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Abstract 

 
Dynamic modulus mastercurves are essential for the design and modeling of asphalt concrete (AC). One way of 

improving the accuracy of the upper asymptote of the mastercurve is to test at extremely high frequencies or extremely 

low temperatures. Ultrasound is used extensively in the nondestructive testing of materials and the work completed here 

demonstrates the potential for the application of this technology to AC. Since testing at extremely low temperatures is 

not practical, a new ultrasonic technique is developed for measuring the complex moduli of AC. A theoretical 

explanation of the measurement process is provided. Two AC specimens were tested using the ultrasonic method and the 

dynamic modulus method in the indirect tensile test (IDT) mode. Both test techniques were performed at four different 

temperatures. The mastercurves were constructed using time-temperature superposition on the IDT test data and the 

upper asymptotes were extrapolated. The ultrasonic data was shifted to the desired reference temperature and the 

predicted moduli were compared to those of the IDT test. It was found that the moduli predicted using the ultrasound 

measurement agreed well for the specimen with a lower air-void content and differed more for the specimen with a 

higher air-void content. The phase angles predicted by the ultrasonic method were higher than those obtained from the 

IDT test. It is believed that this was a result of wave scattering from air-voids and aggregates. Suggestions are made to 

further increase the accuracy of the technique. 
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1. Introduction 

 

The ability to predict damage in asphalt concrete (AC) is 

highly dependent on the accuracy with which the material 

moduli can be measured. For this reason, efforts have been 

made to test AC materials at higher loading frequencies in 

order to obtain a more accurate upper asymptote of the 

dynamic modulus mastercurves. Recently, Kweon and Kim 

(1) introduced an impact resonance (IR) method for 

performing measurements in the sonic kilohertz range. They 

demonstrated the ability to construct the dynamic modulus 

and phase-angle mastercurves by performing IR 

measurements at different temperatures. 

 One of the primary objectives of the work introduced 

here was to further increase the accuracy of the AC 

mastercurves by extending material testing capabilities into 

the ultrasonic range. This would be a significant 

contribution, enabling practitioners to better characterize the 

dynamic modulus mastercurves used in the Mechanistic 

Empirical Pavement Design Guide (MEPDG) for pavement 

design and would also serve as an important tool for the 

improved modeling of AC. 

 Testing at ultrasonic frequencies is equivalent to testing 

at extremely low temperatures, using typical loading 

frequencies in the hertz range, with the added benefits of 

being nondestructive and not needing extremely 

cumbersome testing equipment. The ultrasonic method also 

has several benefits over the IR method. For example, the 

repeatability of the IR method is heavily dependent on the 

material, mass, shape, and impact velocity of the impactor, 

whereas with the ultrasonic method, the excitation 

characteristics are highly stable as calibrated ultrasonic 

transducers are used. Additionally, it is possible to measure 

the complex shear modulus using the ultrasonic method; an 

achievement much more difficult, albeit not impossible, 

using the IR method. 

 By measuring the density and longitudinal- and shear-

wave velocities, all other common engineering material 

properties (e.g. Poisson ratio, Lame constant, elastic and 

shear moduli, etc.) can be obtained via simple algebraic 

relations. It is common to measure the properties of metals 

and other highly elastic materials in this way. While a 

notable amount of work has also been completed on the 

characterization of plastics and other viscoelastic materials, 
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the amount of literature available regarding the ultrasonic 

characterization of AC is relatively sparse, most likely 

because the highly attenuative and inhomogeneous nature of 

these materials can impede wave propagation. 

 Sztukiewicz (2) correlated the measured longitudinal-

wave velocity to the bulk specific gravity of AC samples at 

different temperatures and ages. It was found that wave 

velocity increased with increasing bulk specific gravity and 

decreased with increasing temperature. The increase with 

bulk specific gravity is in agreement with that which is seen 

for elastic materials and the decrease with temperature can 

be attributed to the softening of the AC specimen at higher 

temperatures. It was also reported that decreased wave 

velocity can be correlated to aging of the AC. Stukiewicz 

attempted to use the longitudinal-wave velocity for the in 

situ characterization of AC, though, the proposed 

characterization parameters were of a highly empirical form 

and therefore it is not believed that the results are applicable 

to a wide variety of specimens. 

