

Journal of Engineering Science and Technology Review 3 (1) (2010) 7-13

JOURNAL OF Engineering Science and Technology Review

www.jestr.org

Analysis of air-conditioning and drying processes using spreadsheet add-in for psychrometric data

Research Article

C.O.C. Oko* and E.O. Diemuodeke

Department of Mechanical Engineering, University of Port Harcourt, P.M.B 5323 Port Harcourt, Nigeria.

Received 6 October 2009; Accepted 23 December 2009

Abstract

A spreadsheet add-in for the psychrometric data at any barometric pressure and in the air-conditioning and drying temperature ranges was developed using appropriate correlations. It was then used to simulate and analyse air-conditioning and drying processes in the Microsoft Excel environment by exploiting its spreadsheet and graphic potentials. The package allows one to determine the properties of humid air at any desired state, and to simulate and analyse air-conditioning as well as drying processes. This, as a teaching tool, evokes the intellectual curiosity of students and enhances their interest and ability in the thermodynamics of humid-air processes.

Keywords: Psychrometry, air-conditioning, drying, spreadsheet add-in, Microsoft Excel.

1. Introduction

The properties of humid air are very important in air-conditioning and drying process analysis and system design. The property data are usually provided as tables and charts of properties. But, reading the psychrometric charts is strenuous, time consuming and always prone to errors, and the use of property tables frequently requires interpolation between the tabulated data, which is also manual and time consuming activity. However, the proliferation of computer technology in contemporary engineering practice ensures greater speed and accuracy, and thus should limit or even eliminate the use of property charts and tables in engineering analysis. The present trend in engineering practice is, therefore, towards the development of computer packages that are capable of automatic generation of the values of the desired thermodynamic properties, and thus, facilitating their use in engineering analysis [1].

Many computer software packages are now available for engineering analysis, which have the facility for providing the thermodynamic properties of working fluids [1, 2]. But these packages are not available in most computers; they must be bought and installed; they cannot be modified by their users, say, to account for varying barometric pressure; special training is usually required for their users; and internet connectivity may be necessary. But these shortcomings can be overcome if computer packages that are easy to develop, modify and exploit by users are available. The Microsoft (MS) Excel offers a suitable environment for the development of such packages [3, 4, 5].

Therefore, it is possible to develop computer procedures in Visual Basic for Applications (VBA) for generating the psychrometric data as spreadsheet add-ins. Such a procedure would then be used in the MS Excel environment for the simulation and analysis of air-conditioning and drying processes in an interactive fashion and in a manner that fully exploits the spreadsheet and graphic potentials of MS Excel. Such tool would assist the design engineer in his work, especially when incorporated into a larger plant design software. It would also be tool an easily affordable tool for the effective teaching of air-conditioning and drying engineering principles to students of mechanical and chemical engineering. The use of the MS Excel environment for enhancing the learning process in engineering is not new [6, 7, 8, 9]. Our experience has also shown that students exhibit greater interest, commitment and ability in using the spreadsheet for problem solving, especially when graphical output is involved, than in the traditional approach.

This paper, therefore, presents a spreadsheet add-in for the psychrometric data for any barometric pressure and in the dry bulb temperature range of 0 to 550 (°C), and uses it to illustrate the interactive determination of the state properties of humid air, and simulation and analysis of air-conditioning and drying processes.

2. Governing Equations

Following the works of [10, 11, 12], the basic psychrometric properties are related as follows:

^{*} E-mail address: chimaoko@yahoo.com. ISSN: 1791-2377 © 2010 Kavala Institute of Technology. All rights reserved.

(1)

Specific humidity (g):

$$g = 0.622 \frac{P_{wv}}{(P_{b} - P_{wx})}$$

where P_b and P_{wv} are the barometric pressure and partial pressure of the water vapour, respectively.

If the temperature of humid air (*t*) is higher than the temperature of saturation (t_s) of water vapour (wv) at the dry air (da) pressure ($P_{d,a}$), that is, $t > t_s$, then $P_{wv} = P_{da}$ and

$$g = 0.622 \frac{RH}{(1-RH)} \tag{1a}$$

where RH is the relative humidity of the air, given as

$$RH = \frac{P_{wv}}{P_s} 100 \tag{2}$$

where P_s is the saturation pressure of the water vapour.

