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Abstract 
 
Loop shaping is the prime step for synthesising Quantitative Feedback Theory (QFT) based robust controllers. The 
synthesised QFT controller assures performance robustness in presence of parametric plant uncertainties’. In this paper 
for automating the controller synthesis, loop-shaping problem has been posed as multi-objective optimization problem, 
which is solved using particle swarm optimization algorithm. The presented approach, explores a template and bounds 
free method for the automatic synthesis of fixed structure QFT controller for a highly uncertain pneumatic servo 
actuator system. The paper also explores the use of level diagrams for choosing the ideal solution from the Pareto 
optimal set. From the results obtained, the designed controller offers performance robustness over a range of plant’s 
parametric uncertainty. 
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1. Introduction 
 
Real engineering systems are prone to external interferences 
and disturbances, and thus their reliability must be assured. 
As the quality of control directly affects the quality of 
products and processes’ safety, emphasis must be given on 
the design of efficient robust optimal control systems [1]. 
The modeling of disturbances into the plant model while 
designing the control systems must be accomplished, as 
there are always distinctions between the mathematical 
model used in design process and the real system [2]. 
 Bode [3] led the foundation of incorporating 
uncertainties’ in control system design for feedback 
amplifier design, followed by Issac Horowitz. Horowitz 
along with Sidi [4] introduced a frequency domain controller 
design technique of Quantitative Feedback Theory (QFT) in 
1960’s. QFT emphasizes only on the use of feedback for 
minimizing the effect of uncertainties’ on the system, by 
shaping the feedback such that pre-defined robustness and 
objectives (QFT Bounds) are satisfied [4]. Loop shaping of 
the open loop transmission L0(s) is the prime step 
synthesising the QFT controller. Loop shaping is performed 
on Nichols charts such that, L0(jω) satisfied all the bounds at 
each design frequency. Loop shaping on Nichols charts 
requires a lot of design experience and sometimes can be 
challenging even for expert control designer and still there is 
no guarantee that an optimal controller has been found [5]. 
Automation of the loop-shaping step in QFT is still an open 
problem. 
 QFT has been implemented successfully in several 
diverse fields [6 – 13], but most of the work focuses on the 
manual loop shaping. It becomes challenging to design 

stable controllers for uncertain and non-minimum phase 
systems with complicated characteristics and even the most 
scrupulous design doesn’t assure achieving the perfect 
optimal controller. Initial efforts have been carried out by 
Gera and Horowitz [14] followed by Balance et. al [15], but 
very high order were obtained. Fixed structure QFT 
controllers have been automatically designed [16 – 18] but 
these methods are based on rational approximation of the 
controller and a low order controller gives a poor response. 
Another approach, which automates the synthesis of QFT 
controller, is based on searching of controller from a dense 
set of controllers [19]. PSV Nataraj et. al [20] translated the 
QFT design requirements in terms of quadratic inequalities 
and used interval constraint satisfaction technique for 
automating the QFT design procedure [21 – 25]. The 
controllers designed with ICST based approach suffer form 
overdosing over the frequency range [26]. 
 Conventional gradient-based optimization algorithms 
cannot solve the automatic loop shaping, as it is a non-linear, 
non-convex multi-objective problem. Nature inspired 
algorithms are being widely used in control system design in 
which the conventional control theory fails. In QFT 
controller design initial attempts have been made by Gracia-
Sanz et al. [27] to automated the loop shaping process using 
genetic algorithms. Many nature inspired algorithms have 
been successfully used for automating the QFT loop shaping 
step [28 - 34], but some of these techniques still require the 
generation of template and bounds on Nichols charts and 
most of the work focuses on the minimization of the 
objective function expressed as weighted sum of all the 
objectives, which requires a careful weight tuning. 
 This paper implements the designed optimal QFT 
controller for a highly uncertain pneumatic servo actuator 
system. In compliance with safety requirements, the air 
pressure supply is kept low in pneumatic actuators. This 
makes it difficult to ensure high performance position 
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control, as low pressure makes it impractical to attain the 
possible actuator stiffness. Thus the system to get along 
varying loads and this affects the design of high bandwidth 
systems. The uncertain dynamics, non-linear valves and 
varying loads in pneumatic servo actuator system directly 
affect the process’s safety and the quality of goods. It makes 
it crucial for the control system to exert a quality control. 
Thus controller must be designed such that it offers a robust 
response over a range of plant’s parametric uncertainties.  
 In this paper, the QFT controller synthesis has been 
posed as multi-objective optimization problem and multi-
objective PSO has been used to solve it. The Pareto optimal 
set (POS) of solutions aids the designer in choosing the 
desired trade-off among conflicting objectives. The paper 
uses the method [35], which offers a templates and bounds 
free approach for automating the QFT controller synthesis. 
At the end of the optimization process, the paper also 
explores the use of level diagrams for choosing the ideal 
solution form the POS by aiding the decision maker by 
intuitively visualizing the m-dimensional Pareto in simple 
and accurate manner to choose ideal trade-off among QFT 
design objectives. The procedure eases the controller 
designer to design optimal controllers with in no time, which 
else require high loop-shaping expertise. The designed 
controller has been implemented for a highly uncertain 
pneumatic servo actuator system. 
 The paper has been categorised in following sections: 
Section 2 deals with the background on QFT and MOPSO. 
Mathematical model of the pneumatic servo actuator system 
is discussed in Section 3. In Section 4, QFT design 
performance requirements have been discussed. Section 5 
deals with the use of MOPSO for the optimal design of QFT 
controllers. Results and discussions are in Section 6. In 
Section 7, level diagrams have been used for the selection of 
ideal solution from POS. Validation of the designed 
controller for uncertain system have been done in Section 8 
followed by conclusions. 
 