 Most recent attempts to use ultrasound as a 

characterization tool for AC were presented by 

Norambuena-Contreras (3) and by Pellinen and Witczak (4). 

Witczak et al. (5) evaluated several potential techniques for 

the development of a Simple Performance Test (SPT) for the 

characterization of AC. One of the techniques proposed 

involved the measurement of ultrasonic longitudinal wave 

velocity in an AC specimen, which was then used to 

calculate the Dynamic Elastic Modulus. Their elastic 

modulus predictions were made using equations from the 

theory of elasticity and therefore did not account for the 

viscoelastic nature of the material (i.e. the predicted 

properties had no complex component). Pellinen and 

Witczak (4) did not present any acquired ultrasonic data and 

dismissed the ultrasonic technique as a viable candidate for a 

SPT. 

 

 

2. Methodology 

 

In this study, complex modulus tests were conducted on two 

AC specimens and dynamic modulus, dynamic shear 

modulus, and phase angle mastercurves were constructed 

using the time-temperature superposition principle. 

Ultrasonic longitudinal- and shear-wave data was collected 

on the same specimens. The ultrasonic data was plotted on 

the mastercurves and compared to the extrapolated high-

frequency asymptote determined from the complex modulus 

tests. 

 The AC material used was a paver mixture obtained 

from the surface layer of Interstate 79 in Butler County, 

Pennsylvania. The surface mixture (A26 mixture) is a 

9.5 mm with 2.2% baghouse fines and SBS Polymer 

modified binder with a grade of 76-22. 

 The specimens were compacted to a height of 115 mm at 

compaction temperature of 155°C (310°F) and later cored 

and cut to obtain 100 mm × 38 mm (diameter × height) test 

specimens. The two specimens, henceforth referred to as 

Specimen I and Specimen II, were compacted to 2.2% and 

3.5% air void content. 

 All the complex modulus testing was conducted using 

closed loop universal loading systems manufactured by 

MTS. Data acquisition was performed using a separate 

computer fitted with a National Instruments
®
 6329 DAQ 

card and data acquisition programs prepared in Labview 

were used for data collection. The testing was conducted in 

the indirect tension mode (IDT) due to the specimen 

dimensions required for ultrasonic testing. 

 The deformation values were measured by means of 

Linear Variable Differential Transformers (LVDTs). For the 

IDT test, four X-SB LVDTs, with a range of ±0.25 mm were 

used for measuring the vertical and horizontal deformations. 

The deformation values were measured along a gauge length 

of 38.  mm for specimen diameter of 100 mm and a 6 in 

Lottman Head with strip width of 0.77 in was used for 

setting up the specimen. 

 The complex modulus tests in IDT mode was conducted 

at -20,-10, 0 and +10°C at frequencies of 20, 10, 5, 1 and 0.5 

Hz. The test involved applying a sinusoidal load to the 

specimen and obtaining the vertical and horizontal 

deformation response from two LVDTs mounted on each 

side of the specimen. The loads were applied to induce a 

maximum horizontal strain of 70 microstrains to ensure the 

specimen remained in the linear viscoelastic range. For data 

analysis, only the last six cycles were considered. Additional 

information on the testing is documented by Chehab et al. 

(6). 

 The viscoelastic solution developed by Momen (7) was 

used for computing the Dynamic modulus in the IDT mode 

and is shown in Eq. (1). 
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where P0 is the applied load amplitude, a is the strip width of 

the loading head, d is the specimen diameter, V0 is the 

amplitude of the vertical deformation, and U0 is the 

amplitude of the horizontal deformation. 

 The Dynamic shear modulus was calculated using 

Eq. (2) and the Poisson’s ratio was assumed to be 0.3 for the 

temperature ranges used. 
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where G* is the complex shear modulus, E* is the complex 

modulus, and ν is Poisson’s ratio. 

