

Journal of Engineering Science and Technology Review 2 (1) (2009) 48-50

Research Article

Designing role-based access control policies with UML

 A. Cenys, A. Normantas* and L. Radvilavicius

Information Security Laboratory, Department of Information System, Faculty of Fundamental Sciences,
Vilnius Gediminas Technical University Sauletekio al. 11, SRL-I-415, LT-10223, Vilnius, Lithuania

Received 18 April 2009; Accepted 18 May 2009

Abstract

 The paper analyses role-based access control (RBAC) and two methodologies, namely SecureUML and UMLsec, aiming
 for designing RBAC policies. The features of both methodologies are represented and compared by modeling the specific
 system, with special attention to how RBAC policies and principles are modeled using SecureUML and UMLsec.

Keywords: UML, RBAC, UMLsec, SecureUML.

1. Introduction

In computer security, access control is the ability to permit
or deny the use (access) of a particular system resource by a
particular entity. Techniques on how access control can be
modeled generally falls into two categories: discretionary
and non-discretionary.
 Discretionary access control (DAC) is an access control
technique where the owner of object controls the
permissions to access the object. In non-discretionary access
control, called mandatory access control (MAC),
permissions are handled by system, not the owner of object.
Objects in these systems are assigned with security label
which restrict who is allowed to access them. A label
contains the required clearance level, which often ranges
from unclassified to classified, secret, top secret, etc. Users
of the system are assigned clearance levels.
 DAC and MAC techniques existed as the only ones to
describe access policies until 1992 when D.F.Ferraiolo and
D.R.Kuhn separated the new technique in [3]. It was called
the role-based access control (RBAC), and here the users are
given the permissions to objects indirectly – through roles.
RBAC is proved to be more flexible and powerful than
MAC or DAC. The unified modeling language (UML) can
be used to specify RBAC policies.
 The main objective of this paper is the analysis of
modeling languages and methodologies, which can be used
to design RBAC mechanism of the system. Particularly, two
security-aimed methodologies, UMLsec and SecureUML,
and their general approach to RBAC are an object of
research in this work.
 This paper is organized as follows. In Section 2, the
background of the work is explained. This section consists
of general information about RBAC model. Section 3 and 4

contents are the two methodologies of secure system design,
represented in this paper – UMLsec and SecureUML.
Section 5 explains an important RBAC principle –
separation of duty, while Section 6 focuses on RBAC
policies in the specific system, and what decisions UMLsec
and SecureUML methodologies can provide. Finally,
conclusions are drawn in last section.

2. Role-based access control

 In this work, RBAC is described as a method of
regulating access to functions or operations of system by the
roles of individual users. The principle scheme of RBAC is
shown in Fig. 1.

Fig. 1 Different components of RBAC [1]

 The components (or entities) of the Fig. 1 are explained
as follows. A user is defined as an individual person,
software agent or another subject in the organization. A role
is a function within that organization. An operation is an
event of taking action on system’s protected resource. The
permission represents the authorization to execute the
operation. Finally, permissions are assigned to roles and so-
called privileges are created.

Jestr

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

 * E-mail address: andrius.normantas@gmail.com
ISSN: 1791-2377 © 2009 Kavala Institute of Technology. All rights reserved.

A. Cenys, A. Normantas and L. Radvilavicius / Journal of Engineering Science and Technology Review 2 (1) (2009) 48-50

 The use of RBAC to manage user access control via
permission assignment to roles within a single system or
application is widely accepted as a best practice. Systems
including FreeBSD, Solaris, Oracle DBMS and many others
effectively implement some form of RBAC.

3. SecureUML

SecureUML [2,5] is an extension of UML for specifying
RBAC and other access control policies for actions on
protected resources through the use of a security modeling
language. The abstract syntax and semantics allow it to be
combined with design modeling languages. This
methodology is basically the language of RBAC extended
with authorization constraints whose are expressed in Object
Constraint Language (OCL).
 Fig. 2 shows the SecureUML metamodel in UML class
diagram where metamodel types introduced in SecureUML
are marked in lighter colour. This metamodel is defined as
an extension of the UML metamodel. SecureUML
introduces the new metamodel types User, Role and
Permission. Relations between those types are defined as
standard UML associations. Another type introduced in
SecureUML is AuthorizationConstraint which uses standard
UML core type Constraint to express a pre-condition for
calls of operations of user-defined resource set.

Fig. 2 SecureUML metamodel

4. UMLsec

Another UML extension for secure systems development is
UMLsec, introduced by Jan Jürjens in [4]. Here, the
recurring security requirements, such as secrecy, integrity,
authenticity etc., are offered as specification elements.
Various kinds of UML diagrams are used to indicate
possible vulnerabilities.
 The UMLsec extension is given in a form of using the
standard UML extension mechanisms, such as stereotypes,
tags, and constraints; stereotypes with tags formulate the
security requirements, while constraints give criteria whether
the requirements are met by the system design, or not.
 A central idea of the UMLsec extension is to define
labels for UML model elements (stereotypes), which, when
attached, add security-relevant information to these model
elements [4]. Such a label is «rbac» stereotype, which will
be explained in subsequent sections.

