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Abstract 
 
The last decades, the synchronization between coupled chaotic circuits has attracted the interest of the research 
community because it is a rich and multi-disciplinary phenomenon with broad range applications, such as in broadband 
communication systems, in secure communications and in cryptography. For this reason many coupling schemes 
between identical nonlinear circuits with chaotic behavior have been presented. However, the basic drawback of the 
majority of these schemes is the request the coupled circuits to be identical, due to the fact that in real world applications 
this is impossible. Motivated by the aforementioned inevitable feature of this class of circuits, which drives the systems 
out of synchronization, a unidirectional coupling scheme between non-identical, nonlinear circuits, is presented in this 
work. The circuit, which is used, realizes a four-dimensional modified Lorenz system, which is capable of producing 
chaotic and hyperchaotic attractors. Furthermore, the coupling scheme is designed by using Nonlinear Open Loop 
Controllers to target the synchronization state. The stability of synchronization is ensured by using Lyapunov function 
stability theory. Simulation results of the proposed coupling scheme by using SPICE are also presented to verify the 
feasibility of the proposed coupling scheme. 
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1. Introduction 
 
In the last three decades the phenomenon of synchronization 
between coupled chaotic systems has attracted the interest of 
the scientific community because it is a rich and multi-
disciplinary phenomenon with broad range applications, 
such as in a variety of complex physical, chemical, and 
biological systems [1-7], as well as in secure 
communications [8], cryptography [9,10] and broadband 
communication systems [11]. In more details, 
synchronization of chaos is a process, where two or more 
chaotic systems adjust a given property of their dynamics 
motion to a common behavior, such as identical trajectories 
or phase locking, due to coupling or forcing. Because of the 
exponential divergence of the nearby trajectories of a chaotic 
system, having two chaotic systems being synchronized, 
might be a surprise. However, today the synchronization of 
coupled chaotic oscillators is a phenomenon well established 
experimentally and reasonably well understood theoretically. 

The history of chaotic synchronization’s theory began 
with the study of the interaction between coupled chaotic 
systems in the 1980’s and early 1990’s by Fujisaka and 
Yamada [12], Pikovsky [13], Pecora and Carroll [14]. Since 
then, a wide range of research activity based on 
synchronization of nonlinear systems has risen and a variety 
of synchronization’s types, depending on the nature of the 
interacting systems and of the coupling schemes, has been 
presented.  

In particular, the phenomenon of complete 

synchronization is the most studied type of synchronization. 
In this case, two coupled chaotic systems are leaded to a 
perfect coincidence of their chaotic trajectories i.e.,  
x1(t) = x2(t) as t → ∞.  

Recently, a great interest for dynamical systems with 
hidden attractors has been raised. The term “hidden 
attractor” refers to the fact that in this class of systems the 
attractor is not associated with an unstable equilibrium and 
thus often goes undiscovered because they may occur in a 
small region of parameter space and with a small basin of 
attraction in the space of initial conditions [15-20]. In 2010, 
for the first time, a chaotic hidden attractor was discovered 
in the most well-known nonlinear circuit, in Chua’s circuit, 
which is described as a three-dimensional dynamical system 
[21,22]. 

Furthermore, systems with hidden attractors have 
received attention due to their practical and theoretical 
importance in other scientific branches, such as in mechanics 
(unexpected responses to perturbations in a structure like a 
bridge or in an airplane wing) [23,24]. So, the study of these 
systems is an interesting topic of a significant importance. 

So, in this work a hyperchaotic four-dimensional 
modified Lorenz system with hidden attractors is used for 
studying the unidirectional coupling of two non-identical 
systems of this kind, by using Nonlinear Open Loop Controllers 
(NOLCs). The simulation results from system’s numerical 
integration as well as the circuital implementation of the 
proposed system in SPICE, verify the appearance of the 
complete synchronization phenomenon. 

The paper is organized as follows. In Section 2 the four-
dimensional modified Lorenz system, which is used in this 
work, is presented. The unidirectional coupling scheme, by 
using the nonlinear open loop controllers, is discussed in 
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Section 3. Section 4 presents the circuital implementation of 
the aforementioned coupling system as well as the 
simulation results which are obtained by using the SPICE. 
Finally, the conclusive remarks are drawn in the last Section. 
 