 All ultrasonic testing was completed with a standalone 

ultrasonic testing system with a 1000 V toneburst generator 

and 100 MHz A/D converter. All longitudinal data was 

collected using 500 kHz center-frequency transducers and all 

shear data was collected with 750 kHz center-frequency 

transducers. A 0.50  pulse width and 100 MHz sampling 

frequency was used in all experiments. The very short pulse 

width was used in order to obtain as large an excitation 

bandwidth as possible. 

 

 

3. Linear Viscoelasticity And Time-Temperature 

Superposition 

 

Asphalt concrete is a viscoelastic material that exhibits both 

time and temperature dependence. In the linear viscoelastic 

range, or undamaged state, it is also thermorheologically 

simple and the effect of time and temperature can be 

expressed through one joint parameter (5). The process of 

combining the testing temperature and frequencies is 

possible through a variable termed ‘Reduced Frequency’, 

which is simply the product of frequency and a shift factor. 
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The viscoelastic material property, as a function of 

frequency or time, can be shifted along the horizontal time 

axis to form a characteristic mastercurve at a desired 

reference temperature (8). 

 

 

4. Complex Modulus 

 

A unit response function denotes the response of a linear 

viscoelastic material to a unit input function. Complex 

modulus (E*) is the unit response function of a sinusoidal 

input function. The dynamic modulus, which is the 

magnitude of the complex modulus, is equivalent to the 

strain response for a unit sinusoidal stress load. The dynamic 

modulus is calculated by dividing the steady state sinusoidal 

stress amplitude ( 1) by the steady state sinusoidal strain 

amplitude ( 2). The phase angle () is related to the time 

lag, t, between the stress input and strain response and the 

frequency of testing. 

 Complex modulus is decomposed into two major 

components, the storage and loss modulus as represented in 

Eq. (3) and in Fig. (1). 

 

"'* iEEE 
       (3) 

 

where E  is the storage modulus, and E   is the loss 

modulus. The dynamic modulus is the amplitude of the 

complex modulus and is defined as 

 

22* )"()'( EEE 
    (4) 

 

 

 The values of the storage and loss moduli are related to 

the dynamic modulus and phase angle by 

 

      (5) 

 

     (6)
 

 

 

 From Fig. (1) it can be observed that the value of phase 

angle can vary between 0° and 90°. If the phase angle is 0°, 

the material is completely elastic and if the phase angle is 

90° , the material is completely viscous. 

 

 
Fig. 1. Complex modulus decomposed into real and imaginary 
components. 
 

 

5. Ultrasonic Theory and Measurement 

 

The governing equations of linear viscoelasticity take on the 

same form as the governing equations of linear elasticity 

when integral transform methods are used. This analogy is 

often referred to as the elastic-viscoelastic correspondence 

principle and it has significant implications. Because the 

time-dependence of the stress-strain relations can be 

removed using integral transform methods, it is possible to 

obtain the transformed viscoelastic solution by solving the 

corresponding elastic problem with complex material 

properties. Read (9) was the first to utilize the Fourier 

integral transform for such purposes and Christensen (10) 

provides a detailed presentation of the correspondence 

principle using Laplace integral transforms. It is therefore 

possible to use the elastic wave equation, with complex 

material properties, to describe ultrasonic wave propagation 

in AC. 

 To date, several ultrasonic velocity measurement 

techniques have been developed to predict the moduli of 

AC. One detail that all of these techniques have in common 

is that the predicted moduli are real numbers, as opposed to 

complex numbers that are characteristic of viscoelastic 

materials. It would be a valuable contribution to be able to 

calculate the complex moduli of AC from ultrasonic wave 

propagation measurements. 

 

 

6. Solution of the Complex Wave Equation 

 

In order to calculate the complex moduli of AC from wave 

propagation data, it is useful to examine the one-dimensional 

complex wave equation, 

 
2 2
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     (7) 

 
 

where u(x,t) is the particle displacement,  is the circular 

frequency, and *( )c i  is the complex frequency-

dependent phase velocity within the medium of interest. In 

infinite media the phase velocity is equivalent to the 

longitudinal or shear wave velocity. If the distance to the 

nearest specimen edge is much greater than the ultrasonic 

wavelength, the media is considered infinite. 

