
19

Journal of Engineering Science and Technology Review 1 (2008) 19-24

Research Article

Hardware principles for the design of a stereo-matching state machine
based on dynamic programming

J. Kalomiros*,1 and J. Lygouras2

1 Department of Informatics and Communications, School of Technological Applications,
Serres Institute of Education and Technology, Terma Magnisias, 62100, Serres, Greece

2 Section of Electronics and Information Systems Technology, Department of Electrical Eng. & Computer Eng.,
School of Engineering, Democritus University of Thrace, Xanthi, Greece

Received 10 December 2007; Accepted 15 January 2007

Abstract

This paper presents basic design principles for hardware implementation of a two-pass stereo-matching algorithm based
on dynamic programming. For the first-pass a state-machine is proposed for the recursive calculation of the cost-function.
The state-machine works along the diagonal of a 2-D disparity space for each epipolar pair of image scan-lines. On-chip
local RAM stores tags that denote the minimum transition cost to every point in the disparity space among possible costs
from all three neighboring points. All calculations are within a pre-determined useful disparity range. For the second
pass, hardware rules are presented that produce the correct disparity per pixel, by backtracking stored cost values. Hard-
ware stages are structured along a fully parallel pipeline, that outputs disparities in step with the input serial pixel stream
at clock rate.

Keywords: Hardware Design, Stereo Vision, Dynamic Programming

1. Introduction

Dynamic programming is a general mathematical method
that can reduce the complexity of optimization problems, by
decomposing them into simpler and smaller problems [1]. It
can be used in order to handle the stereo-correspondence
problem by finding an optimized solution for the whole
scan-line. In this sense the problem is solved globally, as
opposed to local methods that find correspondences between
local blocks [2,3]. In general, global methods produce better
results and can resolve problems like lack of texture and
occlusion [4,5]. However, such methods suffer because of
their considerable computational cost.
 Stereo vision dynamic programming exploits two geo-
metrical constraints that apply to depth calculation by two
parallel cameras. These are the epipolar constraint [2] and
the monotonic ordering constraint [6]. The first means that
in rectified stereo pairs the search for correspondences be-
tween stereo frames can be limited only to epipolar scan-
lines. The second means that if a correspondence between
two points A and B is established, then the next point on the
right of A in one image can only correspond to a point to the
right of B in the other image. This idea is shown in Fig. 1. It
should be noted however, that the relative order of pixels
between the two views is not always the same in real scenes.
 The main idea behind a dynamic programming algorithm
for stereo matching is to build a Disparity Space Image

(DSI), attributing a cost value to all disparities and establish-
ing best global disparities by backtracking the optimal path
[7]. The cost of optimal path is the sum of the costs of the
partial paths obtained recursively.

Fig. 1 The monotonic ordering constraint in stereo-vision. Finding the
correspondence between two conjugate points in a stereo-pair means
that all other correspondences lie to the right of the two points in both
left and right images.

Fig. 2 Minimizing path (on the right) is determined by calculating re-
cursively a cost function. Each point in the cost function (on the left) is
derived from the three previous values, as shown by the arrows. Dis-
parities are tallied in a next stage, by backtracking the path of minimum
cost.

Jestr

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

 * E-mail address: ikalom@teiser.gr
ISSN: 1791-2377 © 2008 Kavala Institute of Technology. All rights reserved.

Journal of Engineering Science and Technology Review 1 (2008) 19-24

Research Article

Hardware principles for the design of a stereo-matching state machine
based on dynamic programming

J. Kalomiros*,1 and J. Lygouras2

1 Department of Informatics and Communications, School of Technological Applications,
Serres Institute of Education and Technology, Terma Magnisias, 62100, Serres, Greece

2 Section of Electronics and Information Systems Technology, Department of Electrical Eng. & Computer Eng.,
School of Engineering, Democritus University of Thrace, Xanthi, Greece

Received 10 December 2007; Accepted 15 January 2007

Abstract

This paper presents basic design principles for hardware implementation of a two-pass stereo-matching algorithm based
on dynamic programming. For the first-pass a state-machine is proposed for the recursive calculation of the cost-function.
The state-machine works along the diagonal of a 2-D disparity space for each epipolar pair of image scan-lines. On-chip
local RAM stores tags that denote the minimum transition cost to every point in the disparity space among possible costs
from all three neighboring points. All calculations are within a pre-determined useful disparity range. For the second
pass, hardware rules are presented that produce the correct disparity per pixel, by backtracking stored cost values. Hard-
ware stages are structured along a fully parallel pipeline, that outputs disparities in step with the input serial pixel stream
at clock rate.

