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Abstract

This paper proposes a new control system design method for a compliant actuated joint using on/off solenoid valves. The 
mathematical modelling and the system’s hardware are described in detail. The control design method is presented in a 
general manner so it could be applied for any other similar system. For the present system, the designed controller is imple-
mented via a digital computer and it is characterised by very good performance and simplicity. The success of the proposed 
method is validated via simulations and experiment.  
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In the 1950’s, a new pneumatic system, known as the McKibben 
muscle was developed for applications in rehabilitation robotics 
[1]. At the time the power/weight performance of the system and 
the inherent compliance were seen as positive features but control 
was still a problem and the mechanism development was discon-
tinued. In the 1980’s Bridgestone in their Rubbertuator revived 
the principle of the McKibben muscle and this was incorporated 
into their “Soft arm” robot, which was produced for a number of 
years [2]. For these early versions of the actuator, models were 
developed and gave good accuracy over a broad range of forces 
and motions but errors of up to 20% in the force/displacement 
profile were not uncommon. By 1990’s work on the Rubbertuator 
had stopped but several other groups had noted the potential of 
this form of actuation [3]-[5]. At the same time new applications 
were also being identified, particularly in the area of bio-robotics 
[6]-[8], but also with applications in unrelated domains such as the 
nuclear industry [9]. 

Over the 40 years since it first use in rehabilitation a number 
of models of the operation of braided pneumatic Muscle Actua-
tor (pMA) type systems have been developed, each improving on 
the last. Hannaford et al considered the effects of friction within 
the actuator and the thickness of the rubber liner in enhancing the 
model [3]. Davis et al further refined the models to improve the 
accuracy [10]-[11]. However, in all these instances to make effec-
tive use of the ‘soft’ properties of these actuators, accurate control 
of the performance is essential, and in addition to the efforts on 

modelling, extensive work has sought to achieve accurate control 
of the pMA. 

One approach based on adaptive techniques was developed 
by [4] where the model of the system was estimated at each sam-
ple interval. Feed-forward proportional plus integral plus deriva-
tive (PID) schemes have been applied to conventional pneumatic 
actuators to control the position of SCARA robot [12]. More re-
cently, [13] considered fuzzy logic to control the torque on a one-
link manipulator driven by pMAs while [7] uses a neural network 
to control a rubbertuator arm. Simulation results from different 
nonlinear control schemes including back stepping, gain schedul-
ing and sliding mode controllers using a theoretical model of the 
pMA were also presented recently by [14].

In this paper a new model and controller for a pMA powered 
joint is presented.  The modelling of the joint is based on a sim-
plified pMA force/displacement model developed by [3] which 
results in a theoretical model directly related to the actuator pa-
rameters. This enables the development of a new control scheme 
based on this theoretical model. The pressure control of the actua-
tors is achieved by means of inexpensive on/off solenoid valves. 
In section 2 the simplified force generation model of the pMA 
is presented. Using this model section 3 illustrates the derivation 
of the model for a single pMA powered joint. The outcome of 
the model verification is presented in section 4 while the control 
design for the system is discussed in section 5. The presentation 
of the control system design is general in order to cover any sys-
tem with similar model structure. Finally, section 6 displays the 
simulations and experimental results from the application of the    *  E-mail address: vassilios.tsachouridis@ieee.org 
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control scheme to the experimental joint and section 7 outlines 
some general conclusions and future work. 

In terms of notation, we denote with 0 zero matrices of ap-
propriate dimensions. N, C and ℜ  denote the sets of natural, 
complex and real numbers respectively. When the last sets are 
generalized in Euclidean spaces the corresponding dimensions of 
these spaces are shown as exponents to N, C and ℜ. In addition 
real Euclidean spaces with nonnegative elements are indicated 
with an additional + subscript. Vectors and matrices are denoted in 
lower and upper case respectively, with bold italic type characters. 
Scalars are denoted in upper or lower case single italic type char-
acters, but in the figures they are denoted with normal (not italic) 
type characters. The rest of the notation is standard to the control 
systems literature.  

