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Abstract

An optimal excitation controller design based on multirate-output controllers (MROCs) having a multirate sampling mecha-
nism with different sampling period in each measured output of the system is presented. The proposed H∞ -control technique 
is applied to the discrete linear open-loop system model which represents a wind turbine generator supplying an infinite bus 
through a transmission line. 
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In the recent years H∞-control problem has great interest [1-5, 7, 
8, 12-17]. The H∞-control problem for discrete-time and sampled-
data single rate and multirate systems has been treated success-
fully [2-6]. In both the continuous and discrete-time cases, when 
the state vector is not available for feedback, the H∞-control prob-
lem is usually solved using dynamic measurement feedback ap-
proach. 

For the solution of the H∞-disturbance attenuation problem a 
new technique [6] is presented. In order to solve the sampled-data, 
based on multirate-output controllers (MROCs), H∞-disturbance 
attenuation problem relies mainly on the reduction, under ap-
propriate conditions, of the original H∞-disturbance attenuation 
problem, to an associated discrete H∞-control problem for which 
a fictitious static state feedback controller is to be designed, even 
though same state variables are not available for feedback.

In this paper discrete linear open-loop power system model 
was obtained through a systematic procedure, using a linearized 
continuous, with impulse disturbances, 8th-order SIMO open-loop 
model representing a practical power system. 

The sough digital controller, which will lead to the associ-
ated designed discrete closed-loop power system model display-
ing enhanced dynamic stability characteristics, is accomplished 
by applying properly the presented MROCs technique. 

Consider the controllable and observable continuous linear state-
space system model of the general form 

 )t(x  =Ax(t)+Bu(t)+Dq(t), x(0) = 0	       (1a)

)t()t()t( 1m uJCxy += 	

 	       (1b)

Where: 
 

are the state, input, external disturbance, measured output and 
controlled output vectors, respectively. In Eqn. 1 all matrices have 
real elements and appropriate dimensions. 
The definition below is useful in what will follow.
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1. Introduction 2. H∞-Control Technique Using MROCS [4, 6]
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lowing relationships simultaneously hold

Next the multirate sampling mechanism depicted in Figure 
1. is applied to Eqn. 1. 

Assuming that all samplers start simultaneously at t=0, a 
sampler and a zero-order hold with period T0 is connected to each 
plant input u ti ( ) , i=1,2,…,m, such that

( 2)

while the ith disturbance )t(qi , i=1,…,d, and the ith controlled 

output )t(y i,c , i=1,…, p2, are detected at time kT0, such that for 

The ith measured output )t(y i,m , i=1,…, p1, is detected at every  
Ti  period, such that for 

 

 (3)

where, (J2)i is the ith row of the matrix J2. Here Ni∈Z+ are the out-
put multiplicities of the sampling and Ti∈R+ are the output sam-
pling periods having rational ratio, i.e. Ti =T0 / Ni with i=1,…, p1. 

The sampled values of the plant measured outputs obtained 
over [kT0, (k+1)T0), are stored in the N*-dimensional column 
vector given by 

(4)

(where ), that is used in the MROC of the form

 	
       (5)

where . 	

Assumptions: 
a) The matrix triplets (A,B,C) and (A,D,E) are stabilizable and 
detectable.
b)	   

c)	  

d) There is a sampling period T0, such that the open-loop discrete-
time system model in general form becomes 
	   

(6)

 

where,
   

(7)

is stabilizable and observable and does not have invariant zeros 
on the unit circle. 

From the above it fellows that the procedure for H∞-
disturbance attenuation using MROCs, essentially consists in find-
ing for the control law a fictitious state matrix F, which equiva-
lently solves the problem and then, either determining the MROC 
pair (Lγ, Lu) or choosing a desired Lu and determining the Lγ. As 
it has been shown in [3], matrix F takes the form 

        (8)

where P is an appropriate solution of the Riccati equation

 

 	
	 	
	        

(9)

It is to be noted that γ∈R+, such that ││ Tqyc(z)││ ≥  γ  where   
is the H∞-norm of the proper stable discrete trans-

fer function Tqyc(z), from sampled-data external disturbances 
to sampled-data controlled output yc(kT0). 

Once matrix F is obtained the MROC matrices Lγ and Lu 
(in the case where Lu is free), can be computed according to the 
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Figure 1. Control of linear systems using MROCs
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following relations 

(10)

   
(11)

	
Where,

                            and                      is an arbitrary specified matrix. 
In the case where Lu = Lu,sp, we have 

     
(12)

where Ĥ [H  Θu  Θq]=I and Σ∈RmxN*  is arbitrary. The explicit 
expressions for Θu and Θq are given in [4, 6]. 

The resulting closed-loop system matrix (Αcl/d) takes the fol-
lowing general form

(13)

where cl = closed-loop, ol = open-loop and d = discrete. 

3. �Open and Closed Loop Model of Power System Under 
Study

In the present work the power system under study (shown in Fig-
ure 2) consists of a 1 MVA wind turbine generator [9-10], which 
was extrapolated from that of the 100kW unit for the NASA-
Lewis Research Center [11], supplying an infinite bus through a 
transmission line (i.e. it refers to the plant of Figure 1). 