 The solution to Eq. (7) is the same as for the elastic wave 

equation (with the exception of the now complex circular 

wavenumber) and can be found in sources such as 

Christensen (10), Haddad (11), or Barshinger and Rose (12). 

The solution of Eq. (7) is of the form, 
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where ( )   is the frequency dependent attenuation 

constant which is responsible for the decay in wave 

amplitude with increasing propagation distance and is a 

direct consequence of the complex circular wavenumber 
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*k . The single-prime in Eq. (8) represents the real part of 

the circular wavenumber while the double-prime represents 

the complex part. The initial wave amplitude is given by 

0U . It can be seen from the last expression in Eq. (8) that, 

' Re
( ) *( )

k
c c

 

 
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 Noting that the relationship between the phase velocity 

and circular wavenumber is of the form, 
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an equation for the complex wave velocity can be developed 

from Eq. (9), Eq. (10), and Eq. (11), 
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where ( )c   is the measured longitudinal or shear wave 

velocity within the material. Since the quantities ( )c   and 

( )   are real, they can be directly measured by 

experiment. Therefore, with knowledge of the measurable 

wave velocity in the material and the rate of attenuation of 

the wave, it is possible to calculate the complex phase 

velocities from Eq. (12) and, in turn, the complex moduli. 

The complex Shear modulus can be calculated from, 
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where 
*

Sc  is the complex shear wave velocity and   is the 

material density. 

 The complex Young’s Modulus can then be calculated 

from, 
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 This concludes the solution of the complex wave 

equation and derivation of the corresponding complex 

material and acoustic properties. The following two sections 

will deal with the measurement of the wave velocity and 

attenuation constant in an AC specimen. 

 

 

7. Wave Velocity Measurement 

 

In this study wave velocity was measured using a through-

transmission arrangement in which the ultrasound is 

transmitted, propagates directly through the specimen, and is 

received by a second transducer. This is shown Fig. (2). To 

obtain the most accurate velocity estimate possible, 

measurements were made for two different thicknesses of 

the same specimen and the propagation distance was taken 

to be the difference in axial length of the specimen 

thicknesses. In this way, any time delay introduced by the 

electronics is nullified. Data was collected on Specimen I at 

thicknesses of h2=38.1 mm and h1=34.38 mm and on 

Specimen II at thicknesses of h2=32.43 mm and 

h2=27.78 mm. 

 

 
Fig. 2. Photograph showing the ultrasonic wave velocity and attenuation 
constant measurement. 

 

 

 All acquired ultrasonic signals were time-averaged 25 

times to improve the signal-to-noise ratio. Spatial averaging 

was also employed in an attempt to account for the 

inhomogeneity of the specimens. Plots (a) and (b) in Fig. 3 

show 10 time-averaged signals obtained at different 

locations on Specimen I using longitudinal and shear waves, 

respectively. Plots (c) and (d) in Fig. (3) are the spatially 

averaged results obtained by averaging the 10 signals in (a) 

and (b). The red line seen in Fig.(3) plots (c) and (d) 

represents the envelope of the wave packet and are useful for 

peak and wave-front location purposes. The arrival time of 

the wave is often referenced from the peak or wave front. 
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(a) Time-Averaged Longitudinal Waveforms 

 

 
(b) Time-Averaged Shear Waveforms 

 
(c) Spatially-Averaged Longitudinal Waveform 

 

 
(d) Spatially-Averaged Shear Waveform 

 

Fig. 3.  Time-averaged ultrasonic waveforms obtained for the (a) 
longitudinal and (b) shear testing of Specimen I at -2°C. The spatially 

averaged (c) longitudinal and (d) shear waveforms 
 

 

 In order to obtain an accurate velocity measurement, it is 

necessary to know the difference in arrival times between 

the acquired waveforms. The highest accuracy is obtained 

when correlation routines are employed. This was the 

approach used in this work. A cross-correlation routine was 

written in MatLab and used to obtain the time difference 

between the two wave packets. The cross-correlation is 

defined as, 

 

0

1
( ) ( ) ( )

T

xyR x t y t dt
T
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   (15)

 

 

 

where T is the period of the signals x and y being correlated. 