2. Modelling of pMA

Two main approaches to the force generation problem have 
been developed by researchers, with the first based on energy 
modelling [3], and the second using force profiles of the surface 
pressure [4]-[5]. In developing the new model to be presented 
in this work the second of these approaches will be used. How-
ever, both methods provide the same base model and therefore 
a mixture of techniques is feasible. Figure 1a presents the ge-
ometry of the actuator structure. The actuator is considered to 
have a cylindrical shape. The length and the diameter of the 
cylinder L and D respectively can be expressed as functions of 
the muscle’s braided shell parameters as shown in the braided 
structure in Figure 1a. These are: (i) the length of one thread of 
the braided structure b, (ii) the number of turns of one thread n 
and (iii) the braid interweave angle θ. 

L and D are given by 

(1)

and
  	

	  (2)

To calculate the contraction force in an energised muscle 
the following transition from fully dilated state 1 (P, V) to par-
tially contracted state 2 (P, V+dV) is considered, Figure 1b. 

The pressure inside the pMA is considered to remain con-
stant during the transition (isobaric operation). The pneumatic 
energy stored during the transition can be obtained from the 
surface below the transition curve shown in the (P, V) diagram 
in Figure 1b and is equal to Ep = PdV. This input pneumatic 
energy induces two force components as shown in Figure 1b. 
These are a contractile force component Fcont produced by pres-
sure on the sidewalls of the pMA, and an expansion force com-
ponent Fexp created by the pressure on the end cap surface. 

Figure 1 �(a) Geometry of pneumatic muscle actuator. (b) Actuator transition 
states. (c) (Case I) End-Cap diameter smaller than muscle diameter 
D. (d) (Case II) End-Cap diameter greater than muscle diameter D. 
(e) Radial and contractile force relation. (f) Experimental Force/Dis-
placement profiles

Fcont

Figure 2 �(a) Schematic of the experimental joint. (b) Control scheme of the 
muscle pressure. (c) Schematic representation of the joint model
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 (3)

(4)

Where Smus is the muscle body surface area, Scap is the end 
cap surface area and α is a conversion factor between the ra-
dial force induced by the pressure on the muscle body surface 
and the resultant contractile force. Therefore, the actual driving 
force is given by

(5)

Considering first an ideal cylinder with an end cap diam-
eter that is small compared to the diameter of the muscle Fig-
ure 1c. Then the muscle wall surface area and the cap surface 
area are given by:
 

 	
	 (6)

  	
 (7)

if  , where θ is 

the braid interweave angle,  D is the muscle diameter, DO is the 
maximum theoretical muscle diameter at a braid interweave 
angle of θ=90O, Dcap is the end cap diameter, and L is the 
length of the muscle as defined earlier. When the cap diameter 
Dcap is greater than the muscle diameter as may be the case 
near full dilation especially for thin muscles, Figure 1d, then 

 the Scap surface will be given by

  	

(8)

To determine the actual actuator force the conversion fac-
tor α must be calculated. This is achieved using the conserva-
tion principle between the work done by the radial force and 
the work done by the contractile force, Figure 1e. According 
to the conservation principle the mechanical work done dur-
ing the radial displacement of the muscle dD is equal to the 
mechanical work undertaken during the linear displacement of 
the muscle along the muscle axis dL.

The work produced by the radial force Fmus is given by

  (9)

where r is the radius of the muscle. The work along the muscle 
axis is given by

(10)

Assuming work conservation 

(11)

Hence,

  (12)

Combining (12), (3), (4) and (5) we get the formula for 

the driving force as . Therefore, 

if  

  
  	

	 (13)

In the case that the end-cap diameter is bigger than the 

muscle diameter, if  , (13) is modified [10] 

to 

(14)

where Do is maximum theoretical muscle diameter at a 
braid interweave angle of  θ = 90ο and P is the operating pres-
sure. Details on how to derive (14) can be found in [3], [10]. 

The force equation (14) for                                   is identical with 

the one obtained by [3]. However, the equation in [3] does not 
consider the surface area of the end-cap, which can result in a 
reduction of the driving force when the actuator approaches 
its maximum length. Further refinements can improve the ac-
curacy of the above force equation by incorporating the liner 
thickness effect observed by [3], considering the muscle shape 
as a cylinder with curved end-parts [10] and the change on the 
length of the thread of the braided structure [11]. However, 
these extra improvements are not considered in this work to 
make the modelling process practicable and do not significant-
ly effect the accuracy of the models. Equation (13) can also be 
written as a function of the muscle length L and the length of 
one thread of the braided structure b as follows.