Enthalpy of Moist Air (h):

$$h = c_{p_{do}}t + g(2501 + c_{p_{ww}}t)$$
(3)

where *t*, $C_{P_{da}}$, and $C_{P_{wv}}$ are the dry bulb temperature, specific heat capacity of the dry air, and specific heat capacity of the water vapour, respectively.

The average specific heat capacities are given, respectively for air-conditioning and drying processes as $c_{P_{da}} = 1.005 \ (kJ/kgK)$ and $c_{P_{wv}} = 1.88 \ (kJ/kgK)$, and $c_{P_{da}} = 1.01 \ (kJ/kgK)$ and $c_{P_{wv}} = 1.97 \ (kJ/kgK)$.

Wet Bulb Temperature (t_{wb}) and Thermodynamic Wet Bulb Temperature (t^*) :

$$t_{wb} = t - \frac{k_M}{\alpha_a} \frac{h_{(fg)wb}}{g_{wb}} (g_{wb} - g)$$
⁽⁴⁾

and

$$t^{*} = t - \frac{h_{fg}^{*}}{c_{p}} (g^{*} - g)$$
(5)

where

$$c_p = c_{p_{d,a}} + g c_{p_{w,v}} \tag{6}$$

Le = 0.945 is the Lewis number for humid air, in which case $t_{wb} \approx t^*$; α_{α} [W/m²K], k_M [$kg_{w,v}/m^2s$], and c_p [$kJ/kg_{d,a}K$] are the heat transfer coefficient of the air film around the wetted surface, the mass transfer coefficient based on the specific humidity (g) and the humid specific heat, respectively; $h_{(g)wb}$ and g_{wv} are the specific latent enthalpy and specific humidity at the wet bulb temperature, respectively; and $R_{da} = 0.2873$ [kJ/kgK] is the dry air gas constant; the superscript "*" denotes adiabatic saturation properties and the indices "fg" and "wb" denote latent conditions and wet bulb temperature, respectively.

The Carrier's equation for the partial pressure of the water vapour, P_{wv} , is given as

$$P_{wv} = P_{(s)wb} - \frac{1.8 (P_{wv} - P_{(s)wb})(t - t_{wb})}{2800 - 1.3 (1.8 t + 32)}$$
(7)

where $P_{(s)wb}$ [kPa] is the saturation pressure at the wet bulb temperature.

Specific volume (v):

$$v = \frac{R_{d.a}T}{P_b - P_{w.v}} \tag{8}$$

where T [K] is the absolute temperature of humid air, T = 273 + t; *t* is temperature in degree celsius.

The humid air analysis is carried out using the following *algorithm*:

start

input data:

- i. obtain the prevailing barometric pressure;
- ii. obtain the desired (unknown) property (specific enthalpy, dry bulb temperature, wet bulb temperature, specific volume, specific humidity, relative humidity or dew point temperature);

iii. obtain two known properties and their values;

compute (using the relevant relationships for the psychrometric properties) the specific humid volume, specific enthalpy, specific humidity, dry-bulb, wet-bulb or dew-point temperature;

output the desired data (property name and numerical value); use the output for process simulation and analysis, if desired;

plot psychrometric charts, if desired;

The software was developed in MS Excel Visual Basic for Application Integrated Development Environment (Excel-VBA IDE) as an Excel add-in, called Psychrometric_data, using all the relevant correlations for the thermodynamic analysis of humid air, given in the *governing equations*, and following the *computational algorithm*. Some of the procedures are iterative with an error bound of 0.01%. The interface retrieves and supplies information on any of the humid air properties. A command button control on the Excel form is used to run the macro that implements a particular function.

After a successful installation of the Excel add-in, the *Psychrometric_data menu* is seen on the standard menu bar. By clicking on the Start button of the *Psychrometric_data menu*, the window shown in Figure 1 appears. Select the process type (*Drying* or *Air Conditioning*) by clicking on the relevant *OptionButton*. If the barometric pressure is different from the standard, P_b = 101.325 [kPa], check the *No* box, and enter the prevailing barometric pressure in the *TextBox* provided. Select the unknown property from the *ComboBox* captioned *Unknown Property*. In the *ComboBox* captioned *Function*, \wp (...,...), select the known properties. Key in

the numerical values of the known properties into the *TextBoxes* in the *Frame* captioned *Input the known data*. By clicking on the *CommandButton* captioned *Read*, the Psychrometric_data uses the relevant correlations to obtain the numerical value of the desired property, which is displayed in the *Output Data Frame* and is also automatically transferred to a pre-selected cell in the worksheet for further use. The process continues for another state by clicking on the *Continue* drop menu of the *Psychrometric_data menu*.