Keywords: Hardware Design, Stereo Vision, Dynamic Programming

1. Introduction

Dynamic programming is a general mathematical method
that can reduce the complexity of optimization problems, by
decomposing them into simpler and smaller problems [1]. It
can be used in order to handle the stereo-correspondence
problem by finding an optimized solution for the whole
scan-line. In this sense the problem is solved globally, as
opposed to local methods that find correspondences between
local blocks [2,3]. In general, global methods produce better
results and can resolve problems like lack of texture and
occlusion [4,5]. However, such methods suffer because of
their considerable computational cost.
 Stereo vision dynamic programming exploits two geo-
metrical constraints that apply to depth calculation by two
parallel cameras. These are the epipolar constraint [2] and
the monotonic ordering constraint [6]. The first means that
in rectified stereo pairs the search for correspondences be-
tween stereo frames can be limited only to epipolar scan-
lines. The second means that if a correspondence between
two points A and B is established, then the next point on the
right of A in one image can only correspond to a point to the
right of B in the other image. This idea is shown in Fig. 1. It
should be noted however, that the relative order of pixels
between the two views is not always the same in real scenes.
 The main idea behind a dynamic programming algorithm
for stereo matching is to build a Disparity Space Image

(DSI), attributing a cost value to all disparities and establish-
ing best global disparities by backtracking the optimal path
[7]. The cost of optimal path is the sum of the costs of the
partial paths obtained recursively.

Fig. 1 The monotonic ordering constraint in stereo-vision. Finding the
correspondence between two conjugate points in a stereo-pair means
that all other correspondences lie to the right of the two points in both
left and right images.

Fig. 2 Minimizing path (on the right) is determined by calculating re-
cursively a cost function. Each point in the cost function (on the left) is
derived from the three previous values, as shown by the arrows. Dis-
parities are tallied in a next stage, by backtracking the path of minimum
cost.

Jestr

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

 * E-mail address: ikalom@teiser.gr
ISSN: 1791-2377 © 2008 Kavala Institute of Technology. All rights reserved.

Journal of Engineering Science and Technology Review 1 (2008) 19-24

Research Article

Hardware principles for the design of a stereo-matching state machine
based on dynamic programming

J. Kalomiros*,1 and J. Lygouras2

1 Department of Informatics and Communications, School of Technological Applications,
Serres Institute of Education and Technology, Terma Magnisias, 62100, Serres, Greece

2 Section of Electronics and Information Systems Technology, Department of Electrical Eng. & Computer Eng.,
School of Engineering, Democritus University of Thrace, Xanthi, Greece

Received 10 December 2007; Accepted 15 January 2008

Abstract

This paper presents basic design principles for hardware implementation of a two-pass stereo-matching algorithm based
on dynamic programming. For the first-pass a state-machine is proposed for the recursive calculation of the cost-function.
The state-machine works along the diagonal of a 2-D disparity space for each epipolar pair of image scan-lines. On-chip
local RAM stores tags that denote the minimum transition cost to every point in the disparity space among possible costs
from all three neighboring points. All calculations are within a pre-determined useful disparity range. For the second
pass, hardware rules are presented that produce the correct disparity per pixel, by backtracking stored cost values. Hard-
ware stages are structured along a fully parallel pipeline, that outputs disparities in step with the input serial pixel stream
at clock rate.

