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Abstract 

 
During early stage of primary restoration process, unexpected overvoltages may happen due to nonlinear ‎interaction 

between the unloaded transformer and the transmission system. The most effective method for the limitation of the 

switching overvoltages is controlled switching since the magnitudes of the produced transients are strongly dependent on 

the closing instants of the switch.‎ We introduce a harmonic index that it’s minimum value is corresponding to the best 

case switching time.‎ Also, this paper ‎presents an Artificial Neural Network (ANN)-based approach to ‎estimate the 

optimum switching instants for real time applications. In the proposed ANN, Levenberg–Marquardt ‎second order 

method is used to train the multilayer perceptron. ANN training is performed based on equivalent circuit parameters of 

the network. Thus, trained ANN is applicable to every studied system. To verify the effectiveness of the proposed index 

and accuracy of the ANN-based approach, two case studies are presented and demonstrated. 

 
 Keywords:  Artificial neural networks, equivalent circuit, harmonic index, temporary overvoltages, inrush currents, power system    

                                            restoration, transformer energization.
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1. Introduction 

 
At a time when bulk power systems operate close to their 

design limits, the restructuring of the electric power ‎industry 

has created vulnerability to potential blackouts. Prompt and 

effective power system restoration is essential ‎for the 

minimization of downtime and costs to the utility and its 

customers, which mount rapidly after a system ‎blackout 

[1,2]. A major process of power system restoration 

following a ‎blackout would be energization of primary 

restorative ‎transmission lines in most countries [3]. The 

energizing process ‎begins by starting black-start generators 

such as hydro ‎generators or gas turbines, and ‎then charging 

some pre-‎defined transmission lines to supply cranking 

power for large ‎generation plants [4,5]. ‎Then the 

energization of unloaded ‎transformers would be followed by 

switching action, and that is an inevitable process of bottom-

up restoration strategy. During transformer energization, 

unexpected over-voltage may happen due to nonlinear 

‎interaction between the unloaded transformer and the 

transmission system [1,2,6]. When a lightly loaded 

transformer is energized, the initial magnetizing current is 

generally much larger than the steady-state magnetizing 

current and often much larger than the rated current of the 

transformer [7]. Controlled switching has been 

recommended as a reliable method to reduce switching 

overvoltage during energization of capacitor banks, 

transformers, and transmission lines [8]. ‎This technique is 

the most effective method for the limitation of the switching 

transients since the magnitudes of the created transients are 

strongly dependent on the closing instants of the switch 

[6,9].  

 The fundamental requirement for all controlled 

switching applications is the precise definition of the 

optimum switching instants [9]. This paper presents a novel 

method for controlled energization of transformers in order 

to minimize temporary overvoltages. We introduce a 

harmonic index to determine the best case switching time. 

Using numerical ‎algorithm we can find the time that the 

harmonic index is minimum, i.e., harmonic ‎overvoltages is 

minimum.‎ Also, for real time applications, this paper 

‎presents an Artificial Neural Network (ANN)-based 

approach to ‎estimate optimum switching angle during 

transformer energization. In the proposed ANN, Levenberg–

Marquardt ‎second order method is used to train the 

multilayer perceptron [10,11]. The proposed ANN is 

expected to learn many scenarios of operation to give the 

optimum switching angle in a shortest computational time 

which is the requirement during online operation of power 

systems. In the proposed ANN we have considered the most 

important aspects, which influence the inrush currents such 

as voltage at transformer bus before switching, equivalent 

resistance, equivalent inductance, equivalent capacitance, 

line length, line capacitance, switching angle, and remanent 

flux. This information will help the operator to select the 

proper best-case switching condition of transformer to be 

energized safely with transients appearing safe within the 

limits. 

 The paper is organized as follows: in section 2 a brief 

description of switching overvoltages during ‎restoration is 

presented. Section 3 presents modelling issues. Section 4 
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describes the‎ proposed method for best switching ‎ccondition 

evaluation. In section 5 the ANN-based approach to ‎estimate 

optimum switching angle during transformer energization is 

illustrated. Two case studies that are a portion of 39-bus 

New England test system are demonstrated in section 6. 