Figure 1. The add-in (Psychrometric_data) window.

3. Results and Discussion

As an Excel add-in, Psychrometric_data is designed to aid students as well as practicing air conditioning or drying plant engineers in their design/performance analysis by automatically providing the desired property data in the environment, for the relevant spreadsheet analysis. To illustrate how this is achieved, we consider the following problems:

 A room for process work is maintained at 20°C dry bulb (db) temperature and 25% relative humidity (RH). The outside air is at 40°C db and 25°C wet buld (wb) temperature. Twelve cubic metre per minute (cmm) of fresh air is mixed with a part of the recirculated air, and another passed over the adsorption dehumidifier. It is then mixed with another part of the recirculated air, and sensibly cooled in the cooler before being supplied to the room at 14°C. The room sensi-

inlet humidity ratio, $g_1 x 10^3$	exit humidity ratio, $g_2 x 10^3$
$[g/kg_{d.a}]$	$[g/kg_{d.a}]$
2.86	0.43
4.29	0.57
5.70	1.00
7.15	1.57
8.57	2.15
10.00	2.86
11.43	3.57
12.86	4.57
14.29	5.23

ble and latent heat gains are 6 and 0.8 kW, respectively. The performance of the dehumidifier (adsorbent material) is characterized by the inlet and exit humidity ratios of the air flowing through it, which are tabulated below. Assume the heat of adsorption of moisture to be 390 kJ/kg_{w.v} Determine the volume flow rate of the air through the dehumidifier and the heat transfer rate in the cooler [10].

Solution: (*The following solution steps are carried out on the MS Excel worksheet*)

Input data: (<i>the given data in the problem</i>)	
---	--

S/No	Quantity	Symbol	Units	Value
1	dry bulb temperature of room	t_{dbi}	°C	20
2	relative humidity of room	RH_{i}	%	25
3	dry bulb temperature of outside air	t_{dbo}	°C	40
4	wet bulb temperature of outside air	$t_{\rm wbo}$	°C	25
5	volume flow rate of outside air	Vo	m³/s	0.2
6	dry bulb temp. of air leaving the cooler	t_{dbs}	°C	14
7	room sensible heat	Qrs	kW	6.0
8	room latent heat	Q_{RL}	kW	0.8

Sketches/Diagrams:

(Figure 2 shows the plant flow sheet and process diagram).

Figure 2. The air-conditioning plant and processes.

(psychrometric data obtained using the add-in, $\wp(...,..)$

S/No	Quantity	Symbol	Units	Function	Value
1	wet bulb tempera- ture of room	$\mathbf{t}_{\mathrm{wbi}}$	°C	$\mathcal{O}(t_{dbi}, RH_i)$	11.210
2	specific enthalpy of outside air	h_{o}	kJ/kg _{d.a}	$\mathcal{O}(t_{dbo}, t_{wbo})$	75.760
3	specific enthalpy of room air	\mathbf{h}_{i}	kJ/kg _{d.a}	$\mathcal{O}(t_{dbi}, RH_i)$	29.010
4	specific humidity of outside air	go	kg _{w.n} /kg _{d.a}	$\wp(t_{dbo},t_{wbo})$	0.014
5	specific humidity of room air	\mathbf{g}_{i}	kg _{w.n} /kg _{d.a}	$\mathcal{O}(t_{dbi}, RH_i)$	0.003
6	specific volume of outside air	\mathbf{v}_{o}	m ³ /kg _{d.a}	$\mathcal{O}(t_{dbo}, t_{wbo})$	0.907
7	relative humidity of outside air	RH_{o}	%	$\mathcal{O}(t_{dbo}, t_{wbo})$	29.570
8	specific volume of room air	\mathbf{v}_{i}	m ³ /kg _{d.a}	$\wp(t_{dbi}, RH_i)$	0.835

					_		
Dat	Data read from literature:						
1	isobaric specific heat capacity of air	c_p	kJ/kg	1.024			
2	Specific heat of vaporization	$h_{\rm fgref}$	kJ/kg	2500			
3	reference temperature	$\mathbf{t}_{\mathrm{ref}}$	°C	25			
4	Reference density	ρ_{ref}	kg/m ³	1.2			
5	heat of adsorption	Qa	kW	390			
6	Iteration error	3	-	0.000005			