 
2. The Four-Dimensional Modified Lorenz System 
 
In this work the simplest four-dimensional hyperchaotic 
Lorenz-type system, which has been proposed by Gao and 
Zhang [23], is used. This system is an extension of a 
modified Lorenz system, which was studied by Schrier and 
Maas as well as by Munmuangsaen and Srisuchinwong 
[24,25]. The proposed system, which is structurally a very 
simple four-dimensional dynamical system having only two 
independent parameters (c, d), is described by the following 
set of differential equations. 
 

   

!x1 = x2 − x1

!x2 = −x1x3 + x4

!x3 = x1x2 − c

!x4 = −dx2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

                         (1) 

 
In this section the system’s dynamic behavior is 

investigated numerically by employing a fourth order 
Runge-Kutta algorithm. For this reason, the bifurcation 
diagram, which is a very useful tool from nonlinear 
dynamics theory, is used. In Fig.1 the bifurcation diagram of 
the variable y versus the parameter d, for c = 2.7, reveals the 
richness of system’s dynamical behavior.  

 
Fig. 1. Bifurcation diagram of y versus d, for c = 2.7. 

 
 
System’s (1) dynamics presents limit cycles,  

quasiperiodicity, chaos, and hyperchaos, which can make 
control difficult in practical applications where a particular 
dynamic behavior is desired. As d is decreased from d = 0.9 
the system goes from a period-1 steady state (PS), through a 
quasi-periodic state (QS), to a chaotic state (CS). However, 
the very interesting feature of the specific system is the 
existence of hyperchaotic state (HS) for a range of d∈ [0.39, 
0.49], where the system has two positive Lyapunov 
exponents, (i.e. for d = 0.4 system’s Lyapunov exponents 
are: LE1 = 0.12806, LE2 = 0.01161, LE3 = 0 and  
LE4 = –1.58236), which is an indication of hyperchaos. 
 

3. The Coupling Scheme 
 
The unidirectional coupling scheme can be described by the 
following system of differential equations:   
 

   

!x = f (x)
!y = f ( y)+U

⎧
⎨
⎩⎪

                         (2) 

 

where ( ( ), (y)) nf x f R∈  are the flows of the master and 
slave system respectively, while U = [U1, U2, U3, U4]T is the 
Nonlinear Open Loop Controllers [26]. The error function is 
defined by e = βy – αx, with e = [e1, e2, e3, e4]T,  
x = [x1, x2, x3, x4]T and y = [y1, y2, y3, y4]T. In this work, 
parameters (c, d) in the slave system have been changed into 
(c', d'), in order the systems to be non-identical. So, the error 
dynamics, in the specific case of system (1), are written as: 
 
 

   

!e1 = e2 − e1 + βU1

!e2 = ax1x3 − β y1y3 + e4 + βU2

!e3 = −ax1x2 + β y1y2 − (c '− c)β + c(a − β )+ βU3

!e4 = −de2 − (d '− d)β y2 + βU4

⎧

⎨

⎪
⎪

⎩

⎪
⎪

        (3) 

 
 
 For stable synchronization e → 0 with t → ∞. By 
substituting the conditions in Eqs. (3) and taking the time 
derivative of Lyapunov function 
 

   

!V (e) = e1!e1 + e2 !e2 + e3 !e3 + e4 !e4 =

      e1 e2 − e1 + βU1( ) + e2 ax1x3 − β y1y3 + e4 + βU2( ) +
  + e3 −ax1x2 + β y1y2 − (c '− c)β + c a − β( ) + βU3

⎡⎣ ⎤⎦ +

  + e4 −de2 − (d '− d)β y2 + βU4⎡⎣ ⎤⎦

      (4) 

 

 
we consider the following NOLCs 
 

  

U1 = − 1
β

e2

U2 = − 1
β

e2 + ax1x3 − β y1y3 + e4( )

U3 = − 1
β

e3 − ax1x2 + β y1y2 − (c '− c)β + c(a − β )⎡⎣ ⎤⎦

U4 = − 1
β

e4 − de2 − (d '− d)β y2⎡⎣ ⎤⎦

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

   (5) 

 
 

such that 
 
 

   
!V (e) = −e1

2 − e2
2 − e3

2 − e4
2 < 0                      (6) 

 
 Equation (6) ensures the asymptotic global stability of 
synchronization. 
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Fig. 2. Schematics of the master, slave, errors and control signals circuits, modelling the proposed coupling scheme. 
 