Keywords: Hardware Design, Stereo Vision, Dynamic Programming

1. Introduction

Dynamic programming is a general mathematical method
that can reduce the complexity of optimization problems, by
decomposing them into simpler and smaller problems [1]. It
can be used in order to handle the stereo-correspondence
problem by finding an optimized solution for the whole
scan-line. In this sense the problem is solved globally, as
opposed to local methods that find correspondences between
local blocks [2,3]. In general, global methods produce better
results and can resolve problems like lack of texture and
occlusion [4,5]. However, such methods suffer because of
their considerable computational cost.
 Stereo vision dynamic programming exploits two geo-
metrical constraints that apply to depth calculation by two
parallel cameras. These are the epipolar constraint [2] and
the monotonic ordering constraint [6]. The first means that
in rectified stereo pairs the search for correspondences be-
tween stereo frames can be limited only to epipolar scan-
lines. The second means that if a correspondence between
two points A and B is established, then the next point on the
right of A in one image can only correspond to a point to the
right of B in the other image. This idea is shown in Fig. 1. It
should be noted however, that the relative order of pixels
between the two views is not always the same in real scenes.
 The main idea behind a dynamic programming algorithm
for stereo matching is to build a Disparity Space Image

(DSI), attributing a cost value to all disparities and establish-
ing best global disparities by backtracking the optimal path
[7]. The cost of optimal path is the sum of the costs of the
partial paths obtained recursively.

Fig. 1 The monotonic ordering constraint in stereo-vision. Finding the
correspondence between two conjugate points in a stereo-pair means
that all other correspondences lie to the right of the two points in both
left and right images.

Fig. 2 Minimizing path (on the right) is determined by calculating re-
cursively a cost function. Each point in the cost function (on the left) is
derived from the three previous values, as shown by the arrows. Dis-
parities are tallied in a next stage, by backtracking the path of minimum
cost.

Jestr

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

 * E-mail address: ikalom@teiser.gr
ISSN: 1791-2377 © 2008 Kavala Institute of Technology. All rights reserved.

J. A.

20

 A. Kalomiros and J. Lygouras/ Journal of Engineering Science and Technology Review 1 (2008) 19-24
 One way to build the Disparity Space Image is to define
x and y axis as the left and right scan-lines and then calcu-
late the minimum cost path from the lower left corner to the
upper right corner of the Disparity Space [8,9]. One always
proceeds from left to right, as a result of the ordering con-
straint. This procedure is shown in Fig. 2, where each point
of the 2-D cost function is determined by taking into account
the previously calculated cost values of the three neighbor-
ing points to the left. Finding the correct disparities is now
akin to finding the path in DSI which takes the shortest route
through the cost values. Also, special rules can be added on
how to transverse the search space in order to handle occlu-
sion.
 This paper presents some considerations about imple-
menting parts of the dynamic programming stereo vision
algorithm in reconfigurable hardware. Solutions are indi-
cated to the main obstacles posed by the recursive nature of
the algorithm. First, a state-machine is proposed, which is
able to produce part of the Disparity Space plane at clock
rate, in parallel with the pixel input stream of the left and
right image. Also a RAM-based backtracking scheme is
proposed that works at second pass and in step with the next
scan-line input. These considerations can result in a real-
time fully parallel hardware pipeline that produces dispari-
ties for a dense depth map at clock-rate.

2. Summary of the algorithm

Let us consider two scan-lines Il(i) and Ir(j), in the left and
right image, with 1≤ i,j ≤N, where N is the number of pixels
in each line. While building the cost plane, pixels on each
scan-line may be matched or skipped (considered to be oc-
cluded in either the left or right image). Therefore, two kinds
of measures are considered. The first is the measure of
matching two pixels i, j on the left and right scan-line re-
spectively. The other is the measure of pixel i not matching
pixel j, or in other words pixel j in the right scan-line being
skipped in the search for a matching pixel for i. Correspond-
ingly, pixel i could be skipped while looking for a matching
pixel for j.
 Let sij be the measure associated with matching pixel Il(i)
with pixel Ir(j). Α squared error metric is considered between
pixels given by:

2

2))()((
σ

jIiI
s rl

ij
−

= , (1)

where σ represents pixel noise. The measure of skipping a
pixel in either scan-line is given by a constant occl. We take
occl=0.2 and σ = 0.1.

