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Abstract 

The dynamics of robot manipulators are highly nonlinear with strong couplings existing between joints and are frequently 
subjected to structured and unstructured uncertainties. Fuzzy Logic Controller can very well describe the desired system 
behavior with simple “if-then” relations owing the designer to derive “if-then” rules manually by trial and error. On the other 
hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check 
if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning 
capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). This paper presents the control of six 
degrees of freedom robot arm (PUMA Robot) using Adaptive Neuro Fuzzy Inference System (ANFIS) based PD plus I 
controller. Numerical simulation using the dynamic model of six DOF robot arm shows the effectiveness of the approach in 
trajectory tracking problems. Comparative evaluation with respect to PID, Fuzzy PD+I controls are presented to validate the 
controller design. The results presented emphasize that a satisfactory tracking precision could be achieved using ANFIS 
controller than PID and Fuzzy PD+I controllers 
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1. Introduction 

Industrial robot manipulators are mainly positioning and 
handling devices. The essential problem in controlling robots 
is to make the manipulator follow a desired trajectory. In 
general an N-degree of freedom (DOF) rigid robot manipulator 
is characterized by N nonlinear, dynamic, coupled differential 
equations [1–3]. The problem of controlling robot 
manipulators still offers many practical and theoretical 
challenges due to the complexities of the robot dynamics and 
the requirement to achieve high precision trajectory tracking in 
the cases of high-velocity movement and highly varying loads. 

Conventional robot control methods depend heavily upon 
accurate mathematical modeling, analysis, and synthesis. 
These approaches are suitable for the control of robots that 
operate in structured environments. However, operations in 
unstructured environments require robots to perform much 
more complex tasks without an adequate analytical model. The 
most challenging problem in this field is that there are always 

uncertainties in the unstructured environments. These 
uncertainties are primarily due to sensor imprecision and 
unpredictability of the environment characteristics and its 
dynamics. [4] [5] [6]. 
 On the other hand, the advent of fuzzy set techniques 
provides us with a powerful tool for solving demanding real-
world problems with uncertain and unpredictable 
environments. Fuzzy controller can characterize better 
behavior comparing with classical linear PID controller 
because of its non linear characteristics [7]–[9]. Recently, 
fuzzy-logic and conventional-techniques have been combined 
(hybrid) to design FL controllers which pave to appropriate 
solution for controlling the robot manipulators [10-12].The 
research on the fuzzy controller has been focused on the two-
input fuzzy system [l3].The general structure of the two-input 
fuzzy controller that uses ‘error’ and ‘change in error’ as the 
input variables [14].  

With PD type controller, elimination of steady state error is 
not possible. And PI type has limitation in enhancing the 
transient response. However, three-input and one-output fuzzy 
system is too complex to construct the PID controller. It is 
very difficult to decide the fuzzy control rules intuitively. The 
fuzzy PID controllers that use multiple ‘two-input fuzzy 
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controller’ or partially fuzzy modified linear PID controllers 
are emerging to overcome these problems. The fuzzy PID 
controllers that use multiple ‘two-input fuzzy controller’ or 
partially fuzzy modified linear PID controllers are emerging to 
overcome these problems [15-16].  

Fuzzy PD+I Controller [16] suffers the difficulty of tuning 
a particular inference system to model a complex dynamical 
system based on the training data. It works well with imprecise 
dynamics or even with no knowledge about the model the 
system dynamics, but they do not have a learning capability of 
their own. Hence, in that work a learning mechanism is created 
if neural networks, which have good learning attributes, are 
hybridized with fuzzy systems. 

Neuro-Fuzzy techniques [17] have emerged from the 
fusion of Neural Networks (ANN) and Fuzzy Inference 
Systems (FIS) and form a popular framework for solving real 
world problems. Jang et al., [18], propose an Adaptive Neuro 
Fuzzy Inference System, in which a polynomial is used as the 
defuzzifier. This structure is commonly referred to as ANF1S. 
ANFIS distinguishes itself from normal fuzzy logic systems by 
the adaptive parameters, i.e., both the premise and consequent 
parameters are adjustable. Recent studies [20-23] have shown 
that the use of a controller that utilizes neural networks and 
fuzzy logic can be attractive. Takagi and Sugeno change the 
defuzzification procedure where dynamic systems are 
introduced as defuzzification subsystems. The potential 
advantage of the method is that under certain constraints, the 
stability of the system can be studied. 