 

4. The Circuital Realization 
 

In Fig. 2 the schematics of the master and slave circuits, as 
well as the circuits for producing the error and control 
signals of Eqs. (3) & (5) are depicted. The circuit 
components have been selected as: R = 10 kΩ, R1 = Ra = Rb 
= 1 kΩ, Rd = 25 kΩ, Rd΄ = 11.111 kΩ, Rdx = 20 kΩ,               
C = 10 nF, VC1 = 2.7 V, VC2 = 3.2 V and VX = 0.5 V, while 
the power supplies of all active devices are ±15 VDC. Also, 

the operational amplifier TL084 and the analog multiplier 
AD633 have been used in circuits’ realization. For the 
chosen set of components the parameters are: α = 1, β = 1,  
c = 2.7, c' = 3.2, d = 0.4 and d' = 0.9. For the chosen set of 
parameters, the master circuit is in hyperchaotic state, while 
the slave system is in periodic state, which is confirmed by 
using the electronic simulation package Cadense OrCAD 
(Fig. 3). Finally, in Fig. 4 the system’s complete 
synchronization is verified. 
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(a) 

 
(b) 

Fig. 3. (a) The hyperchaotic and (b) the periodic attractor in (x3, x1)-
plane, for the chosen set of parameters, designed with SPICE.  

 
 

Fig. 4. Phase portrait of y1 versus x1. (Synchronization is verified) 
 
 
5. Conclusion 
 
In this work the synchronization of a unidirectional coupling 
scheme of two non-identical, nonlinear circuits, by using 
Nonlinear Open Loop Controllers, was presented. The 
simulation results from SPICE verified the feasibility of the 
proposed scheme even if the coupled circuits are in different 
states due to their different parameter values. So, as a 
conclusion, this work proves that the proposed scheme should 
be used in the design of a secure communication system, by 
using chaotic or hyperchaotic nonlinear circuits in a master-
slave configuration. 
 
This paper was presented at Pan-Hellenic Conference on 
Electronics and Telecommunications - PACET, that took 
place May 8-9 2015, at Ioannina Greece.  
 

______________________________ 
References 

	
1. A.S. Pikovsky, M. Rosenblum and J. Kurths, “Synchronization: 

A universal Concept in Nonlinear Sciences,” Cambridge 
University Press, Cambridge, 2003. 

2. E. Mosekilde, Y. Maistrenko and D. Postnov, “Chaotic 
Synchronization: Applications to Living Systems,” World 
Scientific, Singapore, 2002. 

3. I. Szatmári and  L.O. Chua, “Awakening Dynamics via Passive 
Coupling and Synchronization Mechanism in Oscillatory 
Cellular Neural/Nonlinear Networks,” Int. J. Circ. Theor. Appl., 
Vol. 36, pp. 525-553, 2008. 

4. N.H. Holstein-Rathlou, K.P. Yip, O.V. Sosnovtseva and E. 
Mosekilde, “Synchronization Penomena in Nephron-Nephron 
Interaction,” Chaos, Vol. 11, pp. 417-426, 2001. 

5. X. Liu and T. Chen, “Synchronization of Identical Neural 
Networks and Other Systems with an Adaptive Coupling 
Strength,” Int. J. Circ. Theor. Appl., Vol. 38, pp. 631-648, 2010. 

6. E. Tognoli and J.A.S. Kelso, “Brain Coordination Dynamics: 
True and False Faces of Phase Synchrony and Metastability,” 
Prog. Neurobiol., Vol. 87, pp. 31-40, 2009. 

7. J. Wang, Y.Q. Che, S.S. Zhou and B. Deng, “Unidirectional 
Synchronization of Hodgkin-Huxley Neurons Exposed to ELF 
Electric Field,” Chaos Solitons Fract., Vol. 39, pp. 1335-1345, 
2009. 

8. S. Jafari, M. Haeri and M.S. Tavazoei, “Experimental Study of a 
Chaos-based Communication System in the Presence of 
Unknown Transmission Delay,” Int. J. Circ. Theor. Appl., Vol. 
38, pp. 1013-1025, 2010. 

9. Ch.K. Volos, I.M. Kyprianidis and I.N. Stouboulos, 
“Experimental Demonstration of a Chaotic Cryptographic 
Scheme,” WSEAS Trans. Circ. Syst., Vol. 5, pp. 1654-1661, 
2006. 