Effectively it is a comparison function which compares the 

waveforms at every possible time combination with the 

actual time difference taken to be at the point of highest 

correlation, or largest Rxy value. Figure (4) shows the 

waveforms obtained for the two different specimen 

thicknesses of Specimen I along with the cross-correlated 

results.  

 

 
 

 

(a) 

(b) 

— Thickness 1 

— Thickness 2 

— Thickness 1 

— Thickness 2 
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Fig. 4.  Spatially averaged ultrasonic waveforms obtained for the (a) 

longitudinal and (b) shear testing of Specimen I at -2°C and the cross-
correlated (c) longitudinal and (d) shear waveforms. 

 

 The time shift corresponding to the point of highest 

correlation for the longitudinal and shear data shown in 

Fig. (4) was 1.54  and 2.63  Rxy max, respectively. 

Using the known difference in specimen thickness and the 

measured change in the time-of-flight, the corresponding 

wave velocity in the AC specimen can be determined from, 

2 1
,L S

h h
c

t


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Measurement of Attenuation Constant 

With the wave velocities determined, the other parameters 

needed to calculate the complex moduli are the longitudinal 

and shear wave attenuation constants. To examine how these 

constants might be measured experimentally, consider again 

the solution of the complex one-dimensional wave equation, 
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 Assuming there are two waves that have propagated 

distances 1x  and 2x , respectively, the amplitudes of these 

two waves would be given by, 
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 Taking the ratio of Eq. (18) and Eq. (19), a convenient 

expression results, 
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 Again, an experiment can be formulated in which an AC 

sample of known thickness (or known difference in 

thickness between two samples) and corresponding 

propagated wave amplitude can be used to calculate the 

attenuation constant,  . Conveniently, all of this 

information is contained within the data that was taken 

during the wave velocity measurement procedure. 

 If the attenuation constant is calculated using the time 

domain information, the results will be valid only for the 

center frequency of the transducer. However, if the ratio of 

the Fourier transformed signals is used, attenuation data will 

be available over the entire bandwidth of the transducer. 

Since the Fourier transform is a linear transform, the 

amplitude ratio will be conserved and the time-domain 

amplitudes in Eq. (20) can be replaced by the amplitudes of 

the Fourier transforms in the frequency domain. The 

definition of the Fourier transform is, 

 

u ( ) = u (t )e  i 2 t dt
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and Eq. (20) is then rewritten as, 

 

 

A
2

A
1

= e
  ( x

2
 x

1
)

                  (22)

 

 

 

where 1

~
A  and 2

~
A  are the amplitudes of the Fourier 

transforms. An expression for the attenuation constant can 

then be written as, 
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 Figure (5) shows a plot of the Fourier transform 

amplitudes of the time-domain waveforms seen in plot (a) 

and (b) of Fig. (4). Using these transform amplitudes and an 

2x  and 1x equivalent to 2h  and 1h , respectively, a plot of 

the longitudinal and shear attenuation versus frequency can 

be generated, as seen in Fig. (6). 

(c) 

— Thickness 1 

— Thickness 2 

(d) 

— Thickness 1 

— Thickness 2 
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 The slope of the linear trend in Fig. (6) is the parameter 

of interest. After converting to circular frequency, this slope 

represents the  /  ratio that is used in the calculation of 

the complex elastic moduli. The attenuation information is 

valid over the frequency range of interest in this study. 

 With knowledge of the measured acoustic properties it is 

only left to calculate the complex moduli using Eq. (12) 

through Eq. (14). Table (1) and Table (2) summarize the 

measured acoustic properties of the two AC specimens used 

in this study. 

 

 

 

 

 
 
Fig. 5 Fast Fourier Transform (FFT) amplitudes of the spatially 
averaged (a) longitudinal and (b) shear signals obtained from 

Specimen I at -2°C. 

 

 
 

 
Fig. 6(a). Longitudinal and (b) shear attenuation versus frequency trend 

for Specimen I at -2°C. The red line is a linear fit to the data, 
represented by the black circles. 