Taking these measures into account, the minimizing
alignment cost of two scan-lines can be calculated, accord-
ing to the following recursive procedure:

a. C(i,0)=i x occl (2)

 C(0,i)= i x occl (3)

 C(1,1)=s11 (4)

b. C(i,j)=min{C(i-1,j-1)+sij, C(i-1,j)+occl, C(i,j-1)+occl} (5)

Eqs. (2) and (3) calculate initial costs on the x and y
axis. Eq. (5) defines the cost at each point of the DSI plane

as the minimum between matching cost and left or right
occlusion cost. For a particular point in the cost-plane, the
cost of matching pixels i,j comes from adding sij to the left
diagonal cost, while the costs of left or right occlusion come
from adding the occlusion constant to the previous cost on
the horizontal and the vertical (Fig. 2). In this way, the cost
of the optimal path is the minimum sum of the partial costs.
The total cost of matching two scan-lines is C(N,N).

c. Depending on which of the three values in the paren-

thesis wins (see eq. (5)), a respective tag value 1,0,-1
is attributed to point (i,j) of the disparity space image.
Intermediate values are stored in a matrix M with di-
mensions NxN. Given M, the optimal alignment and
consequent disparities are found by backtracking.

d. Backtracking is defined as follows. Starting at
(i,j)=(N,N), corresponding stored values M(i,j) are ex-
amined. The case of M=1 corresponds to skipping a
pixel in Il and to a unit increase in disparity. The case
of M=-1 corresponds to skipping a pixel in Ir and
means a unit decrease in disparity, while M=0 matches
pixels (i,j) and therefore leaves disparity unchanged.
Beginning with zero disparity, the minimum cost path
is followed backwards from (N,N), and the disparity is
tallied until point (1,1) is reached.

 An efficient software implementation of dynamic pro-
gramming can be found in Ref [10].
 A variation of the above algorithm is used for our hard-
ware considerations in the following paragraphs.

3. Hardware considerations

Designing with hardware all parallel calculations are ideally
scheduled to be performed in step with the input stream of
left and right image scan-lines. However the individual char-
acter of dynamic programming poses certain difficulties to
such implementations. In particular, the recursive calculation
of the cost function means that for each computation of a
new subset of cost states, all necessary previous states need
to have already been evaluated. Therefore, a proper course
of calculations has to be established so that the computation
of the cost plane proceeds without major errors. Also, an
adequate slice of the cost-function along the optimal path
has to be indicated, instead of the NxN total states, in order
to render the hardware derivation of the cost-states a tracta-
ble task.
 On the other hand, the need to backtrack disparities
means that the final disparities can not be calculated in step
with the stream of their respective scan-lines, but only dur-
ing a second pass, while the next pair of epipolar scan-lines
is already streaming through the hardware pipeline. There
follows the need for local memory that can store cost values
until backtracking calculations end.

A third consideration arises from the need to map the 2-
D cost-function plane (see Fig. 2) upon a 1-D array of dis-
parity values for each scan-line. Working with a software
serial algorithm, the optimal path on the DSI-plane would
be followed in any number of steps, from the last point
backwards. Since the optimal path is not a straight line, N
pixels of disparity would require in software more than N
cycles of computation. However, an efficient hardware de-
sign would require strict timing specifications, computing in
parallel all steps needed for the derivation of one pixel of
disparity. In this way N disparity pixels for each N-pixel

 20

 J. A. Kalomiros and J. Lygouras/ Journal of Engineering Science and Technology Review 1 (2008) 19-24

21

 A. Kalomiros and J. Lygouras/ Journal of Engineering Science and Technology Review 1 (2008) 19-24
scan-line would require exactly N steps into the hardware
pipeline, during the second pass. Actually, the nature of the
cost-plane allows us to consider that if the possible range of
disparities is equal to D, then for the ith output disparity pixel
in any scan-line, a maximum of D calculation steps need to
be performed into the ith column of the DSI plane (see for
example Fig. 7). In this sense, we need to establish hardware
computation rules that can implement in parallel all possible
D steps within each column. Such parallel computations in
the ith column should output the total disparity change from
the previous pixel (i-1)th, in one clock cycle.
 Some computational hints towards the above challenges
are given in the following.