Computation: (provides answers the questions asked)

S/No	Quantity	Symbol	Units	Function	Value
1	mass flow rate of fresh air	mo	kg/s	m _o =V _o /v _o	0.221
2	temperature rise of supply air in the room	Δt_{dbs}	°C	$\Delta t_s = t_{dbi} - t_{dbs}$	6.000
3	sensible volumetric heat constant	Ks	kJ/m ³	$K_s = \rho_{ref} c_p (273 + t_{ref})$	366
4	volume flow rate of supply air	V_s	m ³ /s	$V_s = Q_{RS}(t_{dbs} + 273) / (K_S \Delta t_{dbs})$	0.784
5	Latent volumetric heat constant	K_{L}	kJ/m ³	$K_L = \rho_{ref} h_{fgref}(273 + t_{ref})$	894000
6	specific humidity of supply air	gs	kg _{w.v} /kg _{d.a}	$g_s = g_i - Q_{RL}(t_{dbs} + 273)/(K_L V_s)$	0.003
7	heat taken by the supply air per unit mass	q_s	kJ/kg	$q_s = c_p \Delta t_{dbs}$	6.144
8	mass flow rate of fresh air	m _s	kg/s	$m_s = Q_{RS}/q_s$	0.977
9	mass flow rate of the recirculated air	m _i	kg/s	$m_i = m_s - m_o$	0.756
10	specific humidity of air at the inlet of the dehumidifier	g_1	kg _{w.v} /kg _{d.a}	$g_1 = \phi(g_1, \varepsilon)^*$	0.010*
11	mass flow rate of recirculated air mixing before the cooler	m _{i2}	kg/s	$m_{i2} = m_i - m_{i1}$	0.614
12	mass flow rate of air entering the dehumidifier	m _d	kg/s	$m_d = m_s - m_{i2}$	0.363
13	recirculation/fresh air mass mixing ratio	$\gamma_{i1,o}$	-	$\gamma_{i1,o} = m_{i1}/m_o$	0.644
14	temperature of air entering the dehumidifier	t_{db1}	°C	$t_{db1} = (t_{db0} + \zeta_{i1,0} t_{dbi}) / (1 + \zeta_{i1,0})$	32.165
15	specific volume of air entering the dehumidifier	\mathbf{v}_1	m ³ /kg _{d.a}	$\wp(t_{db1}, g_1)$	0.878
16	volume flow rate of air through the dehumidifier	V_d	m³/s	$V_d = m_d v_1$	0.318
17	specific humidity of air at the exit of the dehumidifier	g_2	kg _{w.v} /kg _{d.a}	$g_2 = -0.1273g_1 + 0.00382$	0.003*
18	mass flow rate of recirculated air before the dehumidifier	m _{i1}	kg/s	$m_{il}=m_o(g_1-g_0)/(g_i-g_1)$	0.142
19	specific humidity drop in the dehumidifier	$\Delta_{ m gd}$	kg _{w.v} /kg _{d.a}	$\Delta g_d = g_2 - g_1$	-0.007
20	heat transfer rate due to condensation in dehumidifier	Q_{cond}	kW	$Q_{cond}=2500m_dI\Delta g_dI$	6.345
21	heat transfer rate due to adsorption of moisture in the dehumidifier	Q_{ads}	kW	$Q_{ads}=Q_am_dI\Delta g_dI$	0.990
22	total heat transfer rate in the dehumidifier	\mathbf{Q}_{d}	kW	$Q_d = Q_{cond} + Q_{ads}$	7.335
23	temperature rise in the dehumidifier	Δt_{dbd}	°C	$\Delta t_{dbd} = Q_d / (m_d c_p)$	19.756
24	temperature of air exiting the dehumidifier	t_{db2}	°C	$t_{db2}=t_{db1}+\Delta t_{dbd}$	51.920
25	dehumidifier/recirculation air mass mixing ratio	γ _{i2,2}	-	$\gamma_{i2,2}=m_{i2}/m_d$	1.693
26	temperature of air entering the cooler	t_{db3}	°C	$t_{db3} = (t_{db2} + \gamma_{i2,2} t_{dbi})/(1 + \gamma_{i2,2})$	31.851
27	specific enthalpy of air entering the cooler	h_3	kJ/kg _{d.a}	$\Im (t_{db3},g_s)$	41.260
28	specific enthalpy of the supply air	h _s	kJ/kg _{d.a}	${\cal O}(t_{dbs},g_s)$	22.120
29	heat transfer rate in the cooler	Qc	kW	$Q_c = m_s I h_s - h_3 I$	18.691

