
68 

 

 
 

 
Journal of Engineering Science and Technology Review 4 (1) (2011) 68-73 

 
 

Research Article  

 

 

Phased Array Synthesis Using Modified Particle Swarm Optimization 
   
 

 M. A. Zaman *, S. A. Mamun, Md. Gaffar, S. M.Choudhury, Md. M. Alam, and Md. Abdul Matin. 

 

Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka – 1000, Bangladesh. 

 

Received 2 September 2010; Revised 4 October 2010; Accepted 25 January 2011 

___________________________________________________________________________________________ 
 

Abstract 
 

In this paper, a linear phased array is synthesized to produce a desired far field radiation pattern with a constraint on 

sidelobe level and beamwidth.  The amplitude of the excitation current of each individual array element is optimized to 

give desired sidelobe level and beamwidth. A modified particle swarm optimization (PSO) algorithm with a novel 
inertial weight variation function and modified stochastic variables is used here. The performance of the modified PSO is  

compared with standard PSO in terms of amount of iterations required to get  desired fitness value and convergence rate. 

Using optimized excitation amplitudes, the far field radiation pattern of the phased array is analyzed to verify whether 

the design criterions are satisfied.  

 
 Keywords:  Antenna array, particle swarm optimization, phased array.  
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1. Introduction 

 
A phased array antenna is composed of groups of individual 

radiating elements, which are distributed and oriented in a 

linear or two dimensional spatial configuration [1]. The 
amplitude and phase excitation of each element can be 

individually controlled to generate a radiation pattern of any 
desired shape. The angular position of the beam in space can 

be controlled electronically by adjusting the phase of the 
excitation currents of each individual element.  Thus, beam 

scanning can be accomplished without any mechanical 

motion of the radiating elements. 
 Phased array antennas are widely used in Radar systems 

because of their rapid and accurate beam scanning 
capabilities [1]. For practical Radar applications, it is 

required that the phased array produces low s idelobe levels 
(SLL) with narrow beamwidth [2], [3]. The amplitude 

excitations of the array elements are selected to synthesize 

the desired pattern. The binomial method and the Dolph-
Tschebyscheff method are often used to synthesize radiation 

pattern with low SLL [2], [4]. But these methods do not 
provide the designer with the flexibility to set multiple 

design goals such as SLL, beamwidth and null control. So, it 
is often necessary to use an optimization algorithm to find 

the amplitude excitations of the array elements which give 
the desired results. 

 Evolutionary optimization algorithms often outperform 

classical optimizations algorithms and give more flexible 
solutions than analytic approaches. Particle Swarm 

Optimization (PSO) is one such evolutionary algorithm. It is 
based on the movement and intelligence of swarms [5]. Like 

the widely used Genetic Algorithm (GA), PSO has been 

found to be effective in many electromagnetic problems [6]. 
PSO can be used to optimize the excitation amplitudes of the 

array elements to synthesize a predetermined pattern [7], [8]. 
 The time limiting step of any optimization process is the 

evaluation of the fitness function. The evaluation of fitness 
function in array synthesis requires computation of radiation 

pattern, SLL and beamwidth. Due to the high computational 

efforts required, the optimization process is often slow. As 
the fitness function can not be altered, it is highly desired 

that the optimization algorithm requires low number of 
iterations to converge. The standard PSO and some of its 

improved versions are moderately fast converging, which 
makes them suitable for array synthesis.  

 Some work has been done on array synthesis using 

different versions of PSO [7]–[9]. But none of these methods 
significantly increase the convergence rate. In this paper, 

some modifications of the standard PSO are introduced 
which increase the convergence rate of the optimization 

algorithm and reduce computational time. The modified 
PSO is used to calculate the excitation amplitudes of the 

array elements. The performance of the modified PSO is 
compared with standard PSO to verify the improvement of 

convergence rate. Finally, the far field radiation pattern of 

the synthesized array is analyzed. 
 

 
2. Phased Array Pattern Formulation 

 
The geometry of a linear phased array along with the three 

dimensional polar coordinate system is shown in Fig. 1. The 

array contains 2M elements which are symmetrically placed 
on positive and negative side of the z axis. The excitation 

amplitude distribution is also assumed to symmetric about 
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the origin. The far field radiation pattern of the phased array 
is given by [3], [4]: 

 

( , ) ( ) ( , )FF EP AF                         (1) 

 

 
Fig. 1.  Geometry of a 2M element linear phased array. 