4. Design of a state machine for optimal path computations

In this section a simple state-machine is proposed that allows
the recursive computation of the next cost-states from the
previous ones, at least within a slice of the DSI plane. For
this purpose the Disparity Space is calculated along the di-
agonal, as is shown in Fig. 3. Our preliminary results are
based upon a seven-state machine that produces at each
computation step a total of seven cost-states on both sides of
the diagonal. This principle can be extended for more states,
by increasing appropriately the computing elements.

With reference to Fig. 3, it can be noted that starting
from a known initial state it is possible to calculate all states
on both sides of the diagonal and between an upper and
lower limit, up to the end of the plane. This computation is
performed at each step by setting as next initial state the one
that was computed at the previous step. This feedback be-
tween the output and the input can produce an efficient
mechanism that derives all states between given limits up to
the end of the plane, with the same hardware stage. Since the
DSI is based upon the left and right scan-line pixels, the
state machine is designed in such a way that produces a new
set of seven states with each input pixel pair. When both
scan-lines have streamed through the pipeline, the state-
machine produces the final upper states of the cost plane.

Fig. 3 Cost-function (DSI) plane along the diagonal

The seven states, shown in Fig. 3 as coloured points, are

produced in two phases since they are found in two different
levels in the cost-grid. Three states are computed first and
four states follow in the next step. If the states c30, c20, c21,
c11, c12, c02, c03 are given as input, then by taking three states
together, as in Fig. 4, the state-machine computes the mini-
mum cost of the transition to the states c31, c22, c13. At the
same time it passes the already known states c30, c21, c12, c03
to the computation of the second phase (Fig. 4). At the sec-
ond phase the remaining four states c41, c32, c23, c14 are com-
puted by using the three neighboring previous states. The

calculation of the two limiting states of Fig. 4 (c41, c14) re-
quires two marginal costs (shown in Fig. 3 as green arrows)
that cannot not be derived from the actual set of the seven
current states, but can be estimated approximately. Namely,
the marginal costs are approximated by adding two times the
occlusion cost to the last state on the diagonal. For example,
the cost of the path from c04 to c14 is considered to be
c03+2xoccl. This approximation is used for all the vertical
and horizontal paths adjacent to the diagonal.

By setting as input the above seven states c41, c31, c32,
c22, c23, c13, c14 we can produce in the following two steps the
next seven states c52, c42, c43, c33, c34, c24, c25. The computa-
tion continues up to the point of maximum cost C(N,N).

It can easily be shown that the computation of the cost-
plane can start at the known states c30, c20, c10, c00, c01, c02, c03
with respective values 0.6, 0.4, 0.2, 0.0, 0.2, 0.4, 0.6. These
values are derived from eqs. (2,3), with occlusion constant
occl=0.2 and are always the same. Starting with these values
the state machine is going to produce c30, c20, c21, c11, c12, c02,
c03 etc.

Fig. 4 Initial state and successive derivation of next states with a seven-
state machine

Let it be noted here that starting from the triad c30, c20,

c10 the three rival costs according to eq (5) are c30+0.2=0.8
(where 0.2 stands for the occlusion constant), c20+s=0.4+s
(where s stands for the cost of eq. (1) with s≥0) and
c10+0.2=0.4. Obviously the minimum is 0.4 which stands for
the state c20. Similarly from the triad c01, c02, c03 the state c02
is derived. These are the launching steps of the proposed
state machine.

The pixels of both epipolar scan-lines are inserted into
the state machine as a stream of pixel pairs (left-right), each
pair occurring simultaneously. The intensities are 8-bit,
grayscale and are buffered appropriately in order to produce
in parallel all necessary costs sij, according to eq. (1). This is
used in eq. (5) to calculate the cost of the diagonal path from
(i-1, j-1) point in the DSI to point (i,j). With reference to Fig.
3 the buffered intensities are I1(1), I1(2), I1(3), I1(4) and
I2(1), I2(2), I2(3), I2(4), where I1 is the right scan-line in-
tensities and I2 are intensities on the left. In the parenthesis
is the course of appearance of each pixel in the input stage.
The cost of vertical and horizontal paths are computed by
adding the occlusion constant to the previous value (see also
Fig. 4).