*
$$g_1 = \frac{g_i - g_o}{g_i - \frac{(m_s g_s - m_i g_i)}{m_i}} g_2 + \frac{g_o - (1/m_o)(m_s g_s - m_i g_i)}{g_i - (1/m_o)(m_s g_s - m_i g_i)} g_i \quad : or. \quad g_2 = -0.12732g_1 + 0.00382 = f(g_1).$$

By curve fitting the experimental data for the dehumidifier performance using MS Excel curve fitting tool, we obtain $g_2 = 20.928 g_1^2 + 0.08g_1 - 7 \times 10^{-5} = \varphi(g_1)$, Figure 3. Equating the last two equations, $f(g_1) = \varphi(g_1)$, we get the iteration scheme, $g_{1,j+1} = -100.989 g_{1,j}^2 + 0.01877$. Setting $g_{1,0} = 0.00286$ and iterating in Excel environment, within an absolute error bound of 10^{-5} , we obtain the values of g_1 and g_2 as $g_1 = 0.0097$ and $g_2 = -0.1273g_1 + 0.00382 = 0.0027$ (kg_{wv}/kg_{da}).

Figure 3. Curve fitting of the dehumidifier data and solution of the equation $f(g_i) = \varphi(g_i)$.

- 2. One tonne of some moist material is to be dried per hour from an initial moisture content of $u_{in} = 50$ [%] to a final moisture content of $u_{fin} = 6$ [%] (wet basis). The temperature and humidity of the outdoor air are $t_o = 25$ [%] and go = 0.0095[kg_{wv}/kg_{da}], respectively, and those of the air leaving the dryer (spent air) are $t_s = 60$ [°C] and $g_s = 0.041$ [kg_{wv}/kg_{da}]; where the subscripts "wv" and "da" denote "water vapour" and "dry air", respectively. The drying of the moist material can be accomplished by any of the following three arrangements:
- (a) The temperature of the outdoor air is raised in the heater before it enters the dryer; the humid air leaving the dryer (spent air) is exhausted into the atmosphere.
- (b) The temperature of the outdoor air is raised to 100 [°C] in the heater; it enters the dryer and partially dries the moist material; it then enters the reheater, where its temperature is again raised to 100 [°C] before it is reintroduced into the dryer to complete the drying process; the spent air is then exhausted into the atmosphere.
- (c) The outdoor air is mixed with 80 [%] recirculated; it is then heated in the heater and introduced into the dryer to process the moist material; the spent air is exhausted into the atmosphere.

Determine the outdoor air flow rate through the dryer, and the power consumption (heat transfer rate) for each of the drying arrangements. Also compare the drying potentials of these arrangements [12].

Solution: (*The following solution steps are carried out on the MS Excel worksheet*)

Input data: (the given data in the problem	the problem)	in the	data	he given	Input data:	h
---	--------------	--------	------	----------	-------------	---

S/No	Quantity	Symbol	Units	Value
1	initial mass of moist material	m_{mm}	kg/s	0.278
2	initial moisture content of material	\mathbf{u}_{in}	-	0.5
3	final moisture content of material	$\mathbf{u}_{\mathrm{fin}}$	-	0.06
4	temperature of air in case (b) heater	t_{dbb}	°C	100
5	fraction of recirculated air	κ	-	0.8
6	outside air dry bulb temperature	t_{dbo}	°C	25
7	outside air specific humidity	go	kg/kg _{d.a}	0.0095
8	spent air dry bulb temperature	t_{dbs}	°C	60
9	spent air specific humidity	gs	kg/kg _{d.a}	0.041

Sketches/Diagrams:

(Figure 3 shows the plant flow sheet and process diagram).

Figure 4. The convective drying plant and processes.