(15)

	
Simulated results using the above equation and experimental 
data, Figure 1f, for different sizes of muscles suggest that the 
pneumatic muscle behaves like a variable compliance spring 
system. Based on this observation and considering constant 
pressure due to the small length change dL, the muscle spring 
stiffness per unit length can be computed from (15)

dWcont = Fcont (-dL)

V. A. Tsachouridis, N. G. Tsagarakis and D. G. Caldwell / Journal of Engineering Science and Technology Review 4 (1) (2011) 14-24
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(16)

	
As it can be seen from (16) the stiffness of the muscle is a func-
tion of the operating pressure P and the length of the muscle L. 
We can now calculate the stiffness per unit length and pressure   
Kpr from (17).

(17)

	
The muscle force equation can now be rewritten as shown be-
low to replicate a spring force equation.

(18)

where Lmin is the length of the muscle when it is fully 
contracted. Equation (18) is the form of the model developed 
by [3] and represents the muscle as a nonlinear quadratic spring 
with unknown elastic spring constant. As it can be seen in our 
case the spring elastic constant can be expressed as a function 
of the muscle parameters  simplifying  the modelling process. 
The muscle force equation in the form presented above will be 
used for the modelling of the experimental apparatus described 
in the next section. 

3. Modelling an Antagonistic Muscle Actuated Joint

Based on the static force equation of the pMA the state space 
model of an experimental joint apparatus powered by two an-
tagonistic muscles can be computed, Figure 2a. In figure 2a,   
Lmin is the length of the muscle when it is fully contracted,  

 is the initial dilated length of muscle 

which is equal to the half of the maximum muscle displace-
ment in order to maximise the range of motion of the joint, 
Lmax  is the maximum dilated length, r is the radius of the pul-
ley and P1, P2 are the gauge pressures inside the two muscles. 
The equation that describes the motion of the joint is given by 

(19)

where  J, D, τ denote the joint inertia, damping and torque 
respectively. Considering now the antagonistic pair of muscles 
shown in Figure 2a and using the muscle force equation (18), 
the forces developed are given by:

(20)
 
(21)

Equations (20) and (21) can be rewritten as:
 	
(22)

(23)

Where   is the initial dila-

tion for the muscles and  L1=Lmin+ΔL1,  L2=Lmin+ΔL2, are 

the length of the muscles at any joint positions. The dilations 
for the two muscles at any joint position are ΔL1=ΔLο+ rθ 
and ΔL1=ΔLο - rθ. Using (22) and (23) the torque developed 
at the joint can now be computed:

  	
(24)

The equation of motion of the single joint in Figure 2b 
can be written as:

                   
(25)

By selecting the states of the system to be x1=θ and  
x2=θ, the state equations of the system can be formulated from 
(25) as

    

(26)

	

The above joint model describes the joint dynamics but 
since it is based on the static force equation of a pMA it does 
not incorporate the dynamics of the actuator air pressures P1,  
P2.  In this system the air pressure inside each of the two mus-
cles is regulated using on/off solenoid 3/3 valves (MAKE), 
Figure 2b.

As can be seen from Figure 2b, a PID controller is used 
to calculate the on/off times of the venting/filling valves and 
effectively regulates the pressure. The dynamics of each of the 
two pressure regulators for P1, P2 were identified in MATLAB 
using experimental input/output pressure data from each mus-
cle. A schematic representation of the overall joint dynamic 
model is shown in Figure 2c.

4. Model Verification

To verify the model developed in the previous sections, the 
experimental joint was interfaced with the control system illus-
trated in Figure 3a and the outcome of the model is compared 
with the results from the experimental setups.

V. A. Tsachouridis, N. G. Tsagarakis and D. G. Caldwell / Journal of Engineering Science and Technology Review 4 (1) (2011) 14-24
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The parameters of the experimental system are: b = 0.23 
(m), D = 0.028, Kgas = 0.0509 (N/m/Pa), Lmin = 0.145 (m),   
Lmax = 0.205 (m), r = 0.03(m), J = 8.125x10-6 (Kgm2).