5. Separation of duty

In RBAC, separation of duty (SOD) constraints are used to
enforce conflict of interest policies [1]. These constraints can
be of two types:

- Static SOD (SSD) – preventing conflicts of interests
that arise when user gains permissions associated with
conflicting roles, i.e. roles that cannot be assigned to
the same user;

- Dynamic SOD (DSD) – place restrictions on the roles
that cannot be activated within the same user session.

The static and dynamic SOD constraints can also be placed
on permissions or users rather than roles. Depending on the
object that constraint is attached to, constraints are referred
to SSD-Role, SSD-Permission or SSD-User constraints.

6. Modeling RBAC

To illustrate modeling opportunities of UMLsec and
SecureUML, we use a simple brokerage corporation
application as a system of specific RBAC policies. The
system is used by various employees within their company
to perform their duties, and one of the main policies of the
company is that information resources should be protected
from unauthorized access.
 The system RBAC policies are given below:

 - Roles: {broker, accountant, consultant, customer
service representative, internal auditor, broker department
manager, customer service department manager};

- Permissions assigned to roles:
- The broker can modify trade data, execute

orders and confirm deals;
- The accountant can generate reports;
- The customer service representative can

read information related to customers;
- The consultant can perform select, insert,

update and delete operations with
customers’ database;

- The internal auditor has read-only access
to all resources.

- Hierarchical (roles) policies:
- The customer service department

manager role is senior to the consultant
and customer service representative
roles;

- The broker department manager role is
senior to the broker and accountant roles.

- SOD constraints:
- SSD constraints:

- (broker department manager,
customer service department
manager);

- (broker, consultant)
- (accountant, customer service

representative)
- DSD constraints:

- (internal auditor, x), where x is any
other role, meaning that the user
cannot activate internal auditor role
while being assigned to any other
role in the same session.

 49

A. Cenys, A. Normantas and L. Radvilavicius / Journal of Engineering Science and Technology Review 2 (1) (2009) 48-50

Fig. 3 SOD constraints in UML object diagram

 SOD constraints and hierarchical policies are modeled in
SecureUML and shown in Fig. 3. UMLsec does not offer
any special features related to SOD but the set of existing
tools (stereotype «rbac» and standard UML notation) makes
SOD modeling possible.

Fig. 4 Specific system modeled with SecureUML

 The full model of particular system is shown in Fig. 4.
Note that here new elements appear, namely module and
moduleGroup. Generally, they extend resource element. The
module is a conceptual system unit which uses the resources,
such as database objects, files, and applications. The group
of modules is a composition of such modules.
 Modeling RBAC in UMLsec, one needs to know
stereotype «rbac» and its tagged values:

- {protected} – for the states of activity diagram access
to whose should be controlled;

- {role} – a pair of values of users assignments to
 roles;

 - {right} – a pair of values of rights given to roles.
Fig. 5 Part of the system modeled with UMLsec «rbac» stereotype is based on UML package element and

activity diagram within. While roles are separated by dashed
lines, protected objects are located into respective role fields.
An example of «rbac» stereotype is shown in Fig. 5.

7. Conclusions

Due to the fact that SecureUML is a language based on
RBAC, this plays a significant role for choosing this
language instead of UMLsec when it comes for designing
RBAC policies in the specific system.

 Both UMLsec and SecureUML need some
improvements related to RBAC. UMLsec has no support for
various RBAC constraints, such as separation of duty, or
pre- or post- conditions, which are offered by SecureUML in
OCL.
 SecureUML has no sophisticated structures of resources,
such as hierarchies or compositions, which might be helpful
when designing complex systems.

.

References
1. I.Ray, N.Li, R.France, D.-K.Kim. Using UML To Visualize Role-

Based Access Control Constraints. In Proceedings of the ninth
ACM symposium on Access control models and technologies,
p.115-124, Yorktown Heights, New York, USA, 2004.

5. J.Doser. Analysis of SecureUML Models. Freiburg, 2003.
6. T.Lodderstedt, D.Basin, J.Doser. Model Driven Security: from

UML Models to Access Control Infrastructures. ACM
Transactions on Software Engineering and Methodology
(TOSEM), Volume 15, Issue 1, 2006. 2. T.Lodderstedt, D.Basin, J.Doser. SecureUML: A UML-Based

Modeling Language for Model-Driven Security. UML 2002 - The
Unified Modeling Language: 5th International Conference,
Dresden, Germany, 2002.

7. J.Jürjens. Sound Methods and Effective Tools for Model-based
Security Engineering with UML. International Conference on
Software Engineering, Shanghai, China, 2006.

3. D.F.Ferraiolo, D.R.Kuhn. Role-Based Access Controls. In 15th
National Computer Security Conference, Baltimore, 1992.

8. Th.Doan, L.Michel, S.Demurjian. A Formal Framework for Secure
Design and Constraint Checking in UML. International
Symposium on Secure Software Engineering, Washington D.4. J.Jürjens. Secure Systems Development with UML. Springer,

2004.

50