 

 

 Here, ( , )AF    is the array factor and ( )EP   is the 

radiation pattern of the array elements. For practical phased 

arrays using aperture elements, the element pattern is often 
approximated by [1], [9]: 

 

( ) cos ( )
n

EP          (2) 

 
 Where, n = 0 represents an ideal isotropic source and n > 

0 represents directive sources. In this paper, n is taken to be 
1.2 and all the elements are assumed to be identical.   

 For a linear array with 2M elements placed 
symmetrically along the z axis, the array factor is given by 

[3]: 

 

1

(2 1)
( , ) ( ) 2 cos

2
n

M

n

n
AF AF a   




 

 
  

  (3) 

 

Here,  
 

sinkd    , 

0
sinkd   = phase excitation, 

0
   desired angular position of the main beam, 

na   amplitude excitation of the n
th
 array element, 

k   wave number = 2    where,  = wave length, and 

d   separation between two consecutive array element.  

 

For numeric simulation, d is taken to be 0.5λ. 
  

The value of the phase excitation can be electronically 

controlled to perform beam scanning. In this paper the 
values of the excitation amplitudes, an, are optimized to 

generate a desired radiation pattern with low SLL. In this 

paper a 44 element phased array is designed. For uniform 
excitation, the beamwidth of such an array is approximately 

8° to 9° and SLL level about –18 dB. The design goal is that 
the phased array will have SLL less than –47 dB and 

beamwidth of approximately 9°. These values are not chosen 
completely arbitrarily. For a 44 element array, the lowest 

SLL level achievable by excitation optimization is about –45 

dB. And by minimizing SLL, the beamwidth can not be 
lowered more than 9°. However, a phased array for any 

arbitrary SLL and beamwidth can be designed using the 
same procedure used here by increasing or decreasing the 

number of array elements. So, the normalized desired pattern 
is defined as: 
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 The radiation of the array for uniform excitation (an = 

constant = 1) along with desired radiation pattern is shown 
in Fig. 2. It can be seen that, uniform excitation does not 

satisfy design requirements. So, optimization is necessary. 
The fitness function (cost function) is defined as the sum of 

the squares of the excess far field magnitude above the 

desired pattern. So, 
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Fig. 2.  Far field radiation pattern of the array with uniform excitation 
(blue) and desired array pattern (red) with θ = 0°. 

 
 

 This type of fitness function definition is widely used for 
antenna array synthesis problems because it penalizes 

sidelobe levels above the desired envelope, while neither 
penalty nor reward is given for sidelobes below the 

specifications [7]. The target of the optimization process is 

to find the values of an, so that the fitness function is 
minimized and the achieved radiation pattern matches 

closely with the desired pattern. 
 

 
3. Modified Particle Swarm Optimization  

 
Particle swarm optimization is a high performance robust 

optimizer. It is an evolutionary algorithm which originated 



M. A. Zaman , S. A. Mamun, Md. Gaffar, S. M.Choudhury, Md. M. Alam, and Md. Abdul Matin/ 

Journal of Engineering Science and Technology Review 4 (1) (2011) 63-67 

 70 

from the studies of bird flocking, fish schooling and bee 
swarms [5]. The swarm intelligence based PSO requires less 

computational book keeping than other evolutionary 
algorithms like genetic algorithms. 

To solve an optimization problem of N variables with 
PSO, a collection or swarm of particles is defined. Each 

particle is initially assigned a random position in the N the 

dimensional problem hyperspace. The total number of 
particles is known as the population size.  Each of these 

particle positions represents a possible solution of the 
optimization problem. Each particle is assigned a scalar 

fitness or cost value based on its position on the problem 
hyperspace. Thus, the fitness value indicates how well the 

particle solves the problem. The motion of the particles 

through the problem space is based on some deterministic 
and stochastic position update rules. As the particles travel 

the problem space, each particle remembers its own personal 
best position (which resulted in the best fitness value) that it 

has ever found. Each particle also knows the overall best 
position found by any particle in the swarm, called global 

best. The motion of each particle is affected by its personal 
best position and the global best position of the swarm. Over 

successive iterations, the personal and global best positions 

pull the particles near them. After sufficient number of 
iterations, all the particles converge and settle down near a 

good solution, thus completing the optimization process. 
The position of a particle of the swarm can be represented 

as a vector, x = (x1, x2, …….… xM). The position of each 

particle is updated in each iteration step using the following 

equation: 

 

 ( 1) ( ) ( )
n n n

x t x t v t t           (4) 