10. G. Grassi and S. Mascolo, “Synchronization of High-order 
Oscillators by Observer Design with Application to Hyperchaos-
based Cryptography,” Int. J. Circ. Theor. Appl., Vol. 27, pp. 
543-553, 1999. 

11. A.S. Dimitriev, A.V. Kletsovi, A.M. Laktushkin, A.I. Panas and 
S.O. Starkov, “Ultrawideband Wireless Communications Based 

on Dynamic Chaos,” J. Commun. Technol. Electron., Vol. 51, 
pp. 1126-1140, 2006. 

12. H. Fujisaka and T. Yamada, “Stability Theory of Synchronized 
Motion in Coupled-oscillator Systems,” Prog. Theory Phys., 
Vol. 69, pp. 32-47, 1983. 

13. A.S. Pikovsky, “On the Interaction of Strange Attractors,” Z. 
Phys. B - Condensed Matter, Vol. 55, pp. 149-154, 1984. 

14. L.M. Pecora and T.L. Carroll, “Synchronization in Chaotic 
Systems,” Phys. Rev. Lett., Vol. 64, pp. 821-824, 1990. 

15. N.V. Kuznetsov, G.A. Leonov and V.I. Vagaitsev, “Analytical-
numerical Method for Attractor Localization of Generalized 
Chua's System,” IFAC Proceedings Volumes (IFAC-
PapersOnline), Vol. 4, No. 1, pp. 29-33, 2010. 

16. G. Leonov, N. Kuznetsov and V. Vagaitsev, “Localization of 
Hidden Chua’s Attractors,” Phys. Lett. A, Vol. 375, pp. 2230-
2233, 2011. 

17. G. Leonov, N. Kuznetsov, O. Kuznetsova, S. Seldedzhi and V. 
Vagaitsev, “Hidden Oscillations in Dynamical Systems,” Trans. 
Syst. Contr., Vol. 6, pp. 54-67, 2011. 

18. G. Leonov, N. Kuznetsov and V. Vagaitsev, “Hidden Attractor 
in Smooth Chua System,” Physica D, Vol. 241, pp.1482-1486, 
2012. 

19. V.-T. Pham,  Ch.K. Volos, S. Jafari, X. Wang and S. 
Vaidyanathan “Hidden Hyperchaotic Attractor in a Novel 
Simple Memristive Neural Network,” Journal of Optoelectronics 
and Advanced Materials – Rapid Communications, Vol. 8, 
No.11-12, pp. 1157-1163, 2014. 

20. V.-T. Pham, S. Jafari, Ch.K. Volos, X. Wang and S. Mohammad 
Reza Hashemi Golpayegani “Is That Really Hidden? The 
Presence of Complex Fixed-points in Chaotic Flows With No 
Equilibria,” Int. J. Bifurcat. Chaos, Vol. 24, No. 11, pp. 
1450146, 2014. 

21. S. Jafari and J. Sprott, “Simple Chaotic Flows With a Line 
Equilibrium,” Chaos Solit. Fract., Vol. 57, pp. 79-84, 2013. 

22. T. Lauvdal, R. Murray and T. Fossen, “Stabilization of 
Integrator Chains in the Presence of Magnitude and Rate 
Saturations: A Gain Scheduling Approach,” In: Proc. IEEE 
Control and Decision Conf., pp. 4404-4005, 1997. 



	

 
	

38 

23. Z. Gao and C. Zhang, “A Novel Hyperchaotic System,” J. Jishou 
Univ. (Natural Science Edition), Vol. 32, pp. 65-68, 2011. 

24. G. Van der Schrier and L.R.M. Maas, “The Diffusionless Lorenz 
Equations: Shil’nikov Bifurcations and Reduction to an Explicit 
Map,” Phys. Nonlin. Phenom., Vol. 141, pp. 19-36, 2000. 

25. B. Munmuangsaen and B. Srisuchinwong, “A New Five-Term 
Simple Chaotic Attractor,” Phys. Lett. A, Vol. 373, pp. 4038-
4043, 2009. 

26. E. Padmanaban, C. Hens and K. Dana, “Engineering 
Synchronization of Chaotic Oscillator Using Controller Based 
Coupling Design,” Chaos, Vol. 21 pp. 013110, 2011. 


