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Abstract 

 
In this letter we implemented the homotopy perturbation method (HPM) for approximating the solution of the seventh-
order Sawada–Kotera (sSK) and a Laxs seventh-order KdV (LsKdV) equations. Comparing the results with exact 
solutions has led us to significant consequences. The results reveal that the HPM is very effective, simple and convenient 
to systems of nonlinear equations. It is predicted that the HPM can be found widely applicable in engineering. 
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1. Introduction 

 
Most scientific problems such as seventh-order Sawada–

Koteraequations are inherently of nonlinearity. A limited 
number of these problems haveexact analytical solution. The 

other nonlinear equations should be solved using other 
methods. Some of them are solved using numerical 

techniques and some are solved by using perturbation 
method. In the numerical method, stability should be 

considered to avoid inappropriate results. In the perturbation 

method, we should exert the small parameter in the equation. 
Therefore, finding the small parameter and exerting it into 

the equation are the difficulties of this method. These 
limitations with the common perturbation method, makes it 

difficult for developing different application. 
 Many different methods have recently been introduced to 

eliminate the small parameter, such as artificial parameter 
method introduced by He [1], the homotopy perturbation 

method by He [2,3] and the variation iteration method by 
He[4–6]. One of the semi-exact methods is the homotopy 

perturbation method (HPM) [7–20].  
 In this work we consider to implement the HPM to the 

sSK and LsKdV equations which can be shown in the form 
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 Respectively Eq. (1) is known as the seventh-order 
Sawada–Kotera equation [1] and Eq. (2) is known as the 

Lax_s seventh-order KdV equation [2]. 
 

 

2. Basic idea of He’s homotopy perturbation method 

 
To illustrate the basic idea of this method, we consider the 

following nonlinear differential equation:   

 

     rrfuA   ,0      (3) 

 
 We consider the boundary conditions of: 

 

   rnuuB   ,0/,       (4) 

 

 Where A  is a general differential operator, B  a 

boundary operator, )(rf  is an analytical function and  is 

the boundary of the domain . 

 The operator A  can be divided into two parts of L  

and N , where L  is linear part, while N  is nonlinear. Eq. 

(3) can be rewritten as:  
 

      0 rfuNuL      (5) 

 

 By the use of homotopy technique we construct it as 

 ]1,0[:),( prv  which satisfies Eq. (5): 
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 Where ]1,0[p  is an embedding parameter and 0u  is 

an initial approximation of Eq.(5),which satisfy the 
boundary conditions. By considering Eq. (5) we will have: 
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 By changing p  from zero to unity ( , )v r p changes 

from )(0 ru  to )(ru .This method is called 

deformation. )()( 0uLvL  and )()( rfvA   are called 

homotopy. According to HPM, we can first use the 

embedding parameter p  as “small parameter”, and assume 

that the solution of Eq. (6) can be written as a series of the 

power of p : 
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 By setting 1p  the approximate solution of Eq. (6) 

result: 
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 The combination of the perturbation method and the 

homotopy method is called HPM, which compensate the 
lacks of limitations in the traditional perturbation methods so 

this technique can have full advantage of the traditional 
perturbation techniques. The series (9) is convergent for 

most cases. However the convergence rate depends on the 
nonlinear operator.The following opinions are suggested by 

He [7]: 
 

(1) The second derivative of N(V ) with respect to V 
must be small because the parameter may be 

relatively large, i.e., p→1. 
(2) The norm of L−1∂N/∂V must be smaller than one 

so that the series converges. 
 

 Meanwhile, D.D. Ganji et al.[23] could have found a 
new method for converge HPM. The basic idea in this 

method is to keep the inherent stability of nonlinear 
dynamic, even the selected linear part is not. They 

transformed a nonlinear complex differential equation to a 
series of linear and nonlinear parts, almost simpler 

differential equations. These sets of equations are then 

solved iteratively.  
 

 

3.  Implementation of the method 

 

3.1 Equation (1) 

 
We will begin with sSk equation (1) with the initial 

condition by: 
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 where k is arbitrary constants. 

 
 First, we construct a homotopy in the form: 
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 Where “dot” shows differential with respect to t, and the 

initial approximations are as following: 
 

     0,,, 00 xutxutxv     (12) 

 
 And 
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By substituting Eqs.(13) into Eqs. (11) and arranging the 
coefficients of “p” powers, we have: 
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 For solving Eqs.(14) We only use two approximation 
ofpeven though results show fast convergence to the exact 

result. In order to obtain the unknown of 2,1, ivi , we 

must construct and solve equations with twounknowns, 

considering the initial conditions of   00, xvi , i= 1, ,and 

having the initial approximations of Eqs.(10): 
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 From Eqs.(7), and assume two approximation of pwe 
will obtain: 

  

       
2

0

2

01 ,,lim,
i ii i

i

p txvtxvptxu            (16) 

 

 Exact solution of sSK equation (1) as follows: 
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 By the drawing of 3-D and 2-D figures of exact solution 
and HPM solution (solved with two approximation), the 

figures are similar to each other. 
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1a 1b 

Fig.1 HPM result (solved with two approximation) for ),( txu (1a), and 

exact solution for ),( txu (1b), where k=0.1. 

 

 
 

  

2a 2b 

Fig. 2 The comparison of the results of the HPM and exact solution, at  

t = 0.25(2a) and t=-.25(2b), where k=0.1 

 

 

3.2 Equation(2) 

 
For further comparison of the HPM, we consider the LsKdV 

equation [2] Eq. (2) with initial condition is given by 
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 Where k is arbitrary constants. 
 First, we construct a homotopy in the form: 
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 The  initial approximations are as following: 
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 By substituting Eqs.(21) in to Eqs. (19) and arranging the 

coefficients of “p” powers, we have: 
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 For solving  Eqs. (22) We only use two approximation of 

p even though results show fast convergence to the exact 

result. In order to obtain the unknown of, 2,1, ivi we 

must construct and solve equations with two unknowns, 

considering the initial conditions off   00, xvi , i= 1  and 

having the initial approximations of Eqs.(18): 
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 From Eqs.(7), and assume two approximation of p we 

will obtain: 
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 Exact solution of sSK equation (2) as follows: 
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 By the drawing of 3-D and 2-D figures of exact solution 

and HPM solution (solved with two approximation), the 

figures are similar to each other. 

  
3a  3b 

 

Fig. 3 HPM result (solved with two approximation) for ),( txu (3a), 

and exact solution for ),( txu  (3b), where k=0.1. 
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4a 4b 

Fig. 4 The comparison of the results of the HPM and exact solution, at t 

= 0.25(4a) andt=-.25(4b), wherek=0.1 

 

 

 

 

 

 

 

 

4. Conclusions 

 

In this work, homotopy perturbation method has been 
successfully applied to find the solution of nonlinear sSK 

and LsKdV equations. All the examples show that the results 
of the present method are in excellent agreement with the 

exact solutions. In our work, we use the Maple Package to 
calculate the functions obtained from the Homotopy 

perturbation method.The results show that this method 
provides excellent approximations to the solution of this 

nonlinear system with high accuracy. Finally,it has been 
attempted to show the capabilities and wide-range 

applications of the HPM. 
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