Data read: (psychrometric data obtained using the add-in)

S/No	Quantity	Symbol	Units	Value	Value
1	outside air specific enthalpy	h _o	kJ/kg _{da}	$\wp(t_{dbo},g_o)$	46.25
2	spent air specific enthalpy	h_s	kJ/kg _{da}	${} {\it (t_{dbs},g_s)}$	168.13
3	outside air relative humidity	RH_{o}	%	$\wp(t_{dbo},g_o)$	43.33
4	spent air relative humidity	RH_{o}	%	${} {\it (t_{dbs},g_s)}$	31.09
5	spent air wet bulb temperature	$t_{ m wbs}$	°C	${{} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	39.8
6	case (a) heated air dry bulb tempera- ture	t_{dba}	°C	${} {\wp}(g_o,\!h_s)$	139.1
7	specific humidity of air in the first pro- cess O-1b-2	g_2	$kg_{wv}\!/\!kg_{da}$	${} { { { { { $	0.02528
8	case (b) heated air wet bulb tempera- ture	t_{wbb}	°C	$\mathcal{O}(t_{dbb},g_o)$	34.68

Computation: (*Answers the question asked*)

S/No	Quantity	Symbol	Units	Formula	Value
(a)					
1	rate of moisture removal in the dryer	m _{wv}	kg/s	$m_{wv} = m_{mm}(u_{in} - u_{fin})/(1 - u_{fin})$	0.130128
2	mass of dry air nor kilogram of maisture symptoted	$\Delta g_{(a)}$	Kg _{wv} /Kg _{da}	$\Delta g_{(a)} - g_s - g_o$	0.0515
3	mass of dry an per knogram of moisture evaporated	X _(a)	Kg _{da} /Kg _{wv}	$x_{(a)} - 1/\Delta g_{(a)}$	51.74005 4.121027
4	shance in the specific antholicy of siz	M _{o(a)}	Kg _{da} /S	$\mathbf{m}_{0(\mathbf{a})} = \mathbf{m}_{\mathbf{wv}} \cdot \mathbf{x}_{(\mathbf{a})}$	4.131037
5	change in the specific enthalpy of air	$\Delta \Pi_{(a)}$	KJ/Kg_{da}	$\Delta \Pi_{(a)} = \Pi_{s} - \Pi_{o}$	121.88
6 7	neat consumption per kilogram moisture evaporated	$\mathbf{q}_{(a)}$	kJ/Kg _{wv}	$\mathbf{q}_{(a)} = \mathbf{x}_{(a)} \cdot \Delta \mathbf{n}_{(a)}$ $\mathbf{\Omega}_{(a)} = \mathbf{m} \cdot \mathbf{x}_{(a)}$	3869.206 503 4908
(b)		((a)	K VV	$\mathbf{Q}_{(a)} = \mathbf{m}_{WV} = \mathbf{q}_{(a)}$	505.4700
8	rise in the specific humidity of the air during the first pass through the dryer, process O-1b-2	Δg_{ib2}	$kg_{\rm wv}\!/\!kg_{\rm da}$	$\Delta g_{ib2} = g_2 - g_0$	0.01578
9	mass of dry air per kilogram of moisture evaporated in the first process	X _(b)	$kg_{\text{da}}\!/kg_{\text{wv}}$	$x_{(b)} = 1/\Delta g_{(b)}$	63.37136
10	mass flow rate of dry outdoor air through the dryer	m _{o(b)}	$kg_{\text{da}}\!/s$	$m_{o(b)}=0.5*m_{wv}*x_{(b)}$	4.123183
11	change in the specific enthalpy of air	$\Delta h_{(b)}$	kJ/kg _{da}	$\Delta h_{(b)} = h_s - h_o$	121.88
12	heat consumption per kilogram moisture evaporated	q _(a)	kJ/kg_{wv}	$q_{(b)} = x_{(b)} * \Delta h_{(b)}$	7723.701
13	power consumption	$Q_{(b)}$	kW	$Q_{(b)} = 0.5 * m_{wv} * q_{(b)}$	502.5336
(c) 14	specific humidity of air after mixing of the outdoor and regiraulated air	σ.	ka /ka	$\alpha = (1 - \kappa)\alpha + \kappa^* \alpha$	0.0347
14	rise in the specific humidity of air in the dryer	$\Delta g_{(c)}$	kg _{wv} /kg _{da}	$g_4 - (1-\kappa)g_0 + \kappa g_s$ $\Delta g_{(0)} = g_s - g_4$	0.0063
16	mass of dry air per kilogram of moisture evaporated		kg	$x_{(a)} = 1/\Lambda g_{(a)}$	158 7302
