows different applications
to run at the same time as shown in fig. 4.

Fig. 4. Two applications, each with three processes, utilizing Dazuko

 Dazuko has three layers (see fig. 5). In platform-
dependent layer a set of functions according to the platform
are implemented. This is the layer that interacts with
operating system and since Dazuko is cross-platform, this
layer has to be adapted for every supported operating
system. Functionality layer is responsible for the decisions.
The visible layer is the one accessible to applications. It only
provides a front-end for functionality layer to communicate
and exchange information with antivirus application.
 Dazuko, being still rather young project, is not yet ported
to most popular operating systems as Mac OS X and
Microsoft Windows. It still needs to improve the security
model since it relies on root privileges and thus applications
are automatically trusted. The more robust method is in the
future works (J. Ogness [10]).

L. Radvilavicius, L. Marozas and A. Cenys /Journal of Engineering Science and Technology Review 5 (1) (2012) 63-71

 66

Fig. 5. Layer scheme of Dazuko

3. Antivirus scanners for mobile technologies

Nowadays it is important not only to save data that resides
on computer systems, but also on mobile devices such as
mobile phones etc. These devices usually lack the tools that
could guarantee the safety of data. It is also important to
have in mind capabilities of these devices since they are not
as powerful as computer systems. We think that it is
important to overview researches that have been made in this
field.
 Signature based malware detection method was proposed
in D. Venugopal et al [11]. It requires little memory and is
suitable for mobile devices though after comparison, the
main minus of signature-based detection method was visible
– the method was not able to detect zero-day malware.
 In H. Kim et al [12] monitoring, detection and analyzing
malware-detection software was proposed. The framework is
composed of power monitor which collects power samples
and builds power consumption history from collected
samples and data analyser that generates a power signature
from the constructed history. Authors says that malware,
especially zero-day is usually hard to detect thus signature-
based methods are not the solution. They propose power-
aware malware-detection framework that monitors and
detects previously unknown energy-depletion threats.
 J. Cheng et al [12] developed a system that uses system
and log monitoring for malware infection detections. When
infections are detected, system alerts the device where
monitoring client is installed. The problem that appears is
that malware can notice that their activities will be logged.
 T. K. Buennemeyer et al in [13] – a way to monitor
current changes on smartphones in order to detect anomalies
that can be malware or flooding or so is presented.
Monitored data is sent to remote server that is able to detect
anomalies.
 A. Bose et al [15] propose behavioral detection
framework. They represent malware behavior based on an
observation of applications revealing their malicious intents
over time. Two-stage mapping technique, constructing these
behavior signatures was proposed.
 A. D. Schmidt et al in [16] a monitoring and detection
client-server system was proposed for Android based
devices. It provides three main functionalities: on-device
analysis, collaboration and remote analysis. The principal
scheme of system architecture is shown in fig. 6.

Fig. 6. The proposed system architecture [15]

 The client of monitoring and detection architecture is
shown in fig. 7. The Linux application level provides the
functionality for monitoring and storing device and
operating system information while java application level
anomaly detection, collaboration and response actions are
realized.

Fig. 7. Client architecture

4. Patented techniques of real-time antivirus scanning

There exist a number of antivirus real-time scanning
techniques that are patented and not distributed under GPL
as open source. Since it is not quite possible to clearly and
correctly describe the methods, used by commercial
antivirus systems, in this section we are reviewing some
important patents that are presenting innovative ways for
real-time monitoring and scanning from malicious code.
 In USA patent [17] Kasperski lab patented method and
system for antimalware scanning. Invention, registered in
2010, provides the solution for scanning executable files for
malware presence. The flow chart of the invention is shown
in fig. 8.The invention asserts it reduces the scanning time
while balancing quick (but usually less thorough) checks
with more exhaustive and thus slower ones. Request for
scanning must pass a number of processes and only after that
the system is granted with access to it. Large files are treated
separately.

L. Radvilavicius, L. Marozas and A. Cenys /Journal of Engineering Science and Technology Review 5 (1) (2012) 63-71

 67

Fig. 8. Scheme of patent [17]

 In Microsoft patent [18] identification of malware that is
loaded in a memory is published. Software routines that are
implemented in this invention, track the state of pages that
are loaded in memory. The scheme of the patent is shown in
fig. 9.This invention is capable of detecting malware
regardless of how it accessed the device (avoided detection
using encryption, exploited an application that was already
in memory etc.). According to the specifications, this
technique offers a possibility for performance improvements
of antivirus software. All programs loaded into memory are
stated as unsafe and possible threats. Thus the system calls a
scan engine to search for infections before they are executed.
It is also capable of detecting unknown malware using
heuristics for it scans the memory for malicious activity
prior to the execution.