 

 

2. Switching Overvoltages during Restoration 

 

One of the major concerns in power system restoration is ‎the 

occurrence of overvoltages as a result of switching 

‎procedures [2]. The major cause of harmonic resonance 

overvoltages problems is the switching of lightly loaded 

‎transformers at the end of transmission lines. After 

transformer energization, inrush currents with significant 

harmonic content up ‎to frequencies around ten times of 

system frequency are produced. The harmonic current com-

ponents of the same frequency as the ‎system resonance 

frequencies are amplified in case of parallel resonance, 

thereby creating higher voltages ‎at the transformer terminals 

[12]. This leads to a higher level of saturation resulting in 

higher harmonic ‎components of the inrush current which 

again results in increased voltages. They may lead to long 

‎lasting overvoltages resulting in arrester failures and system 

‎faults and prolong system restoration [2]. This can happen 

particularly in ‎lightly damped systems, common at the 

beginning of a restoration procedure when a path from a 

black-start ‎source to a large power plant is being established 

and only a few loads are restored yet [1,7,13]. 

 The ‎root cause of this phenomenon is the unfavorable 

‎combination of the source impedance, the shunt capacitance 

of ‎the energized circuits, the non-linear magnetizing 

‎characteristics of the energized transformer, inadequate 

‎damping of the system and the source voltage phase angle at 

‎the moment the transformer is energized. Key factors for the 

harmonic overvoltages analysis can be listed as follows: 

 

 The resonance frequency of the network;‎ 

 The system damping including the network losses, 

and the load connected to the network;‎  

 The voltage level at the end of the EHV lines; 

 The saturation characteristic of the transformers;‎  

 The remanent fluxes in the core of the transformer; 

 The closing time of the circuit breaker pole; 

 

 

3. ‎Modelling Issues 

 
3.1. PSB 

 

Simulations presented in this paper are performed using the 

PSB. The simulation tool has been developed using state 

variable approach and runs in the MATLAB/Simulink 

environment. This program has been compared with other 

popular simulation packages (EMTP and Pspice) in [14]. 

The user friendly graphical interfaces of PSB enable faster 

development for power system transient analysis. 

 

3.2. Generator Model 

 

In [15] generators have been modeled by generalized Park’s 

model that both electrical and mechanical part are 

thoroughly modeled, but it has been shown that a simple 

static generator model containing an ideal voltage source 

behind the sub-transient inductance in series with the 

armature winding resistance can be as accurate as the Park 

model. Thus in this work, generators are represented by the 

static generator model. Phases of voltage sources are 

determined by the load flow results.  

 

3.3. Transmission-Line Model 

 

Transmission lines are described by the distributed line 

model. This model is accurate enough for frequency 

dependent parameters, because the positive sequence 

resistance and inductance are fairly constant up to 

approximately 1 KHz [16] which cover the frequency range 

of harmonic overvoltages phenomena.  

 

3.4. Transformer Model 

 

The transformer model takes into account the winding 

resistances (R1, R2), the leakage ‎inductances (L1, L2) as well 

as the magnetizing characteristics of the core, which is 

‎modeled by a resistance, Rm, simulating the core active 

losses and a saturable inductance, ‎Lsat. The saturation 

characteristic is specified as a piece-wise linear 

characteristic [7]. For the ‎target transformer, hysteresis is 

added, in order to take into account the remanent fluxes in 

the iron core. The ‎remanent fluxes in the transformer core 

can be obtained via the integration of the voltages measured 

on the ‎transformer windings during its disconnection. The 

correct estimation of the residual flux is extremely important 

for the success of the controlled switching strategy. 

 

3.5. Load and Shunt Devices Model 

 

All of the loads and shunt devices, such as capacitors and 

reactors, are modeled as constant impedances. 

 

 

4. Proposed Method for Best Switching Condition 

Evaluation 

 
The main part of a controlled switching arrangement is a 

controller, which is the “brain” of the system. It receives the 

signals from the measuring devices, determines the 

appropriate reference phase angles and sends the switching 

commands to each pole of the switching device so that 

closing operation occurs at the optimum instant. 