In the above system the air pressure is controlled using 
pulse width modulation with a switching frequency up to 300 
Hz and a fast response time of less than 2 ms. By varying 
the duty cycle of the PWM, regulation of the airflow can be 
achieved, and thus the amount of muscle contraction can be 
controlled. The system uses a Pentium III (1GHz) based PC to 
produce an interrupt driven PWM signal with appropriate data 
acquisition card and amplifiers to drive the solenoid valves.

The open loop step response of the system to the input 
pressure variation ΔΡ = Pref2 - Pref1 was recorded. The two 
pressure references Pref1, Pref2 , were set as 

(27)

with Pmax = 400000 (Pa). This gives a balanced input 
pressure variation and the system can be considered as a SISO 
system. The same generated ΔΡ∈[-100000,100000](Pa) pro-
file was used as input for the theoretical system model, and the 
theoretical step response generated by MATLAB was plotted 
against the experimental one in Figure 3b. Figure 3b shows 
a good transient equivalence between the theoretical and the 
experimental responses although, a steady state error between 
the two responses can be observed which is believed to be due 
to the nonmodelled system parameters mentioned previously.

5. Control system design

As can be seen from equation (26) the system’s nonlinear mod-
el can be considered as special case of the nonlinear dynamical 
system

 
   	

(28)

            (29)

where,     are defined as the system’s 
state, input and output respectively and                                               

 are the corresponding constant matrix coefficients 
of the above vectors.   represent unknown system dy-
namics due to model uncertainties and disturbances.  is 
the continuous time variable and  is a nonlinear 
function of the system’s output and time. 

System (28), (29) with sampling , according 
to the Nyquist sampling theorem [18], can be approximated as 

(30)

  	
	 	
            (31)

where 

	 (32)

              
(33)

  
(34)

	
Hence, we have the next result.

Theorem 1 (Tracking Problem);
Consider the system (30), (31) subject to (32)-(34) and suppose 
that (A, B) is controllable, A is asymptotically stable, (A, B,C) 
has no system zeros at the origin and rank (CB)=m. Further-
more, suppose that  w(t)│≤  ≥0, │g(y(t),t)│≤  ≥0, 
(B+g(y(t),t) (B+g(y(t),t)# B=B,  where # denotes the generalised 
inverse of a matrix [15], and │yr (t)│≤  ≥0,  where   
If  and  exist, then 

         
(35) 

Figure 3. (a) Schematic diagram of the air control system. (b) Experimental 
and theoretical step response 
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subject to

   
  (36)

where

  (37)

  (38)   

 are design parameters and rank (Kin) 
= m. 

Proof.
The controllability of (A,B) is technical and implies the exist-
ence of a control law u(t) for the control of (28), (29) and conse-
quently for the control of (30), (31). First we prove that rank 
(CA-1B) = m (i.e. (CA-1B)-1  in (36) exists). The asymptotic stabil-
ity of A constraints its eigenvalues λi (A), i = 1,2,...,n  to have 
strictly negative real parts and this implies rank (A) = n, det (A) 
≠ 0 and therefore the existence of A-1. Now, the system zeros of 

the triplet (A,B,C) are defined as  

[16]. Since (A,B,C) has no system zeros at the origin and det 

(A) ≠ 0 we have equivalently 

 In addition, because A is asymptotically stable we have 
consequently   -1<Re(λi(Ad))<1, 
λi (In - Ad) = 1- λi (Ad) ≠ 0 for i = 1,2,...,n and therefore rank 
(In - Ad)=n which implies that (In - Ad)-1 exists in (33), (34)

Let 
        
(39)

Substituting (36) into (30) with respect to (32)-(34), (37)-
(39) and because (B+g(y(kts),kts) (B+g(y(kts),kts)# B=B,  
∀k∈N, we have

     		
	 (40)

Also let

       		
	 (41)

In view of (41) and (30), (31) can be written in the Z- 
transform domain [18] as
  

	 (42)

where z∈C is the Z-transform variable [18] and  (z) is 
the Z-transform of (39) given by       

     		
	 (43)

After substituting (43) and (41) in (42) and rearranging com-
mon factors and multiplying both sides with z-1(z-1)2 we get 

          
 
    

(44)