Fig. 9. Scheme of patent [18]

 Patent [19] states that the invention reduces file access
time during real-time scanning through predictive
preemptive scanning. Invention was registered in 2010. The
predictive scanning is possible because of file access
performance cost mapping in the file system. It can be
developed by monitoring time taken to scan the file and so
on. At first file access information is collected. The second
step is to generate time cost statistics for accessing files. The
next step determines the frequency in which a file was
accessed. After these steps, file access cost mapping is
generated and files may be pre-scanned thus reducing the
scan time needed for on-access scanning engines. The full
scheme of patent is presented in fig. 10.

Fig. 10. Scheme of patent [19]

 In USA patent [20] technique that is capable of detecting
malware in compressed or emulated files is presented. This
method interrupts execution of a process, scans process
memory for malware at first and then allows or terminates it
depending whether malware is found or not. These processes
can be associated with the application and loaded from
compressed or encrypted file. One file that is not needed to
perform decryption, decompression or unpacking may be
infected. Flow diagram of this invention is shown in fig. 11.

Fig. 11. Flow diagram of patent [21]

L. Radvilavicius, L. Marozas and A. Cenys /Journal of Engineering Science and Technology Review 5 (1) (2012) 63-71

 68

 In 2005 the USA patent [21] was registered. This
malware detection system is based on comparing the
checksums of candidate file (possibly infected) with the
checksum of healthy file. If they match – the candidate file
is thought to be safe. Inventors state that by identifying some
of the well-known files as virus-free, especially complex
ones, can significantly boost up the performance of antivirus
software. The attributes calculated from such files helps to
insure that candidate file has not been changed (e.g.
operating system files etc.). The principal scheme of this
invention is presented in fig. 12.

Fig. 12. Scheme of the patent [22]

 In USA patent [22] yet another method for boosting
antivirus scanning and real-time monitoring performance is
presented. Invention states that by using registries, number
of files is identified and scanned from malware. Then the
registry can be monitored for identifying changes. The
performance is boosted because of decrease of scanning time
that is needed to scan registry entries in contrary to scanning
files on hard disks. Scheme of the patent is presented in fig.
13.

Fig. 13. Schema of the patent [24]

 In 2006 USA patent [23] was registered. The main idea
of this invention is to identify attempts to change the registry
and thus prevent it. Prevention is processed according to a
set of rules. They may involve name of a process that
requests a change, name of a value in the registry and so on.
The principal scheme of this rule-based method is shown in
fig. 14.

Fig. 14. Scheme of the patent [25]

 Yet another interesting invention was patented in USA
patent [24]. In this invention, virus scanning capabilities are
added to a data transfer device (e.g. controller). In such case,
this real-time scanning mechanism is capable of scanning
data when it is being written to a file. In case malicious code
is detected, antivirus system is invoked that scans the
supposedly infected file. Inventors state that this invention
greatly reduces the resource consumption of the system. The
scheme of patent is presented in fig. 15.

Fig. 15. Scheme of patent [26]

L. Radvilavicius, L. Marozas and A. Cenys /Journal of Engineering Science and Technology Review 5 (1) (2012) 63-71

 69

 Efficiency of real-time scanning technique was improved
and presented in USA patent [25]. This invention is mainly
based on identifying processes that access files. If process
doesn’t have an identifier, virus detection is selected in part
on the identification process. When the identifier is assigned,
virus detection might be selected in part on the identifier
thus accelerating the whole process. The identification and
analysis of process every time is avoided. When the process
is terminated, the identifiers are cleared. The scheme of the
patent is present in fig. 16.

Fig. 16. Scheme of patent [28]

 In USA patent [26], registered by Symantec Corporation
in 2010, antivirus scan of file in real-time is presented.
When the activity, initiated by a first thread, associated with
a file, is detected by thread manager, it determines that a
scan should be performed. It is initiated by the thread
manager as a second thread enabling the first thread to
complete actions without delays, but access to the file is
blocked while the scan is performed. The scheme of this
patent is presented in fig. 17.
In yet another patent by McAfee [27], a real-time scanning
mechanism without significant loss of performance is
presented. It provides delayed file write operation. This
technique intercepts a file access operation of a process to
file. Then it waits an interval of time between intercepting
and scanning a file for malware. After the period of time,
scanning of file is performed. The file write operation that
was intercepted and the operations, associated with the file
are monitored and are allowed to complete before or during
the scan. The time interval may be user-defined. It can be
based on a file type. It also can be based on process. The
scheme of the patent is presented in fig. 18.