17	mass flow rate of dry air through the dryer	m ₄	kg./s	$m = m_{m} * x_{(c)}$	20.65518
18	mass flow rate of dry outdoor air through the dryer	m o	kg,/s	$m_{4} = (1-\kappa)^{*}m_{4}$	4 131037
10	specific enthalpy of air after mixing	h.	kgda/ S	$h = (1 - \kappa)h + \kappa * h$	1/3 75/
20	shange in the specific onthelms of air	114 A b	$l_z I/l_z \alpha$	$h_4 - (1 - k)h_0 + k h_s$	24 276
20	hast consumption nor bile from moisture even ereted		KJ/Kg _{da}	$\Delta \Pi_{(c)} = \Pi_{s} = \Pi_{4}$	2960 206
21		q _(c)	KJ/Kg _{wv}	$q_{(c)} - x_{(c)} \cdot \Delta \Pi_{(c)}$	503 4009
22		Q _(c)	KW	$Q_{(c)} = m_{wv} \cdot q_{(c)}$	505.4908
23	"big" wet bulb depression for (a)	$\Delta t_{B(a)}$	K	$\Delta t_{B(a)} = t_{dba} - t_{wbs}$	99.3
24	"small" wet bulb depression for (a)	$\Delta t_{S(a)}$	K	$\Delta t_{S(a)} = t_{dbs} - t_{wbs}$ $\Delta t_{r(a)} = (\Delta t_{P(a)} - \Delta t_{S(a)})/$	20.2
25	drying potential (logarithmic mean temperature difference (LMTD)) for (a)	$\Delta t_{p(a)}$	K	$\frac{(\ln(\Delta t_{B(a)}/\Delta t_{S(a)}))}{(\ln(\Delta t_{B(a)}/\Delta t_{S(a)}))}$	49.7
26	drying potential relative to that of (a)	$\epsilon_{a\left(a\right)}$	%	$\epsilon_{a(a)} = (\Delta t_{p(a)} / \Delta t_{p(a)}) * 100$	100
27	"big" wet bulb depression for (b), first pass through the dryer	$\Delta tB(b), 1$	Κ	$\Delta t_{B(a),1} = t_{dbb} - t_{wbb}$	65.3
28	"small" wet bulb depression for (b), first pass through the dryer	$\Delta t_{S(b),1}$	Κ	$\Delta t_{S(a),1} = t_{dbs} - t_{wbb}$	25.3
29	drying potential (LMTD) for (b), first pass	$\Delta t_{\text{p(b)},1}$	Κ	$\Delta t_{p(b),1} = (\Delta t_{B(b),1} - \Delta t_{S(b),1})/$ (ln($\Delta t_{B(b),1}/\Delta t_{S(b),1}$))	42.2
30	"big" wet bulb depression for (b), second pass through the dryer	$\Delta t_{B(b),2}$	Κ	$\Delta t_{B(a),2} = t_{dbb} - t_{wbs}$	60.2
31	"small" wet bulb depression for (b), second pass through the dryer	$\Delta t_{S(b),2}$	Κ	$\Delta t_{S(a),2} = t_{dbs} - t_{wbs}$	20.2
32	drying potential (LMTD) for (b), first pass	$\Delta t_{p(b),2}$	Κ	$\Delta t_{p(b),2} = (\Delta t_{B(b),2} - \Delta t_{S(b),2}) / (\ln(\Delta t_{P(b),2} - \Delta t_{S(b),2}))$	36.7
33	drying potential for (b)	$\Delta t_{p(b)}$	K	$\Delta t_{p(b)} = 0.5 * (\Delta t_{p(b),1} + \Delta t_{p(b),2})$	39.5
34	drying potential relative to that of (a)	$\epsilon_{a(b)}$	%	$\epsilon_{a(b)} = (\Delta t_{p(b)} / \Delta t_{p(a)}) * 100$	79.5
35	dry bulb temperature of air after the heater for (c)	t_{dbc}	°C	$\mathcal{O}(g_4,h_s)$	73.25
36	"big" wet bulb depression for (b), first pass through the dryer	$\Delta t_{B(c)}$	К	$\Delta t_{B(c)} = t_{dbc} - t_{wbs}$	33.5
37	"small" wet bulb depression for (b), first pass through the dryer	$\Delta t_{S(c)}$	К	$\Delta t_{S(c)} = t_{dbs} - t_{wbs}$	20.2
38	drying potential (LMTD) for (c)	$\Delta t_{p(c)}$	К	$\Delta t_{p(c)} = (\Delta t_{B(c)} - \Delta t_{S(c)})/$	26.3
39	drying potential relative to that of (c)	E _{a(c)}	%	$(III(\Delta t_{B(c)}/\Delta t_{S(c)})) \\ \epsilon_{a(c)} = (\Delta t_{p(c)}/\Delta t_{p(a)}) * 100$	52.92