 

4.1. Calculation of Transformer inrush Current 

 

In order to analyze the transformer inrush current, let us 

consider a single-phase transformer having a magnetizing 

characteristic as given in Fig. 1. If the voltage applied to the 

transformer is tVv cos  at time t0 for which ωt0 = θ, the 

established flux linkage will be a function of the applied 

voltage and the flux linkage offset 0  as given by the 

following expression [5]: 
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0sin 


  t
V

            (1) 

 

 The flux linkage offset is made up of the remanent flux 

linkage r  and the component sin/V  due to the 

linkage mismatch condition at energization, 

 




 sin0

V
r                                                               (2) 

 

 Under normal system conditions the transformer core 

would be driven temporarily into saturation asymmetrically 

when the flux linkage   exceeds the saturation level s . 

The expression for the inrush current is: 

 

)(
1

s
satL

i       (3) 

 

 
Fig. 1. Simplified transformer magnetization characteristic. 

 

 Combining (1) to (3), the following expression is 

obtained for the inrush current (in p.u.): 
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 Fourier analysis of the inrush current yields the 

following expressions for it's harmonic components: 

 

 
ss V

V

I

I



sin)2(cos2

2

10                               (8) 

 

 
ss V

V

I

I



2sin2

2

11 

    (9) 

 

   

,...4,3,2

1

2/)(1(sin

1

2/)(1(sin1






















k

V

V

k

k

k

k

kI

I

ss

k 



 (10) 

 

 

where 0
 is the flux linkage offset, sL

 is the transformer 

saturation inductance, r
 is the initial residual flux, and 

s
 and sV

 are transformer saturation flux linkage and 

saturation voltage, respectively. 

 

4.2. Best Switching Condition Determination 

 

Normally for harmonic overvoltages analysis, the best case 

of the switching condition must be considered which it is a 

function of switching time, transformer characteristics and 

its initial flux condition, and impedance characteristics of the 

switching bus. Using the best switching condition, the 

harmonic overvoltages peak and duration can be reduced 

significantly. 

 In order to determine best-case switching time, the 

following index is defined as 

 






10

2

0 ),,()(

h

rjjj thIhZW                                           (11) 

 

 This index can be a definition for the best-case switching 

condition. Using a numerical algorithm, one can find the 

switching time for which W is minimal (i.e., harmonic 

overvoltages is minimal).  

 The sample system considered for explanation of the 

‎proposed methodology is a 400 kV EHV network shown in 

‎Fig. 2. The ‎normal peak value of any phase voltage is 

400√2/√3 kV and ‎this value is taken as base for voltage p.u. 

In the system ‎studies 400 kV line-to-line base voltage and 

100 MVA as a ‎base power is considered. 

 

 



I. Sadeghkhani, A. Ketabi and R. Feuillet/Journal of Engineering Science and Technology Review 4 (2) (2011) 193-200 
 

196 

 

 
Fig. 2. Sample system for transformer energization study. G: generator, 

Reqv: equivalent resistance, Leqv: equivalent inductance, and Ceqv: 
equivalent capacitance. 

 

 

 In this paper equivalent circuit parameters are used as 

ANN inputs together other parameters to achieve good 

generalization capability for trained ANN. In fact, in this 

approach ANN is trained just once for sample system of Fig. 

2. Since ANN training is based on equivalent circuit 

parameters, developed ANN is applicable to every studied 

system. This issue is better understood in section 6 that 

trained ANN is tested for a 39-bus New England test system. 

 Fig. 3 shows the result of the frequency analysis at bus 2. 

The magnitude of the Thevenin impedance, seen from bus 2, 

Zbus2 shows a parallel resonance peak at 230 Hz. Fig. 4 

shows changes of harmonic currents and W index with 

respect to the switching angle, where k is harmonic number. 

Fig. 5 shows the harmonic overvoltages after the ‎transformer 

energization for the best-case condition (i.e., 56°). For 

temporary overvoltages, the overvoltage duration has to be 

taken into account in addition to the amplitude [3]. Table 1 

summarizes the results of overvoltages simulation for five 

different switching conditions that verify the effectiveness of 

W index. 