Fig. 17. Scheme of the patent

Fig. 18. Scheme of patent [30]

4.1 Patented techniques of distributed real-time antivirus
scanning

In 2007 McAfee patented a technique [28] for dividing and
distributing scanning tasks if they have the complexity
above a specific threshold level. The request to perform an
on-access scan is divided into separate files that can be
scanned either as different tasks or sent to different
computers for scanning. After the scans are completed,
results are returned to the computer that initiated the scan
and the scan result is formed. There are several techniques
for dividing the files offered (e.g. to divide the file into
several component computer files like ZIP etc.). This
invention also deals with the problems of communication
between computers. The scan is interrupted if the part of the
file in one of the computers is infected. The principal
scheme of this invention is shown in fig. 19.

L. Radvilavicius, L. Marozas and A. Cenys /Journal of Engineering Science and Technology Review 5 (1) (2012) 63-71

 70

Fig. 19. Scheme of patent [20]

 In [29] yet another technique of distributed scanning
through several virus checkers is presented. Because of the
opposite nature of on-demand and on-access virus scanning,
these two techniques are both grouped into chunks and
placed on queue. But chunks of on-demand scanning are not
placed on queue unless there exist on-access requests. The
principal scheme of the method is shown in fig. 20.

Fig. 20. Principal scheme of the paten [23]

 In [30] an on-access scanning technique for scanning
archives that may contain malicious code is presented. This
invention determines client session characteristics for
connection with server. Unshared application, such as
antivirus, is a scanner that performs on-access scanning and
allows the virus scanner to notify the client of appearing
problems. This technique also monitors and determines if the
scanning time does not take too long. In case scanning
operation takes place in terminal server environment, it is
capable to identify client connections to the server for error
messages to be presented on the client’s terminal and not on
server’s. The principal scheme of the patent is presented in
fig. 21.

Fig. 21. Scheme of patent [27]

5. Comparative analysis of open source real-time
scanning techniques

Most of the antivirus software presented in this article is
commercial, closed source and their operating techniques are
kept as a secret so it is quite impossible to determine by
what methods they are working. Despite this fact, the main
idea about their functionality and how they operate can be
discovered while looking through white papers and patents
that are presented above (Table 1).

6. Conclusions

Since the field of on-access or real-time antivirus scanners
are one of the most important factors when stopping
malicious software, on-access antivirus scanning engines
were reviewed and analyzed.
 Positive and negative aspects of methods were analyzed
and reviewed
 After reviewing real-time monitoring and scanning
engines, it is clear that there is still plenty of room for
improvement and this field is the perspective one while
talking about antivirus software.
 Monitoring, malware and anomaly detection engines for
mobile technologies were reviewed and their positive and
negative aspects described.

L. Radvilavicius, L. Marozas and A. Cenys /Journal of Engineering Science and Technology Review 5 (1) (2012) 63-71

 71

Table 1. Comparative analysis of open source real-time scanning techniques
Method What is it? What is it

based on?
Performance Advantages Disantvantages Scanning

performed
Technique
used

Avfs Stackable file
system

Clam-AV Better than Dazuko. No
information when
comparing it with Hash-
AV

Flexible, fast, Scan engine not quiet
optimized, the whole files
are scanned,

Reading,
writing

Signature-
based

Hash-AV Improved virus
scanning
technique

Clam-AV No information when
comparing with Avfs.
Not comparable with
Dazuko

Greatly
improved
performance,
quite flexible

Values must be carefully
chosen, still needs
improvements

Open, exec,
closed,
glibc
wrapping

Signature-
based

Dazuko Kernel
module/interface
for antivirus to
communicate
with operating
system

Clam-AV Slower than Avfs. Not
comparable with Hash-
AV

Universal,
Difficult to use
in most popular
operating
systems

Security issues Open, exec,
close

 Number of patented, commercial or closed source
techniques was presented in order to acknowledge the reader

with variety of methods and techniques used in real-time
scanning.