Because ∀k∈N, │w (kts)│≤  ≥0, │g (y (kts), kts)│≤ 

 ≥0, and │yr (kts)│≤  ≥0, it follows that u(kts) in (36) 

is bounded and so are x (kts) and y (kts). Therefore, since 

 and  exist by 

assumption, it follows that ,  

 and . From 

the initial value theorem the last results equivalently imply 

that ,  and 

. Hence, considering the  

and after simplifying terms we finally get  

yr

u Bg y CAB B

KK yy yr yr
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Kin1
Kin : Kinm

A
C

B
0

I
A A

AC BAC B

BC

Kp

A BC
y yr

Kin y yr yr

Bd ux Ad x w

Ad x AdIn uB wA

Bd

AdIn BC AAdIn

AdInCGd
C

Ad CIn xCGd wuy

Im yryKinKp

CA Bu

In

Kin

Kp

CA B
y

y

BAAdAdInCIn

ImKp

Kin

CABA BAdInAdInC

Im

C AdIn w+

V. A. Tsachouridis, N. G. Tsagarakis and D. G. Caldwell / Journal of Engineering Science and Technology Review 4 (1) (2011) 14-24



20

Remark 1;
The main philosophy behind Theorem 1 is the explicit and exact 
cancellation of the nonlinearity gd (y (kts), ts) in (30), (31). 
Note that because of (39), system (30), (31) is reduced to a 
linear system (namely (40) and (42)), with the transfer function 
(41). In theory any linear control system design can be applied 
to (40), (42) in order to solve the tracking problem. Having 
simplicity as one of the priorities in the overall assembly of our 
system, the first prototype we present here is a very simple and 
robust controller which consists of a well-tuned PI controller 
with a feed forward action. Note that the presence of -CA-1B  
in (36) and (39) is not accidental since that is the DC gain of 
(41). In practice this often eases the selection of  Kp and Kin 
during the design for which the individual elements have val-
ues in the range (0,10). This is a major advantage compared to 
blind tuning of the PI and the tuning of other possible control-
lers for (41). A block diagram of the overall control system 
based on (36) is shown in Figure 4, where ZOH blocks denote 
both zero-order-hold and sampling.

    

Remark 2;

If  is constant  then 

∀k∈N and therefore (35) is simplified to  

which means that we have perfect tracking of the ref-

erence signal  yr(kts). Moreover, if  or 

 does not exist (e.g. y(kts) or 

w(kts) is a periodic function), then perfect tracking is not pos-

sible. Nevertheless, it will be shown later via simulations that 

in cases where  or  

does not exist, y(kts) can still follow yr(kts) with a delay. Also, 
depending on the dynamics of the system it is possible to sig-
nificantly reduce that delay, so that in practical applications it 
can be considered as null.

Remark 3;	
The above analysis assumes that the systems (28), (29) and 
(30), (31) are deterministic. The case of the last systems being 
stochastic (e.g. by considering measurement random noise and 
disturbances), complicates the mathematics of the problem tre-
mendously even if this is posed as a stochastic control problem 
with respect to the expected values of the system’s stochastic 
variables. The reason for this is the nonlinearity gd (y (kts), ts), 
where y (kts) is now a stochastic variable. Because the effect of 
randomness in our system is very small and practically negligi-
ble, the stochastic analysis of our problem is beyond the scope 
of this paper and is left for future research. 

                       

5.1 Closed loop system response

In this section we examine the response of the (30), (31) with 
respect to (36) and we derive norm-wise bound estimates for 
the control signal. This is useful to determine a priori the maxi-
mum possible magnitude of the control signal energy so that 
the system’s output and input lie within specified limits due to 
physical or any other kind of limitations. Although the above 
bounds can be very conservative in the general case of multiple 
input multiple output (MIMO) tracking systems, this conserva-
tism is not the case for single input single output (SISO) track-
ing systems. Therefore, we could have an additional analysis 
tool to check if for the selected and  in 
(37) and (38), system input and output saturation are avoided. 
Because of the asymptotically stable A and bounded w(kts) and  
yr(kts), if y(kts) and u(kts) are within their defined limits, then 
obviously the exponential stability of the overall system can be 
guaranteed since no saturation nonlinearities will take place. 

Equations (30), (31), (36) and (39), if augmented together, 
form the closed loop system (45), (46).