The cost of diagonal, vertical and horizontal paths to
each point are taken together and the minimum value is pro-
duced by an appropriate parallel-computation stage. Tag
values are attributed to all three possible paths. A tag “1” is

c30

c20

c10

c00

c01

c02

c03

Initial next state

c30

c20

c21

c11

c12

c02

c03

 21

 J. A. Kalomiros and J. Lygouras/ Journal of Engineering Science and Technology Review 1 (2008) 19-24

22

 J. A. Kalomiros and J. Lygouras/ Journal of Engineering Science and Technology Review 1 (2008) 19-24
 A. Kalomiros and J. Lygouras/ Journal of Engineering Science and Technology Review 1 (2008) 19-24

attributed to the vertical path, tag “0” is for the diagonal
path, while a tag value “-1” is attributed to the horizontal
path. Wining tags at each point are stored and used during
backtracking, according to rules measuring the change in the
disparity value per pixel.

5. A numerical example

Let us consider two random test scan-lines, with eight pixels
per line, each pixel 8-bit grayscale. The two “images” are
shown in Fig. 5.

Fig. 5 Test scan-lines (8-bit, grayscale)

The rules of Section 2 are used in order to produce the
8x8 matrix of the cost function. The result is shown in Fig.
6. Also, the proposed state-machine is used in order to pro-
duce the cost function along the diagonal. These results are
shown in Fig. 6 with colored numbers and are the same with
the results of eqs. (1-5) within computation error. Successive
outputs of the state machine are shown in red and blue. Total
alignment cost is 1.315, at point C(8,8). The respective ma-
trix according to the wining tag-values (denoting vertical,
horizontal or diagonal paths as corresponding to minimum
cost) is shown in Fig. 7. Only the slice computed by the state
machine is shown. Since the machine always produces seven
states, some values flow over the boundary towards the end.

Fig. 6 Cost-plane produced with the scan-lines of Fig. 5. Red and blue
results are successive outputs of the state-machine.

6. The backtracking stage

The wining tag values produced recursively at each point of
the cost function are stored in RAM memory, making use of
on-chip RAM blocks existing today in most reconfigurable
devices. For this particular test-design seven RAM blocks
are needed with a depth of N bytes, where N represents the
length of scan-line. RAM is written during the first pass and
is read at the second pass, during the backtracking stage.
Since scan-lines are streaming, a second set of RAM blocks

is also needed where M-values are stored at second pass,
while the first RAM set is read.
 During backtracking, the stored tag sets are read in re-
verse order, seven values at a time. After several clock
counts each set is rearranged by means of delay lines, in
order to give the columns of Fig. 7. In this way, we now
have “running columns” in the pipeline. Each column corre-
sponds to one pixel of disparity image, given that disparities
are found with respect to the pixels of the left image. We
begin backtracking at the top of the last column and apply a
set of rules in order to find the entry point to the next run-
ning column, which is the first on the left, in Fig. 7. In short,
the rule is that if entry in the i-th column is at the q-th mem-
ber of the column-set from top (1<q≤7) and is denoted en-
try=q, then the exit is at the first row to the bottom that does
not contain “1”, that is exit is at the first “0” or “-1”. Let this
be the p-th member of the set, measuring from top. In case
of “0” the next column (i-1) is entered by moving diagonally
down to the left. In this way we land again on the p-th mem-
ber of the next column-set, since the vertical set steps down
as we move towards the beginning of the plane (see Fig. 7).
Naming “exit” the entry point to the next running column,
we denote exit=p. In case the i-th column is exited on “-1” at
p, then we step horizontally and enter the (i-1) column at
exit=p-1. For example, with respect to the sixth column of
Fig. 7 (i=6), we suppose that we enter the column on the 4-
th member of the vertical set (q=4, entry=4). Since the M-
value of the 4-th member is “0”, we would immediately exit
diagonally to enter the next left column on the 4-th member
(p=4, exit =4). However, if we entered at the top of the sixth
column, where we have the 2-nd member of the vertical set
(entry=2), we would immediately step to the left on exit=1.
Next, we would move to the fourth column diagonally on
entry=1 and would continue to the third column (again
exit=1) to land on M-value=“1”. Now, entry=1, but we
should exit on p=2, diagonally to exit=2. The last step is
diagonally to the left, again with exit=2.