 In the next section we ‎present an Artificial Neural 

Network (ANN)-based approach to ‎estimate optimum 

switching angle for real time applications. 
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Fig. 3. Impedance at bus 2. 

 
 

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Switching Angle [deg.]

In
ru

sh
 C

u
rr

en
t 

H
a

rm
o

n
ic

s 
[p

.u
.]

W

K=3

K=4

K=5K=6

K=2

 
Fig. 4. Changes of harmonic currents and W index with respect to the 

switching angle. 
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Fig. 5. Voltage at bus 2 after switching of transformer for best switching 

condition. 

 

 

Table 1. Effect of switching time on the minimum of 

overvoltages and duration of Vpeak > 1.3 p.u. 
Switching Angle 

[deg.] 
Vpeak [p.u.] 

Duration of (Vpeak > 1.3 

p.u.) [s] 

56 1.1857 0 

45 1.5104 0.3752 

33 1.6527 0.4253 

70 1.3892 0.1442 

10 1.5861 0.3248 

 

 

5. The Artificial Neural Network 

 

The proposal in this work considers the adoption of feed 

forward Multilayer Perceptron (MLP) architecture. A MLP 

trained with the back-propagation algorithm may be viewed 

as a practical vehicle for performing a nonlinear input–

output mapping of a general nature [10,17]. Function 

approximation by feed forward MLP network is proven to be 

very efficient, considering various learning strategies like 

simple back propagation or the robust Levenberg–

Marquardt. Its ability to perform well is affected by the 
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chosen training data as well as training scheme. 

 As mentioned in previous section, following parameters 

are effective in determination of optimum switching angle 

during transformer energization: 

 

 Voltage at transformer bus before switching 

 Equivalent resistance of the network 

 Equivalent inductance of the network 

 Equivalent capacitance of the network 

 Line length 

 Line capacitance 

 Closing time of the circuit breaker poles 

 Remanent flux 

 

 The schematic diagram of the proposed MLP neural 

networks architecture is shown in Fig. 6. The composition of 

the input variables for the proposed neural networks has 

been carefully selected. 

 Supervised training of ANN is a usual training paradigm 

for MLP architecture. Fig. 7 shows the supervised learning 

of ANN for which input is given to proposed method to get 

the optimum switching angle values and the same data is 

used to train the ANN. Error is calculated by the difference 

of proposed method output and ANN output. This error is 

used to adjust the weight of connection. Output values of the 

trained neural networks must be capable of computing the 

optimum switching angle with very good precision. 

Gradient-based training algorithms, like back propagation, 

are most commonly used for training procedures. They are 

not efficient due to the fact that the gradient vanishes at the 

solution. Hessian-based algorithms allow the network to 

learn more subtle features of a complicated mapping. The 

training process converges quickly as the solution is 

approached, because the Hessian does not vanish at the 

solution. To benefit from the advantages of Hessian based 

training, we focused on the Levenberg–Marquardt (LM) 

algorithm reported in [11]. 

 

 
 

Fig. 6. Proposed MLP-based ANN architecture. 

 

 
Fig. 7. Supervised learning of ANN. 
 

  

5.1. Levenberg-Marquardt (LM) Algorithm 

Suppose that we have a function )(x  which we want to 

minimize with respect to the parameter vector x, where 

 






N

i

ie

1

2 )()( xx                                                          (12) 

  

 Then the Marquardt–Levenberg modification to the 

Gauss–Newton method is 

 

  )()()()(Δ T1T xexJIxJxJx


                  (13) 

 

 The parameter μ is multiplied by some factor β whenever 

a step would result in an increased )(x . When a step reduces 

)(x , μ is divided by β. Notice that when μ is large the 

algorithm becomes steepest descent; while for small μ the 

algorithm becomes Gauss–Newton. The LM algorithm is 

very efficient when training networks have up to few 

hundred weights. Although the computational requirements 

are much higher for the each iteration of the LM algorithm, 

this is more than made up for by the increased efficiency. 

This is especially true when high precision is required. 

 

5.2. Steps of Optimum Switching Angle Estimation  

The steps for optimum switching angle evaluation and 

estimation are listed below: 

 

1) Determine the characteristics of transformer that must 

be energized. 