Figure 4. Sampled data control system 
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 It is apparent from (45) that we are consider-

ing as system inputs the reference signal to be tracked and its 
derivative, while from (46) the output vector contains the vari-
ables of interest: the system’s original output and part of the 
control input (36) (i.e. (39)). 
Now, suppose that   and   result an asymp-
totically stable   AdR

.  Moreover, let the limitations be (e.g. due 
to physical constraints) . From 
(36) and (39) we have 
and therefore .

In general any bounded input signal can be sufficiently 
approximated as a series of combined piecewise continuous 
step, ramp and parabolic inputs, each defined in a finite length 
time horizon (see chapter 6 of [19] and chapter 1 of [17]). Al-
though one may is to go further and restrict the above approxi-
mation by considering only step inputs (e.g. the case of ZOH 
sampling), for the sake of analysis we will consider all the 
three types of input signals above. Therefore, by studying the 
system behaviour of the above type of signals we can estimate 
the system’s response to general input signals [19]. 

Hence, assume the response of an asymptotically stable 
system due to a step, ramp, or parabolic change in its input 
at time t = t* > 0. It is clear this response can be replicated 
from the system if the same step, ramp, or parabolic input is 
applied at t = 0 with respect to the system’s initial state condi-
tion x(0) = x(t*). In addition, if we restrict our attention to 
the magnitude of the system’s output and pose the problem of 
determining the maximum norm of the system’s input, so that 
the system input and output are confined within their specified 
limits, then it is apparent from the above considerations that 
the solution to this problem can be provided by the studies of 
the system’s response with respect to step, ramp, or parabolic 
inputs at t = 0. 

In order to put the above concept into mathematical lan-
guage, define the operators
           

 (47)

(48)

     
    
(49)

Note that all the quantities in (47)-(49) are well defined 
under the assumption that AdR

 is asymptotically stable. Fur-
thermore, in view of (47)-(49), the operators can be defined 

The response of (46) subject to  , or 

, or  and , or 

, or  , , , 

where   ,    

is the unity vector full of 1’s), , , 

,   , and xR(0) =xR0
, is given by

where  ΦduR(kts), ΦdwR(kts) are defined in (50) and (51) 
respectively. 

The problem of finding the maximum control signal norm 
such that the system’s output and control input do not saturate 
can be stated as the nonlinear optimisation problem

Φds CdR AdR

Φdr

CdR AdRΦr

Φdp

Φdp CdR ΑdR

(50)

ΦwRd

Φds
Φdr
Φdp wR

wR

wR

wR

wR

wR
(51)

yR

wRuRΦduR
ΦdwR

CdR AdR xR

(52)
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where  is any appropriate norm. Because of the linear struc-
ture of (52) and all of the previous assumptions made, problem 
(53) is convex and state-of-the-art algorithms (e.g. [20], [21]) 
are available for its numerical solution. If  is the solu-
tion to (53), then the following bound holds. 
 

(54)

From the above it is clear that if (53) is solved for all pos-
sible combinations of step, ramp and parabolic inputs between 
uR (kts)  and wR (kts), then the maximum of these solutions 
will be the maximum estimated norm for the control signal that 
is to be expected through a response due to general reference 
inputs, so that the system satisfies its constraints. 

6. Control system computation and implementation

System (26) can be controlled via ΔΡ in (27). With respect 

to the notation followed in section 5, ΔΡ(t) = u(t)  and the 

two reference pressures Ρref1 and Ρref2 can now be computed 

from (27) as  and 

respectively. Since there is only one output available for meas-

urement from (26), that is the angle of rotation, in view of (29) 

we have C = [1  0]. Hence, with respect to the numerical val-

ues of the system given in section 4, system (26) can be de-

scribed by (28), (29).   
For the purpose of accurate modelling the above control 

signal was modified as follows to incorporate the non modelled 
actuator dynamics in (29), 

(55)   

Where σ(.) is the nonlinear function representing non 
modelled system dynamics (e.g. pressure dynamics as dis-
cussed in section 2, delays, saturation etc), which did not taken 
into account in section 5. For particular classes of σ(.), suf-

ficient conditions for the stability of the overall system can be 
derived using Lyapunov methods [22]. Subject to the actuator 
limits and after conducting few open loop experimental trials 
we found:

  