In this paper, an Adaptive Neuro Fuzzy Inference System 
(ANFIS) based PD plus conventional I controller is applied to 
the dynamic model of six DOF robot arm presented. Two 
inputs had been used, error (e), change of error ( ) that will 
be fed to ANFIS controller while integral error (

e&
eΔ ) will be 

used as conventional integral action. This is due to difficulty of 
designing the rules for the integral action. The proposed 
controller is mainly focused on enhancement of the transient 
response. The proportional signal and the derivative signal are 
dominant to decide the transient response. But the integral 
signal whose major roll is to eliminate the steady state error 
has fixed gain. The ANFIS structure with first order Sugeno 
model, Gaussian membership functions with product inference 
rule are used at the fuzzification level. Hybrid learning 
algorithm that combines least square method with gradient 
descent method is used to adjust the parameter of membership 
function. To validate the performance, a comparison with the 
fuzzy PD+I and the linear PID is performed under same 
tuning. 

Organization of the paper is as follows. Section 2 
introduces the six degrees of freedom robot arm Puma 560 and 
its dynamic model. Section 3 describes the scheme of the 
hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) 
based PD plus conventional I controller. Section 4 provides 
numerical simulation results to demonstrate the effectiveness 
of this hybrid controller and comparative evaluation of the 
ANFIS control method with that of fuzzy PD+I and the 
conventional PID is performed. And Section 5 discusses the 
benefits of the studied adaptive neuro fuzzy control law and 
conclusions are presented. 
 
 

2.  Dynamics of Six DOF Puma robot   

The dynamics of a serial n-link rigid robot can be written as, 
 

τ=++ )(),()( qgqqcqqM &&&          (1) 

 

where q is the n x 1 vector of joint displacements, q is the n 
x 1 vector of joint velocities, 

&
τ  is the n x 1 vector of 

actuators applied torques,  is the n x n symmetric 

positive definite manipulator inertia matrix,  is the n 

x l vector of centripetal and Coriolis torques and is the 
n x 1 vector of gravitational torques obtained as the gradient 
of the potential energy U(q) due to gravity. We assume the 
robot joints are joined together with revolute joints. 

)q(M
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Let the desired joint position qd be a twice 
differentiable vector function. We define a control problem 
to determine the actuator torques in such a way that the 
following control aim be achieved. 
 

)()(lim tqtq dt
=

∞→
                 (2) 

 

 
 

Fig. 1 PUMA robot 

 
 A six-degrees-of-freedom PUMA-560 robot is considered 
for the simulation, the kinematical and dynamical parameters 
of the arm are adopted from the work of Armstrong [19]. The 
electrical parameters of the motors are assumed by 
comparing the size and power of the PUMA motors with 
well-documented commercially-available DC motors, and 
then interpolating the corresponding parameters of interest 
are taken from our previous work [16]. Figure 1 shows the 
structure of PUMA robot. The overall block diagram of the 
system under control is shown in Figure 2. 
 

 
 
Fig. 2. The overall block diagram of the system 
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3. Adaptive Neuro Fuzzy Inference System (ANFIS based 
controller design 

This section introduces the basics of ANFIS network 
architecture and its hybrid learning rule. Inspired by the idea of 
basing the fuzzy logic inference procedure on a feedforward 
network structure, Jang [18] proposed a fuzzy neural network 
model - the Adaptive Neural Fuzzy Inference System or 
semantically equivalently, Adaptive Network-based Fuzzy 
Inference System (ANFIS), whose architecture is shown in 
Figure 3. He reported that the ANFIS architecture can be 
employed to model nonlinear functions, identify nonlinear 
components on-line in a control system, and predict a chaotic 
time series.  

It is a hybrid neuro-fuzzy technique that brings learning 
capabilities of neural networks to fuzzy inference systems. The 
learning algorithm tunes the membership functions of a 
Sugeno-type Fuzzy Inference System using the training input-
output data. The ANFIS is, from the topology point of view, an 
implementation of a representative fuzzy inference system 
using a BP neural network-like structure. It consists of five 
layers. The role of each layer is briefly presented as follows: 

let denote the output of node i in layer l, and xi is the ith 
input of the ANFIS, i = 1, 2,...,p. In layer 1, there is a node 
function M associated with every node: 

l
iO

 

)(1
iii xMO =              (3) 

 

 
 

Fig. 3. Structure of ANFIS 
 

The role of the node functions M1, M2 ...Mq here is equal 
to that of the membership functions μ(x) used in the regular 

Gaussian shape functions are the typical choices. The 
adjustable parameters that determine the positions and shapes 
of these node functions are referred to as the premise 
parameters. The output of every node in layer 2 is the product 
of all the incoming signals: 
 

fuzzy systems, and q is the number of nodes for each input. 