2) Calculate the Zii(h) at the transformer bus for h = 

2f0,…,10f0. 

3) Calculate the best switching condition. 

4) Repeat the above steps with various system 

parameters to learn artificial neural network. 

5) Test artificial neural network with different system 

parameters. 

 

5.3. Training Artificial Neural Network 

All experiments have been repeated for different system 

parameters. After learning, all parameters of the trained 

networks have been frozen and then used in the retrieval 

mode for testing the capabilities of the system on the data 

not used in learning. The testing data samples have been 

generated through the proposed method by placing the 

parameter values not used in learning, by applying different 

parameters. A large number of testing data have been used to 

check the proposed solution in the most objective way at 
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practically all possible parameters variation. Percentage 

error is calculated as: 

 

100
Method

MethodANN
error(%) 


                             (14) 

 

 Neural network is trained with the goal of mean square 

error (MSE) 1e-2. Fig. 8 shows the training of neural 

network. Results for a sample test data are presented in 

Table 2.  

 In the next section, the proposed model tested with 

portion of 39-bus New England test system. 
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Fig. 8. Squared error against epoch curve. 

 

Table 2. Some sample testing data and output 
V 

[p.u.] 

Reqv 

[p.u.] 

Leqv 

[p.u.] 

Ceqv 

[p.u.] 

L.L. 

[km] 

CLine 

[F/km] 

Φr 

[p.u.] 

B.S.A.HI 

[deg.] 

B.S.A.ANN 

[deg.] 

Error 

[%] 

0.9077 0.003 0.0375 0.3694 100 
1.199e-

8 
0.1 43.5 44.3 1.8526 

0.9254 0.0035 0.035 0.3694 125 
1.199e-

8 
0.2 28.1 28.4 1.1637 

0.9731 0.004 0.0325 0.9781 150 
1.224e-

8 
0.3 58.6 56.4 3.8201 

0.9973 0.0045 0.03 0.9781 180 
1.224e-

8 
0.3 41.9 42.9 2.2854 

1.0426 0.005 0.0275 1.2825 200 
1.237e-

8 
0.4 88.4 86.7 1.9735 

1.0621 0.0055 0.0275 1.2825 220 
1.237e-

8 
0.5 75.6 72.3 4.3947 

1.1222 0.006 0.025 1.5869 250 
1.249e-

8 
0.6 51.3 50.6 1.3528 

1.1224 0.003 0.0225 1.5869 250 
1.249e-

8 
0.7 25.7 26.1 1.6914 

1.1668 0.005 0.02 2.1956 265 
1.274e-

8 
0.7 90 89.1 0.9525 

1.1824 0.0035 0.02 2.1956 280 
1.274e-

8 
0.8 48.5 49.6 2.3691 

V = voltage at transformer bus before switching, Reqv = equivalent 

resistance, Leqv = equivalent inductance, Ceqv = equivalent capacitance, 
L.L. = line length, CLine = line capacitance, Φr = remanent flux, B.S.AHI 

= the best switching angle obtained by the harmonic index, B.S.AANN = 

the best switching angle obtained by the ANN, and Error = switching 
angle error. 

 

 

6. Case Study 

 

In this section, the proposed algorithm is demonstrated for 

two case studies that are a portion of 39-bus New England 

test system, which its parameters are listed in [18]. The 

simulations are undertaken on a single phase representation. 

 

6.1. Case 1 

Fig. 9 shows a one-line diagram of a portion of 39-bus New 

England test system which is in restorative state. The 

generator at bus 35 is a black-start unit. The load 19 shows 

cranking power of the later generator that must be restored 

by the transformer of bus 19. When the transformer is 

energized, harmonic overvoltages can be produced because 

the transformer is lightly loaded. 

 
Fig. 9. Studied system for case 1. 

 

 

 As mentioned in section 4, first, equivalent circuit of this 

system, seen behind bus 16, is determined and values of 

equivalent resistance, equivalent inductance, and equivalent 

capacitance are calculated, in other words, this system is 

converted to equivalent system of Fig. 2. In this case, values 

of equivalent resistance, equivalent inductance and 

equivalent capacitance are 0.00291 p.u., 0.02427, and 2.474 

p.u., respectively. For testing trained ANN, values of voltage 

at transformer bus (bus 19), line length, and remanent flux 

are varied and in each step, optimum switching angle values 

are calculated from trained ANN and proposed method. 