(56) 

to be a good approximation of the system’s non modelled dy-
namics where L-1{.} is the inverse Laplace transform operator 
[17]. Also, there is a physical limitation on the output (angle of 
rotation) of the system given by 

  
(57)        

Based in section 5.1, for the limitations (56) and (57), we 
can actually prove that AdR in section 5.1 is asymptotically 
stable and furthermore that the system will never saturate ac-
cording to (54). More specifically based on the numerical data 
of our system with a sampling time ts = 0.005 sec, the design 
parameters in (37) and (38) were selected to give satisfactory 
performance as kp = 0.35, kin = 10. With a numerical approxi-
mation to 4 decimal digits, (36) becomes

 

(58)

Now, in order to determine the bound (54) we solve the 
optimisation problem (53) using the numerical routine fmincon 
of the Optimisation Toolbox of MATLAB. We considered all 
possible combinations of reference input uR(kts) and   wR(kts) 
according to section 5.1. The only situation at which saturation 
may occur is subject to ramp and parabolic inputs of uR(kts). 
This again is expected since these inputs are unbounded and 
the system will reach its limits unavoidably. We must empha-
size, that this will not be the case if these inputs are throughout 
the process as discussed in section 5.

In terms of implementation, since the controller is imple-
mented via a digital computer, we use equation (58) and the 
schematic of the overall system is that of Figure 4.	 Accord-
ing to Remark 2, controller (58) do not satisfy (35) for the cas-
es of periodic/semi-periodic input reference signals. The cause 
of this delay in our case is evident from (57). At this point it 

should be stated that the delay nonlinearity  in 

(57) did not taken into account in the above design, but generi-
cally this will not effect the bound (54), because of the math-
ematical structure of (57) and the way that (53) has been posed. 
Therefore, exponential stability is estimated for the system. 
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The simulations of system in Figure 4 subject to control 
law (58) were performed in Simulink of MATLAB for a series 
of step reference signals to be tracked with system state and 
output random white noise bounded disturbances with maxi-
mum magnitude 0.001. The above simulations are shown in 
Figure 5a. As far as the experiment is concern, the experimen-
tal results for the tracking of a periodic square pulse reference 
of period 6 sec are shown in Figure 5b.

From figure 5, it is obvious that the simulations are in ac-
cordance with the predictions of the design method and analy-
sis of section 5. The method has the advantage of simplicity 
both in design and implementation when compared with other 
“modern control” designs for similar systems [13], [14] some 
of which produce very noisy bang-bang type control signals 

(see [14]) with the danger of damaging the system’s actuators. 
It is also evident from Figure 5b, that there is a good match 
between the experimental and the theoretical step response 
transients with a settling time of about 0.45 sec.

7. Conclusions / Further Work

The modeling and control of a soft joint actuated by pneumat-
ic muscle actuators was presented. The modeling of the joint 
dynamics was based on a simplified model that considers the 
pMAs as a nonlinear spring with elastic constant that is related 
to the muscle properties (b, L, Do). Control of the muscle pres-
sures is achieved using inexpensive 3/3 on/off solenoid valves. 
Comparison between the open loop response of the theoreti-
cal model and the experimental system showed good match-
ing performance for the theoretical model. Based on the model 
developed a control system was designed to enable position 
control of the joint. The design method is characterized by its 
simplicity and more important by its accuracy on predicting 
system behavior in terms of stability and saturation avoidance. 
This resulted to a nonlinear controller, which shows very good 
performance with fast settling time. Future work include: 

1. �The theoretical modeling of the muscle pressure dynamics 
when control by means of on/off solenoid valves. This will 
enable the replacement of the pressure regulator identified 
model as described in section 3 with a theoretical model 
enabling the entire modeling of the system. 

2. �Studies about the robustness and fragility of the control sys-
tem presented in this work.

3. �Theoretical and experimental studies of the robustness and 
fragility of the control system.

4. �Theoretical investigations of the design method in compari-
son with other modern control methods for SISO and MIMO 
systems and the study of possible conservatism.

5. �Extension of the design in order to take into account una-
voidable system saturation events [23]. 

Figure 5. �(a) Stochastic Simulations for the tracking of series of steps with 
state and measurement disturbances. (b) Experimental and respec-
tive simulation for the tracking of a square pulse signal and experi-
mental steady state error
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