        (4) 

 
Each node output represents the firing strength of the 

rea

)()(2
jjiii xANDMxM=O

soning rule. In layer 3, each of these firing strengths of the 
rules is compared with the sum of all the firing strengths. 
Therefore, the normalized firing strengths are computed in this 
layer as: 
 

∑
=

i
i

i
i O

O
O 2

2
3

             (5) 

 
Layer 4 implements the Sugeno-type inference system, i.e., 

a l

          (6) 

 
where parameters P1,P2, ...,Pp and c1,c2, ...,cp, in this layer 

are

inear combination of the input variables of ANFIS, x1,x2,
...xp plus a constant term, c1,c2, ...,cp, form the output of each IF 
−THEN rule. The output of the node is a weighted sum of 
these intermediate outputs: 
 

∑
=

+=
p

j
jjjii cxPOO

1

34

 referred to as the consequent parameters. The node in layer 
5 produces the sum of its inputs, i.e., defuzzification process of 
fuzzy system (using weighted average method) is obtained: 
 

∑=
i

ii O 45O              (7) 

 
The flowchart of ANFIS procedure is shown in Figure 4. 

AN

 

FIS distinguishes itself from normal fuzzy logic systems by 
the adaptive parameters, i.e., both the premise and consequent 
parameters are adjustable. The most remarkable feature of the 
ANFIS is its hybrid learning algorithm. The adaptation process 
of the parameters of the ANFIS is divided into two steps. For 
the first step of the consequent parameters training, the Least 
Squares method (LS) is used, because the output of the ANFIS 
is a linear combination of the consequent parameters. The 
premise parameters are fixed at this step. After the consequent 
parameters have been adjusted, the approximation error is 
back-propagated through every layer to update the premise 
parameters as the second step. This part of the adaptation 
procedure is based on the gradient descent principle, which is 
the same as in the training of the BP neural network. The 
consequence parameters identified by the LS method are 
optimal in the sense of least squares under the condition that 
the premise parameters are fixed. 
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The flowchart of ANFIS procedure is shown in Figure 4. 
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has its own PID controller. The control action of the fuzzy 
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reduce the rise time, and is later readjusted to prevent 
overshoot as the response approaches the desired value. The 
output scaling factors is tuned to limit the FLC output to a 
reasonable value and to reduce the steady state error basic 
manual tuning procedure that can be used for the input and 
output scaling factors is given in Table 2. 
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In this section, the simulation was run under MATLAB 7.01 
with Fuzzy Logic Toolbox 2.2 (R14SP1). To demonstrate the 
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plus conventional I controller, the dynamic model of six-
degrees-of-freedom PUMA-560 robot is considered. 
Kinematical and dynamical parameters of the arm are 
adopted from the work of Armstrong [19] and the electrical 
parameters are taken from [16]. 

Numerical simulations of conventional PID controller, 
Fuzzy PID and Fuzzy PD+I is performed under same manual 
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overshoot as the response approaches the desired value. The 
output scaling factors is tuned to limit the FLC output to a 
reasonable value and to reduce the steady state error basic 
manual tuning procedure that can be used for the input and 
output scaling factors is given in Table 2. 
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is normalized with respect to the maximum range of the signal. 
Using this characteristic, the simulation and comparison 
between the ANFIS based PD plus conventional I controller, 
Fuzzy PD conventional I controller and the linear PID is done. 

 
 

3.2 Conventional integral control 

The conventional integral control has the simple purpose of 
eliminating the steady state error and maintaining some control 
constant output when the system that is been controlled 
requires it. 
 
 

4. Simulation and Results 

In this section, the simulation was run under MATLAB 7.01 
with Fuzzy Logic Toolbox 2.2 (R14SP1). To demonstrate the 
effectiveness of the proposed Adaptive Neuro Fuzzy based PD 
plus conventional I controller, the dynamic model of six-
degrees-of-freedom PUMA-560 robot is considered. 
Kinematical and dynamical parameters of the arm are 
adopted from the work of Armstrong [19] and the electrical 
parameters are taken from [16]. 

Numerical simulations of conventional PID controller, 
Fuzzy PID and Fuzzy PD+I is performed under same manual 
tuning procedure as shown in Table 2 for a six degree of 
freedom robot arm. The same values of PID control gains are 
used for conventional PID controller, FPD+I controller and 
Adaptive Neuro Fuzzy based PD plus conventional I controller 
to examine the performance. The tracking response of various 
controllers and error profile are shown in the Figure 7 to 12.  
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Fig. 7. Response of PID controller for various joints  
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Fig. 8. Error profile of PID controller for various joints 
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Fig. 9. Response of Fuzzy PD+I controller for various joints 
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Fig. 10. Error profile of Fuzzy PD+I controller for various joints 
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Fig. 11. Response of ANFIS based PD+I controller for various joints  
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Fig. 12. Error profile of ANFIS based PD+I controller for various joints  

 
 
 
 

 110

Srinivasan Alavandar  and M. J. Nigam / Journal of Engineering Science and Technology Review 1 (2008) 106-111 
 