Yellow shadow and arrows in Fig. 7 indicate the path of
minimum cost followed by backtracking.

Fig. 7 Tag values (M-values), denoting horizontal, diagonal or vertical
transition (-1,0,1, respectively) as corresponding to minimum cost.
Green boundary corresponds to the 8x8 cost-plane. 7-member sets alter-
nate in blue and red colour. Numbering from 1 to 7 represents the order
of a particular M-state in the column. Arrows and yellow shadow indi-
cate the path of minimum cost.

The above rules follow from point c of the algorithm in
Section 2. They are designed in hardware with a number of
arallel stages that find “entry” and “exit” at each running
column in one clock cycle. Knowing the entry point to the

Image1:

105 153 88 92 120 54 207 222

Image2:

 76 135 102 157 111 81 93 139

 22

1.400 1.214 1.038 0.877 0.715 0.915 1.115 1.315

1.200 1.014 0.838 0.714 0.914 1.114 1.314 1.513

1.000 0.814 0.638 0.838 1.038 0.963 1.163 1.363

0.800 0.614 0.438 0.638 0.838 1.038 1.238 1.438

0.600 0.414 0.614 0.814 0.975 1.175 1.375 1.575

0.400 0.600 0.800 0.821 1.021 1.167 1.367 1.567

0.200 0.400 0.600 0.621 0.821 1.021 1.221 1.421

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400

23

 A. Kalomiros and J. Lygouras/ Journal of Engineering Science and Technology Review 1 (2008) 19-24

23

current ith column and the exit point to the next (i-1) column,
the total change of disparity at the ith pixel can be calculated:

Δd=exit-entry. (6)

Starting with d=0, the system tracks disparities adding Δd at
each step.

7. Hardware system and results

The stages detailed above are integrated into a hardware
system, shown in Fig. 8 as a block diagram. A model of the
system was designed using Altera’s DSP Builder, which
combines Simulink design tools with VHDL design flow.
DSP-Builder contains bit- and cycle- accurate blocks which
cover basic digital operations as well as complex functions
[11].

Great care has been taken in order to resolve timing is-
sues. Writing and reading RAM memory is a central part in
the overall procedure and has to be clocked with detailed
accuracy. In spite of such difficulties the design is feasible
and can reproduce accurately the disparities calculated by a
serial algorithm based on software.

Fig. 8 Block diagram of the system parallel pipeline

Fig. 9 shows the results from the processing of the pair of

scan-lines of Fig. 5. Two same scan-lines per image were
used in order to check for timing consistency. It can be seen
that both the software algorithm and the hardware model
produce the same disparity values.

Preliminary synthesis results show that the above design
can fit in a commodity FPGA chip, like the medium scale
Cyclone II manufactured by Altera Co. or the Xilinx Virtex
II series. Such devices are equipped with adequate on-chip
storage capabilities that can accommodate the Random Ac-
cess Memory (RAM) detailed in the previous paragraphs.
They also possess embedded multipliers that suffice for the
arithmetic operations needed for the state machine presented
in section 4.

An advantage of the presented design is that images do
not need to be stored in on-chip memory. Image scan-lines
stream through the hardware pipeline and only a small part
of them is buffered for the needs of the state-machine calcu-
lations. In this way memory requirements are limited to
RAM needed for tag-storage. Almost any size of images can
therefore be handled by the design. A large disparity-range
is however demanding in resource usage, as it requires a
more complex state machine, larger arrays for extracting the
minimum costs and larger RAM for tag-storage.

It should be taken into account that FPGA fixed-point
architecture is demanding with respect to hardware resources
when high calculation accuracy is required.

The basic structure presented here is scalable and can ex-
pand to accommodate larger disparities. A state-machine
able to produce approximately ten to sixteen states is thought
to be adequate for real image applications.

Fig. 9 (a) Disparity results from the model hardware design in Simulink.
(b) Same scan-lines processed by a software serial algorithm.