Table 3 contains the some sample result of test data of case 

1. 

 

Table 3. Case 1 some sample testing data and output 

V [p.u.] 
L.L. 

[km] 
Φr [p.u.] 

B.S.A.HI 

[deg.] 

B.S.A.ANN 

[deg.] 
Error [%] 

0.9243 100 0.2 80.6 78.9 2.1675 

0.9541 150 0.3 37.5 38.2 1.8044 

1.0195 200 0.4 18.3 18.7 2.2783 

1.0481 230 0.4 44.8 45.4 1.2459 

1.0977 250 0.5 62.1 61.1 1.6623 

1.0977 250 0.6 89.7 85.6 4.5391 

1.1505 270 0.7 67.7 66.4 1.8542 

1.1776 290 0.8 32.6 32.2 1.2658 

V = voltage at transformer bus before switching, L.L. = line length, Φr = 

remanent flux, B.S.AHI = the best switching angle obtained by the 

harmonic index, B.S.AANN = the best switching angle obtained by the 
ANN, and Error = switching angle error. 

 

6.2. Case 2 

 

As another example, the system in Fig. 10 is examined. In 

the next step of the restoration, unit at bus 6 must be 

restarted. In order to provide cranking power for this unit, 
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the transformer at bus 6 should be energized. In this 

condition, harmonic overvoltages can be produced because 

the load of the transformer is small. 

 

 
 
Fig. 10. Studied system for case 2. 

 

 

 After converting this system to equivalent circuit of Fig. 

2, i.e., after calculating equivalent circuit seen from bus 5, 

various cases of transformer energization are taken into 

account and corresponding optimum switching angles are 

computed from proposed method and trained ANN. In this 

case, values of equivalent resistance, equivalent inductance 

and equivalent capacitance are 0.00577 p.u., 0.02069, and 

0.99 p.u., respectively. Summery of few result are presented 

in Table 4. It can be seen from the results that the ANN is 

able to learn the pattern and give results to acceptable 

accuracy. 

 

 

 

 

 

 

Table 4. Case 2 some sample testing data and output 

V [p.u.] 
L.L. 

[km] 
Φr [p.u.] 

B.S.A.HI 

[deg.] 

B.S.A.ANN 

[deg.] 
Error [%] 

0.9335 125 0.8 75.4 73.4 2.6384 

0.9512 155 0.7 42.9 41.4 3.5107 

0.9906 175 0.6 56.1 57.4 2.3726 

0.9906 175 0.5 90 88.3 1.8532 

1.0502 215 0.4 82.3 81.1 1.4007 

1.0595 225 0.3 29.4 30.6 3.9273 

1.1025 240 0.2 45.6 44.8 1.7129 

1.1293 265 0.2 51.2 52.4 2.3615 

 
V = voltage at transformer bus before switching, L.L. = line length, Φr = 

remanent flux, B.S.AHI = the best switching angle obtained by the 
harmonic index, B.S.AANN = the best switching angle obtained by the 

ANN, and Error = switching angle error. 

 

 

7. Conclusion 

 
This paper describes a new approach to determine the 

optimum switching instants to reduce harmonic overvoltages 

due to transformer energization during power system 

restoration. The proposed method is based on the harmonic 

index which integrates the key parameters of overvoltages 

generation. The minimum value of this index is 

corresponding to the best switching time for the transformer 

energization. On the other hand, for real time application, 

the paper ‎presents a procedure for evaluating the best 

switching condition using an ANN based on ‎Levenberg–

Marquardt second order training method. It has been adopted 

for obtaining small mean square error without losing 

generalization capability of ANN. Training ANN is based on 

equivalent circuit parameters to achieve good generalization 

capability for trained ANN. Simulation results confirm the 

effectiveness and accuracy of the proposed harmonic index 

and ANN scheme. 

 

 

______________________________ 
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