 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
-8

-6

-4

-2

0

2

4

6

8

Time (secs)

Jo
in

t P
os

iti
on

s 
q 

(ra
ds

)

Response of PID controller for various joints

....... desired joint positions
_____actual joint positions

 
Fig. 7. Response of PID controller for various joints  
 
 
 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (secs)

Jo
in

t P
os

iti
on

 E
rro

r

Error profile of PID controller  for various joints

 
Fig. 8. Error profile of PID controller for various joints 
 
 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
-8

-6

-4

-2

0

2

4

6

8

Time (secs)

Jo
in

t P
os

iti
on

s 
q 

(ra
ds

)

Response of FPD+I controller for various joints

....... desired joint positions
_____actual joint positions

 
Fig. 9. Response of Fuzzy PD+I controller for various joints 

 
 
 
 
 

 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(secs)

Jo
in

t P
os

iti
on

 E
rro

r 

Error Profile of Fuzzy PD+I  Controller for various Joints

 
Fig. 10. Error profile of Fuzzy PD+I controller for various joints 

 
 
 
 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
-8

-6

-4

-2

0

2

4

6

8

Time(secs)

Jo
in

t P
os

iti
on

s 
q 

(ra
ds

)

Response of ANFIS based PD + I  controller for various joints 

....... actual joint positions
_____desired joint positions

 
Fig. 11. Response of ANFIS based PD+I controller for various joints  

 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (secs)

Jo
in

t P
os

iti
on

 E
rro

r

Error profile of ANFIS based PD+I controller for various joints

 
Fig. 12. Error profile of ANFIS based PD+I controller for various joints  

 
 
 
 

 110

Srinivasan Alavandar  and M. J. Nigam / Journal of Engineering Science and Technology Review 1 (2008) 106-111 
 

 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
-8

-6

-4

-2

0

2

4

6

8

Time (secs)

Jo
in

t P
os

iti
on

s 
q 

(ra
ds

)

Response of PID controller for various joints

....... desired joint positions
_____actual joint positions

 
Fig. 7. Response of PID controller for various joints  
 
 
 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (secs)

Jo
in

t P
os

iti
on

 E
rro

r

Error profile of PID controller  for various joints

 
Fig. 8. Error profile of PID controller for various joints 
 
 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
-8

-6

-4

-2

0

2

4

6

8

Time (secs)

Jo
in

t P
os

iti
on

s 
q 

(ra
ds

)

Response of FPD+I controller for various joints

....... desired joint positions
_____actual joint positions

 
Fig. 9. Response of Fuzzy PD+I controller for various joints 

 
 
 
 
 

 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(secs)

Jo
in

t P
os

iti
on

 E
rro

r 

Error Profile of Fuzzy PD+I  Controller for various Joints

 
Fig. 10. Error profile of Fuzzy PD+I controller for various joints 

 
 
 
 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
-8

-6

-4

-2

0

2

4

6

8

Time(secs)

Jo
in

t P
os

iti
on

s 
q 

(ra
ds

)

Response of ANFIS based PD + I  controller for various joints 

....... actual joint positions
_____desired joint positions

 
Fig. 11. Response of ANFIS based PD+I controller for various joints  

 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (secs)

Jo
in

t P
os

iti
on

 E
rro

r

Error profile of ANFIS based PD+I controller for various joints

 
Fig. 12. Error profile of ANFIS based PD+I controller for various joints  

 
 
 
 

 110

Srinivasan Alavandar and M. J. Nigam / Journal of Engineering Science and Technology Review 1 (2008) 106-111



111

Srinivasan Alavandar  and M. J. Nigam / Journal of Engineering Science and Technology Review 1 (2008) 106-111 
 

 111

5. Conclusions 

 Due to the strong nonlinear characteristics and parameter 
variations in real environments, tracking control of a robot 
arm system is difficult. Proposed ANFIS based PD+I 
controller is mainly focused on enhancement of the transient 
response. Complexity of the three input fuzzy PID controller 
is minimized as possible and only two design variables are 
used to adjust the rate of variations of the proportional gain 
and derivative gain. Also the ANFIS converges with a 
smaller number of iteration steps with the hybrid learning 

algorithm. The ANFIS based PD+I controller developed in 
this paper provides a practical approach for such tasks. It is 
seen that the performance of ANFIS based PD+I controller 
improves appreciably compared to their respective fuzzy 
PD+I only or conventional PID counterparts. The results 
presented emphasize that a satisfactory tracking precision 
could be achieved using ANFIS based PD+I controller 
combination than fuzzy PD+I only or conventional PID only. 
Automatic tuning of the fuzzy system using neuro-fuzzy or 
genetic algorithm can be further studied. 
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