 

 

Table 1. Tabular summary of ultrasonic results for 

Specimen I at all testing temperatures 

 
 

 

Table 2.  Tabular summary of ultrasonic 

results for Specimen II at all testing 

temperatures 

 
 

 

 

8. Results And Analysis 

 

Time–Temperature superposition was used to construct the 

dynamic modulus and dynamic shear modulus mastercurves 

at a reference temperature of 0°C and the sigmoidal function 

was used for fitting the curves. As the actual testing 

temperatures were different, the mastercurves and ultrasonic 

data were shifted to a reference temperature of 0°C. The 

mastercurves were also extrapolated to higher frequencies to 

compare with data obtained from ultrasonic testing. The 

extrapolated data and the actual test data for the dynamic 

modulus and shear modulus mastercurves are shown in 

Fig. (7). 

 From the mastercurves it is observed that the ultrasonic 

data matches the upper portion of the dynamic modulus and 

dynamic shear modulus curves more accurately for 

Specimen I. The difference between the results from the IDT 

and ultrasonic tests for Specimen I and Specimen II is 7% 

and 22%, respectively, for the dynamic modulus and 5% and 

18%, respectively, for the dynamic shear modulus. The 

larger variation seen for Specimen II may be due to 

increased wave scattering from the higher air-void 

population. 
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 The phase angle mastercurve was developed by 

manually shifting the vertical phase angle to compare with 

the ultrasonic data. It is seen from Fig. (8) that the phase 

angle predicted from ultrasonic measurement was higher 

than predicted from dynamic modulus testing. This 

phenomenon is somewhat expected as it was assumed that 

all ultrasonic attenuation is due to material dissipation. In 

fact, because the wavelengths in the ultrasonic region are 

comparable to the nominal aggregate and air void size, there 

will be a notable amount of wave scattering from the 

aggregates and air voids. When wave energy is scattered, it 

takes more time to reach the receiving transducer (if it 

reaches it at all) because of its indirect propagation path. 

Therefore, scattered energy will manifest as a decrease in 

amplitude of the directly received wave package. Future 

work will need to examine the severity of scattering for 

different ultrasonic wavelengths and aggregate and air void 

sizes. A compensation technique can be developed to 

account for energy lost in scattering and will result in a more 

accurate phase angle measurement. 

 

 

 
 

 

 
 

 
 

 
 
Fig. 7.  Comparison of ultrasonic data with (a) dynamic modulus and 
(b) dynamic shear modulus for Specimen I 

and of (c) dynamic modulus and (d) dynamic shear modulus of 

Specimen II. 
 

 
 

 
 
Fig. 8.  Comparison of phase angle for: (a) Specimen I; (b) Specimen II. 
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In this study, a new ultrasonic method was utilized to predict 

the complex moduli of AC near the upper asymptote of the 

dynamic modulus and dynamic shear modulus mastercurves. 

A theoretical demonstration of how ultrasonic measurements 

could be used to calculate complex moduli was presented. 

Two specimens were tested using the ultrasonic method and 

the IDT dynamic modulus method. The dynamic modulus, 

dynamic shear modulus, and phase angle mastercurves were 

constructed using the IDT test data and the upper asymptotes 

of the mastercurves were extrapolated to compare with the 

results from the longitudinal- and shear-wave ultrasound 

tests. It was found that the upper asymptote of the dynamic 

modulus and dynamic shear modulus mastercurves matched 

well with the ultrasonic prediction for the AC specimen with 

lower air-void content. The phase angle data obtained from 

ultrasound tests were higher than the dynamic modulus tests 

in both specimens. This phenomenon may be related to 

increased energy loss due to wave scattering from air voids 

and aggregates. 

 Ultrasonic equipment is relatively light and portable, 

making the possibility of field testing a reality. This has been 

the primary motivation of this work. Future work will 

concentrate on characterizing the relationship between air-

void content, aggregate gradation, asphalt binder content, 

wave propagation, and wave scattering. If understood 

properly, a compensation factor could be developed to 

account for wave scattering and, in turn, improve the 

accuracy of the phase angle measurement. More AC 

replicates will be tested using the ultrasonic method and 

compared to the results of traditional dynamic modulus tests. 

This should be done using additional types of mixtures since 

only one mixture was used in this study. 

 

______________________________ 
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