  

 Here, t denotes iteration step, Δt represent time step 
(which is taken to be unity), xn denotes the coordinate of the 

particle in n
th
 dimension and vn denotes the velocity of the 

particle in the n
th
 dimension. In standard PSO, the velocity at 

each iteration step is calculated from: 

 

 

 

1 1 ,

2 2 ,

( 1) ( ) ( )

( )

n n pb n n

gb n n

v t wv t c r x x t

c r x x t

   

 


   (5) 

 
 Here, r1 and r2 are two random numbers between 0 and 

1, c1 and c2 are acceleration constants, w is the inertial 
weight, xpb,n is the coordinate of the personal best position of 

the particle in n
th
 dimension and xgb,n is the coordinate of the 

global best position of the swarm in the n
th
 dimension.  The 

value of both acceleration constants c1 and c2 are taken to be 

2, which are commonly used values [6], [8]. The two 
random variables are used to simulate the slight 

unpredictable component of natural swarms. The inertial 
weight, w, determines to what extent the particle remains 

along its original course and is not affected by the pull of 
personal best and global best. In most cases, it has been 

found that linear decrease of w from wmax = 0.9 to wmin = 0.4 

gives good results [6]. If tmax is the maximum number of 
iterations, then, w is expressed as: 

 

max min

max

max

( )
w w

w t w t
t


 

      (6) 

 

 In this paper, rather than using a linear variation, a novel 
Gaussian variation of w is used. The modified expression is: 

 

2

max min min

max

( ) ( ) exp
zt

w t w w w
t

   
   
  
   
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 Here, z is a constant whose value is taken to be 2.2. This 

modified inertial weight variation function is shown in Fig. 
3. The function has the same initial and final values as the 

linear function, but it is characterized by a sharper rate of 
decrease. A small value of w encourages local exploitation 

whereas a larger value of w encourages global exploration 
[6]. So, it is expected that the sharper fall of w will increase 

the rate of convergence without sufficiently reducing global 
search. 
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Fig. 3.  Standard and modified inertial weight variation. 

 
 

The two random variables r1 and r2 used in (5) affect the 

pull of personal best and global best. As the variables are 
independent of each other, they do not represent natural 

swarm behavior correctly. This often leads to slow 
convergence. So, relating r1 and r2 in such a way that both of 

them are not large or small at the same time is expected to 
improve the convergence [9]. Using a simple linear 

relationship between the variables, the velocity update 

equation can be modified. This modified equation can be 
expressed as: 

 

 

 

1 1 ,

2 1 ,

( 1) ( ) ( ) ( )

(1 ) ( )

n n pb n n

gb n n

v t w t v t c r x x t

c r x x t

   
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
   (8) 

 

 The modified PSO used here consists of this modified 
velocity update equation along with modified inertial weight 

variation function given by (7). 

 
 

4. Numerical Simulation Results  
 

For numerical computation, a 44 element (2M = 44) phased 
array is simulated. Population size is selected to be 25. 

Maximum iteration number, tmax, is set to 10000. As the 
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amplitude excitation of the array elements are assumed to be 
symmetrically distributed; only the amplitudes of M 

elements located at the positive side of z axis are optimized. 
The excitation of the elements located at the negative side of 

the z axis are assigned values same as corresponding 
positive side elements.  

Fig. 4 shows the comparison of fitness function values for 

standard PSO and modified PSO. The same set of initial 
random values is used for both methods to ensure proper 

comparison. It is clear that the average fitness and best 
fitness both reach desired low values faster in the case of 

modified PSO.  
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Fig. 4.  Comparison of fitness function values for standard and modified 
PSO. 

 

 

To verify the superior performance of the modified PSO 

over classical PSO, both algorithms are simulated multiple 
times. To make sure that the comparison is unbiased, the 

initial random position and random velocity of the particles 
are taken the same for both classical PSO and modified PSO. 

Two versions of each algorithm are tested. In the first 
version, the optimization process is assumed to be complete 

when the average fitness values falls below a certain 

threshold level. For the second version, the optimization 
process is assumed to be complete when the best fitness 

value falls below a threshold level. The threshold level is 
taken to be 10 for both cases. Also, maximum iteration 

number is limited to 10000 for both cases. The simulation 
results are shown in Tab. 1. The results show that, modified 

PSO outperforms classical PSO for both versions. Modified 
PSO with best fitness threshold is found to be the fastest 

algorithm. Although, the average fitness threshold stop 

algorithm takes longer time to simulate, it ensures that the 
optimization procedure is not stopped prematurely. It is 

noted that the average fitness threshold based stop for 
classical PSO does not reach the break condition within the 

defined maximum iteration number.  
 