The results of the solutions of the illustrative problems 1 and 2 using the add-in are in good agreement with those obtained by [10] and [12], respectively. The psychrometric data provided by the add-in are in agreement with those from the psychrometric charts for air-conditioning processes and drying processes [12] and [13], respectively. It was, however, observed that the maximum relative deviation of 4.5% occurs in the values of the specific enthalpy; but this is within an acceptable limit for most applications. The interactive nature of the MS Excel environment evokes curiosity

Figure 5. Variation of outdoor air flow rate $(m_{o(c)})$, mass flow rate of air through the dryer (m_4) and drying potential $(\Delta t_{p(c)})$ as function of fraction of dryer spent air recirculated (κ), Problem 2(c).

and participation in students, and its graphic, equation-solving and curve-fitting capabilities permit the student to visualise the humid air processes and appreciate the scope and applications of thermodynamics of humid air. Comparism of process characteristics is relatively simple, and process simulation under a range of varying input parameters is always possible as in Figure 5, which shows

the dependence of the outdoor dry air mass flow rate $(\dot{m}_{o(c)})$, mass

flow rate of air through the dryer (\dot{m}_4) and drying potential $(\Delta t_{p(c)})$ on the fraction of dryer spent air recirculated (κ).

4. Conclusion

The spreadsheet add-in is provided in an easily accessible MS Excel environment to facilitate process analysis and simulation efforts of students as well as practising air-conditioning and drying engineers. Our experience has shown that students exhibit greater interest, commitment and ability in using the spreadsheet for problem solving, especially when graphical output is involved, than in the traditional approach. The tool proposed in this paper is easy to install, use and modify by engineering students in any computer driven by the MS Office. It is, therefore, strongly recommended as a teaching tool for engineering students, especially in localities with limited access to internet facilities, which may offer alternative tools online.

References

- 1. Beckmanand W. and Klein S. (1996), Engineering Equation Solver (EES) User manual, McGraw Hill, N Y.
- Lemmon E. W., Huber M. L. and McLinden M. O. (2002), Refprop Version 7.0 User Guide, U.S NIST Department of Commerce.
- Deane A. (2005), Developing Mathematics Creativity with Spreadsheets, J. of Korea Society of Math. Educ., Series D: R. in Math. Educ. 9 /3 187-201.
- Deane A., Erich N. and Robert S. S. (2005), Mathematical Modelling and Visualization with Microsoft Excel, KAIST, Retrieved April 26th, 2006 http://www.mathnet.or.kr/kaist2005/article/arganbright.pdf.
- Liengme V. B. (2000), A Guide to Microsoft Excel For Scientist and Engineers. Woburn, Butterworth Heinemann.
- Schumack M. R. (1997), Teaching heat transfer using automation-related case studies with a spreadsheet analysis package, Int. J. Engineering Education, 25 177-196.
- Lira C. T. (2000), Advanced Spreadsheet Features for Chemical Engineering Calculations, Submitted to Chem. Eng. Educ., Retrieved March 22nd, 2009 http://www.egr.edu/~lira/spreadsheats.pdf

- Viali L. (2005), Using spreadsheets and Simulation to Enhance the Teaching of Probability and Statistics to Engineering Students, Int. Conf. on Eng. Educ., Poland, July 25-29th, (Silesian University of Technology, Gliwice).
- Whiteman W. and Nygren K. P. (2000), Achieving the Right Balance: Properly Integrated Mathematical Software Packages into Engineering Education, J. of Enging Educ., 89/ 3 pp. 331-336.
- Arora, C. P. (2000), Refrigeration and Air Conditioning. Tata McGraw-Hill, New Delhi.
- Akpan, I. E. (2000), Analysis of Psychrometric Data for the Niger-Delta Region of Nigeria. A thesis in Mechanical Engineering for the award of M. Eng. University of Port Harcourt, Port Harcourt.
- 12. Pavlov, K. F et al. (1979), Examples and problems to the course of unit operations of Chemical Engineering. Mir, Moscow.
- Eastop, T. D and McConkey, A. (1993), Applied Thermodynamics: For Engineering Technology. Fifth edition, Pearson Education, New Delhi.