8. Conclusions

This paper presents the basic principles for the design of a
hardware system that can perform dense-depth calculations
based on a two-pass dynamic-programming algorithm. A
state-machine is proposed that can produce cost-states recur-
sively, along the diagonal of the DSI plane. RAM blocks are
used to store tag values and hardware-friendly backtracking
rules are established. Model-based design is used in order to
evaluate the system performance for small disparities and for
small scan-lines. The first results show that the system is
functional and can produce small disparities correctly.

Next steps in this project is to simulate the design for
larger scan-lines and disparities and to use the resulting
VHDL components in order to target a medium capacity
FPGA chip. Some additional hardware design for I/O and
system control is also needed. An efficient real-time hard-
ware stereo machine can be implemented based on the prin-
ciples presented above. Such an implementation can con-
tribute to an already established tradition of accelerating
computationally demanding image processing tasks with
reconfigurable hardware [12,13,14].

 J. A. Kalomiros and J. Lygouras/ Journal of Engineering Science and Technology Review 1 (2008) 19-24

24

 A. Kalomiros and J. Lygouras/ Journal of Engineering Science and Technology Review 1 (2008) 19-24

References

1. T.H. Cormen, C.E. Leiserson, and R.L. Risvest, “Introduction to
Algorithms”, New York: McGraw-Hill, 1990.

2. M. Z. Brown, D. Burschka and G. Hager, “Advances in Compu-
tational Stereo”, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2003, Vol. 25, No. 8, pp. 993-1008.

3. D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation of
Dense Two-frame Stereo Correspondence Algorithms”, Interna-
tional Journal of Computer Vision, 2002, Vol.47, No 1-3, pp. 7-
42.

4. P.N. Belhumeur, “A Bayesian Approach to Binocular Stereop-
sis”, International Journal of Computer Vision, 1996, Vol. 19,
No. 3, pp. 237-260.

5. S. Birchfield and C. Tomasi, “Depth Discontinuities by Pixel-to-
Pixel Stereo”, Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 1998, Mumbai, India, pp.1073-
1080.

6. A.L. Yuille, and T. Poggio, “A generalized ordering constraint
for stereo correspondence”, A.I. Memo 777, AI Lab, MIT, 1984.

7. E.R. Davies, “Machine Vision: Theory, Algorithms, Practicali-
ties”, Elsevier, 3nd Edition, 2004.

8. Y. Ohta and T. Kanade, “Stereo by Intra- and Inter-Scanline
Search using Dynamic Programming”, IEEE Trans. On Pattren
Analysis and Machine Intelligence, 1985, Vol.7, No.2, pp.139-
154.

9. I.J. Cox, S.L. Hingorani, S.B. Rao,, and B.M. Maggs, “A Maxi-
mum Likelihood Stereo Algorithm”, Computer Vision and Im-
age Understanding, 1996, Vol. 63, No. 3, pp. 542-567.

10. S. Forstmann, Y. Kanou, J. Ohya, S. Thuering, and A. Schmitt,
“Real-Time Stereo by using Dynamic Programming”, Proceed-
ings of the 2004 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW’04),
June 2004, Washington D.C., USA, p.29.

11. “DSP-Builder v. 7.2 Reference Manual”, Altera Technical paper
MNL-DSPBLDR-7.2, Altera Corporation, Oct. 2007.

12. A. Darabiha, J. Rose and W. J. MacLean, “Video-Rate Depth
Measurement on Programmable Hardware”, Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’03), June 18-20 2003, Vol. 1, Madi-
son, Wisconsin, USA, p. 203-210.

13. J.A. Kalomiros and J. Lygouras, “Design and Evaluation of a
Hardware/Software Architecture for Fast Image Processing”, to
be published in Microprocessors and Microsystems Journal, doi:
10.1016/ j.micpro. 2007.09.001.

14. M. Hariyama, Y. Kobayashi, H. Sasaki and M. Kameyama,
“FPGA Implementation of a Stereo Matching Processor Based
on Window-Parallel-and-Pixel-Parallel Architecture”, IEICE
Trans. Fundamentals, Dec. 2005, Vol. E88-A, No. 12, pp. 3516-
3522.

 24

 J. A. Kalomiros and J. Lygouras/ Journal of Engineering Science and Technology Review 1 (2008) 19-24