References

1. http://www.raymond.cc/
2. Y. Miretskiy, A. Das, C. P. Wright, E. Zadok “Avfs: An On-

Access Anti-Virus File System”, In proceedings of the 13th
USENIX Security Symposium, 6-6, 2004.

3. E. Zadok, J. Nieh ”FiST: A Language for Stackable File Systems”,
In proceedings of the 2000USENIX., 2000.

4. E. Zadok, I. Badulescu “A Stackable File System Interface For
Linux”, In Linux Expo Conference Proceedings, 141–151, 1999.

5. A. Broder, M. Mitzenmacher “Network Applications of Bloom
Filters: A Survey”, Internet Mathematics, 1-4, 2003.

6. S. Dharmapurikar, P. Krishnamurthy, T. Sproull, J. Lockwood
“Deep Packet Inspection using Parallel Bloom Filters”, In 11th
Symposium on High Performance Interconnects, 2003.

7. O. Erdogan, P. Cao “Hash-AV: Fast Virus Signature Scanning by
Cache-Resident Filters”, In Proceedings of Globecom'05, 2005.

8. J. A. L. Fan, P. Cao and A. Broder. “Summary cache: A scalable
wide area web cache sharing protocol”, In Proceedings of the 1998
ACM SIGCOMM Conference, 1998.

9. N.F. Huang, W.Y. Tsai “SHOCK: A Worst-Case Ensured Sub-
linear Time Pattern Matching Algorithm for Inline Anti-Virus
Scanning”, Communications (ICC), 2010 IEEE International
Conference, 1-5, 2010.

10. J. Ogness “Dazuko: an open solution to facilitate on-access
scanning”, Virus Bulletin, 2003.

11. D. Venugopal, G. Hu, “Efficient signature based malware
detection on mobile devices”, Mobile Information Systems, 4, 33–
49, (2008).

12. [12] H. Kim, J. Smith, K.G. Shin, “Detecting energy-greedy
anomalies and mobile malware variants: In Proceeding of the 6th
international conference on Mobile systems, applications, and
services, 239–252, 2008.

13. J. Cheng, S.H.Y. Wong, H. Yang, S. Lu, “Smartsiren: virus
detection and alert for smartphones” In International Conference
on Mobile Systems, Applications, and Services, 258–271, 2007.

14. T.K. Buennemeyer, T.M. Nelson, L.M. Clagett, J.P. Dunning, R.C.
Marchany, J.G. Tront, “Mobile device profiling and intrusion
detection using smart batteries” In HICSS ’08: Proceedings of the
Proceedings of the 41st Annual Hawaii International Conference
on System Sciences, 296, 2008.

15. A. Bose, X. Hu, K.G. Shin, T. Park, “Behavioral detection of
malware on mobile handsets” In Proceeding of the 6th
international conference on Mobile systems, applications, and
services, 225–238, 2008.

16. A.D. Schmidt, R. Bye, H.G. Schmidt, K.A. Yüksel, O. Kiraz, J.
Clausen, K. Raddatz, A. Camtepe, S. Albayrak „Monitoring
Android for Collaborative Anomaly Detection: A First
Architectural Draft“,Technische Universita�t Berlin DAI-Labor,
http://www.dai-labor.de, 2008.

17. Method and system for antimalware scanning with variable scan
settings, United States Patent 7725941.

18. On-access scan of memory for malware, United States Patent,
0200863.

19. Method and system for preemptive scanning of computer files,
United States Patent, 0242109.

20. Method and system for detecting computer malware by scan of
process memory after process initialization, United States Patent,
2003/0115479.

21. Pre-approval of computer files during a malware detection, United
States Patent, 2005/0021994.

22. System, method and computer program product for accelerating
malware/spyware scanning, United States Patent, 2006/0075502.

23. System, method and computer program product for preventing
spyware/malware from installing registry, United States Patent,
2006/0041942.

24. Method and system for offloading real-time virus scanning during
data transfer to storage peripherals, United States Patent,
2006/0156405 .

25. System, method and computer program product for selecting virus
detection actions based on a process by which files are being
accessed, United States Patent, 6931540.

26. Semi-synchronous scanning of modified files in real time, United
States Patent, 7681237.

27. Method and system for delayed write scanning for detecting
computer malwares, United States Patent, 7757361.

28. On-access malware scanning, United States Patent, 7243373.
29. On-access and on-demand distributed virus scanning, United

States Patent, 2005/0149749.
30. Obtaining user responses in a virtual execution environment,

United States Patent, 6594686.