The detailed equations characterizing the mechanical dy-
namics, generator and excitor systems and blade pitch controls, 
leading to the state space formulation, are taken from [9]. Its con-
tinuous description in the form of Eqn. 1 is as follows

yc = x,      E = I8x8,       J1 = 02x2,       J2 = 08x8

The computed discrete linear open-loop power system mod-
el, based on the associated linearized continuous open-loop sys-
tem model described in Appendix 2 of [9], is given below in terms 

of its matrices with sampling period T0 = 1.0 sec.  

Based on Figure 1, the H∞-control using MROCs (given in 
section 2), and the computed discrete linear open-loop model of 
the power system under study, and the discrete closed-loop power 
system model were designed considering with γ = 0.08 the f feed-
back gain computed as:

The numerical values of the matrices referring to the dis-
crete closed-loop power system model of the above case are not 
included here due to space limitations. 

The magnitude of the eigenvalues of the discrete original 
open-loop and of the designed closed-loop power system model 
are shown in Table 1. By comparing the eigenvalues of the de-
signed closed-loop power system model to those of the original 
open-loop power system model the resulting enhancement in dy-
namic system stability is judged as being remarkable. 
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Figure 2. Schematic diagram of 1 MVA wind turbine generator 
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Table 1. �Magnitude of eigenvalues of discrete original open-loop 
and designed closed-loop power system models.

Original open-loop 
power system model λ

1.1294  1.1294  0.3450  0.1820  
0.1820  0.0087  0.0087  0.0000

Designed closed-loop 
power system model λ

0.8314  0.5634  0.5634  0.3365  
0.2069  0.0137  0.0119  0.0000
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The responses of the output variables (δ, ω, Efd, E′q, θ1, θ2, v3, 
and VR) of the original open-loop and designed closed-loop power 
system model for zero initial conditions and unit step input distur-
bance are shown in Figure 3 and Figure 10, respectively.
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Figure 3. (a) (b): �δ responses of original discrete open and close-loop power 
system model subject to unit step input disturbance 

Figure 4. (a) (b): �ω responses of original discrete open and close-loop power 
system model subject to unit step input disturbance

Figure 5. (a) (b): �É q responses of original discrete open and close-loop power 
system model subject to unit step input disturbance
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Figure 6. (a) (b): Efd responses of original discrete open and close-loop power 
system model subject to unit step input disturbance

Figure 8. (a) (b): θ2 responses of original discrete open and close-loop power 
system model subject to unit step input disturbance

Figure 7. (a) (b): θ1 responses of original discrete open and close-loop power 
system model subject to unit step input disturbance

No. of samples

 

 

 

 

 

 

 

 

open 

θ 1(p
.u

.)

-0.05

-0.04

-0.03

-0.02

-0.01

0.01

0.02

0.03

0

0 2 4 6 8 10 12 14 16 18 20

(a)

E
fd
 (p

.u
.) 

No. of samples

0 4 6 8 10 12 14 16 18 
- 1.5 

- 1.0  

- 0.5  

0.00  

0.5  

1.0  

1.5  
 

 

ope n 

2 20

(a)

E
fd

 (p
.u

.) 

No. of samples
0 4 6 8 10 12 14 16 18 

-1.5 

-1.0  

-0.5 

0.00  

0.5 

1.0  

1.5  
 

 

open 

2 20

 

0 5  10 15  20  25  30 -0.10  

-0.05  

0.0

0.05  

0.10  

0.15  

 

E f
d  (

p.
u.

) 

closed 

No. of samples

(b)

 

 
 
 
 
 
 

 

 

 

closed 

x 10-3

No. of samples

θ 2   
 (p

.u
.)

-10

-8

-6

-4

-2
0

2

4

6
8

0 2 4 6 8 10 12 14 16

(b)

 

  

 

 

 

 

closed 

0 5 10 15 20 25 30

x 10 -3 

0
0.5

1
1.5

2 
2.5

3
3.5

4
4.5

5

(b)

No. of samples

 

 

open 

θ 2   
(p

.u
.)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 2 4 6 8 10 12 14 16 18 20

(a)



48

From Figure 3 to Figure 10 it is clear that the dynamic sta-
bility characteristics of the designed discrete closed-loop system-
model are far more superior than the corresponding ones of the 
original open-loop model, which attests in favour of the proposed 
H∞-control technique.

4. Conclusions

An efficient H∞-control technique based on multirate-output con-
trollers has been presented in concise form for the purpose of 
attenuating in an effective manner system disturbances which 
otherwise degrade the performance of the synchronous genera-
tor. The method was applied successfully to a discrete open-loop 
power system model, which was computed from an original con-
tinuous linearized open-loop model of the practical power sys-
tem, resulting in the design of an associated discrete closed-loop 
power system model. The results of the simulations performed on 
the discrete open- and closed- loop power system models dem-
onstrated clearly the significant enhancement of the dynamic sta-
bility characteristics achieved by the designed closed-loop power 
system model. Thus the H∞-control technique used is an appropri-
ate/reliable tool for the design of implementable multirate-output 
controllers.
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Figure 9. (a) (b): �v3 responses of original discrete open and close-loop power 
system model subject to unit step input disturbance

Figure 10. (a) (b): �VR responses of original discrete open and close-loop pow-
er system model subject to unit step input disturbance
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