Table1. Comparison of the performance of classical PSO 

and modified PSO. 

 

 
Fig. 5. Comparison of average simulation time classical PSO and 
modified PSO. 

 

 
The simulations are run on a computer with processor: 

Intel Core2 T5600 1.83GHz, AND RAM: 2.00 GB (DDR2). 
The simulation times are expected to vary with change in 

hardware, but the comparative performance of the two 
algorithms will be unchanged.  

In Fig. 6, the values of a particular solution (11
th
 

excitation amplitude) are shown as a function of number of 
iterations when using standard PSO. The same plot is shown 

in Fig. 7 when modified PSO is used. When the graph 
becomes horizontal, it indicates convergence. It is clear that 

the solution converges faster for modified PSO. 

 
Fig. 6.  Convergence of the 11

th
 excitation amplitude using standard 

PSO 

 

 

 
Fig. 7.  Convergence of the 11

th
 excitation amplitude using modified 

PSO. 

 

 
For simulation, the solution space is limited in each 

dimension to the range xmin = 0 to xmax = 1. To handle the 

Run 

number  

Class ical PSO Modified PSO  

Avg. fitness  threshold break Best fitness  threshold break Avg. fitness  threshold break Best fitness  threshold break 

I terations  

required 

Simulatio n  

time (sec) 

I terations  

required 

Simulatio n  

time (sec) 

I terations  

required 

Simulatio n  

time (sec) 

I terations  

required 

 
Simulatio n  

time (sec) 

 

1 10000 296.4939 6249 190.6399 7751 239.4094 1660 51.4751 
2 10000 294.3274 6161 188.0539 6301 195.3706 1179 36.2023 

3 10000 298.2310 6194 189.8079 8660 267.5775 1390 42.4272 

4 10000 297.0345 5705 171.3363 7325 217.0683 2601 80.3780 
5 10000 300.1624 6584 197.3294 9895 291.7186 2097 63.5397 
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situation where particles drift outside the solution space, 
absorbing wall boundary condition is used [6]. In this 

method, if the position coordinate of a particle position 
exceeds the limits in any dimension, it is set to the nearest 

boundary value (xmax or xmin). Similarly, maximum velocity 
of a particle in any dimension is limited to the range –1 to 

+1. 

The optimized excitation amplitude gained from modified 
PSO is shown in Fig. 8. The 22 elements located at negative 

z axis are labeled sequentially from –22 to –1 and the 22 
elements located at the positive side are labeled from 1 to 

22. The resulting far field pattern is shown in Fig. 9. It is 
seen that optimized pattern matches very closely with the 

desired pattern. The best fitness value after 10000 iterations 

was 0.2670, which is very close to the desired value of zero. 
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Fig. 8.  Optimized excitation amplitude of the array elements. 
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Fig. 9.  Optimized far field radiation pattern (θ0 = 0°). 

 
 

Fig. 10 shows the beam scanning operation of the phased 
array.  When the phase excitation corresponding to θ0 = 0° is 

used, the main beam is located at θ0 = 0°. When the 

excitation is changed to a value corresponding to θ0 = 45°, it 
is found that the main beam shifts to ±45° accordingly. Fig. 

11 shows the three dimensional far field radiation pattern of 
the phased array for θ0 = 0°. It can be seen that the pattern is 

independent of φ values, which is expected for a linear array 
along z axis. 
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Fig. 10.  Beam scanning operation of the optimized phased array with θ0 

= 0° (blue) and θ0 = 45° (red). 

 

 

 

 
Fig. 11.  Three dimensional far field radiation pattern of the optimized 
array for θ0 = 0°. 

 
 

A similar optimization procedure can be implemented to 
optimize arrays of Cassegrain reflectors used in radio 

astronomy. In that case, the individual element pattern must 
be modified accordingly [10]. 

 

 
5. Conclusion  

 
A linear phased array is optimized and simulated in this 

paper.   A   modified   PSO   algorithm is used to optimize 
the amplitude excitation of the array elements to produce a 

desired far field pattern with low SLL and a specific 

beamwidth. It has been shown that the modified PSO 
outperforms standard PSO for this optimization problem. 

The simulation results show that the optimized phased array 
meets all the design requirements. 
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