 
2. Background 
 
This section deals with brief outline on the essentials of 
Quantitative Feedback Theory and multi-objective particle 
swarm optimization. 
 
2.1 Quantitative Feedback Theory 
It is essential for the controller to assure quality control over 
time, but plant ignorance, parameter variation, non-linearity 
etc. make it obscure. So, to handle such uncertainties’ and 
exert quality control, ample research has been carried out 
and has led to the foundation of several strong robust control 
theories of H∞, H2, LQR, µ-synthesis etc. But real systems 
exhibit different behavior than the model used in the 
designing procedure [38] and most of the established 
theories ignore this fact. So, the modeling of uncertainties’ 
while designing the controller becomes crucial. 
 In 1960’s following the work of Bode, Issac Horowitz 
introduced a frequency domain controller design technique 
of Quantitative Feedback Theory (QFT). In QFT, the 
uncertainty in the plant is depicted using Templates and the 
performance requirements are translated in the form of 
Bounds. Bounds act as guide for shaping the open-loop 
transmission on the Nichols chart at each frequency of 
interest. QFT has a 2 degree-of-freedom controller structure 
as in Figure 1. Controller K(s) is in the feedback loop and 
pre-filter F(s) is placed prior the loop in feed-forward 

configuration. Controller reduces the closed loop 
uncertainties and the pre-filter shapes input so that a desired 
output is obtained. The QFT design procedure is shown in 
Figure 2. The generalized QFT design procedure is as under: 
 
a. Generate Templates: Based upon the plant’s 

characteristics, a discrete set of frequency points ωi are 
chosen for the uncertain plant G(jωi). Templates are 
plotted on the complex plane for the value sets of the 
plant, G(jωi) at all design frequencies, ωi. 

b. Computation of QFT Bounds: QFT bounds are 
generated using the system design specifications and 
templates. Initially a nominal G0(jω) plant is chosen, 
which must lie on or above the bounds at each design 
frequency. Then stability and performance bounds are 
generated using templates and other frequency domain 
design requirements. At the end, all the bounds are 
combined together to design the controller at the loop 
shaping stage. 

c. Loop Shaping of QFT Controller: Phase-Gain loop 
shaping technique is used to design the controller 
K(jω) such that all the bounds are satisfied and the 
closed loop response of the system is stable. 

d.  Pre-filter Design: At the final stage, a pre-filter F(jω) is 
designed such that the various time and frequency 
domain characteristics are satisfied. 

 
2.2 Multi-objective Particle Swarm Optimization 
Particle swarm optimization (PSO) algorithm mimics the 
group behavior of bird flocking has been introduced by 
Kennedy and Eberhart [39] in 1995; and Carlos A. Coello 
[40] in 2002 extended conventional PSO to handle multi-
objective problems. Multi-objective PSO (MOPSO) uses 
Pareto dominance for determining the flight direction and a 
global repository of non-dominant elite solutions is 
maintained and acts as guide for other particles throughout 
the search process. After each flight, each particle in the 
swarm updates its flight experience in the global repository. 
 Initially, flock is initialized and leader is chosen and 
stored in global repository from the non-dominating 
particles in the flock. Fitness of all the leaders is evaluated 
and at each generation for performing a flight, a leader is 
chosen for each particle. After a successful flight, turbulence 
operator is applied and fitness the particle is valuated and 
associated xPBesti is updated and a particle replaces its xPBesti 
when a dominant solution is obtained. When all the particles 
are updated, the set of leaders is also revised followed by 
fitness evaluation and the process is reiterated till the 
stopping criteria is met [41]. 
 In PSO, Eq. 1 gives the particle xi at generation t: 
 
𝑥! 𝑡 = 𝑥! 𝑡 − 1 + 𝑣! 𝑡       (1) 
 
where, vi(t) is the velocity: 
 
𝑣! 𝑡 = 𝑤×𝑣! 𝑡 − 1 + 𝐶!×𝑟!× 𝑥!"#$%! − 𝑥! + 𝐶!×𝑟!×
𝑥!"#$%! − 𝑥!        (2) 

 
 where, xPBesti is the best solution, xGBesti is the global best 
solution (Leader) , w is the inertia weight, r1 & r2 are 
uniformly distributed random numbers between [0, 1], C1 & 
C2 effects the Present and Global bests particles. 
 The basic formulation of multi-objective problem (for 
minimization case) is given as, 
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𝑚𝑖𝑛! 𝐽 𝜃 = 𝐽! 𝜃 ⋯ 𝐽! 𝜃  
 
 subject to: 
 

𝑔 𝜃 ≤ 0 𝑔 𝜃 = 0 𝜃! ≤ 𝜃! ≤ 𝜃! 𝑖 = 1 … 𝑛  
 

 

 
 

 
Fig. 1. Block diagram 2 DoF control configuration in QFT 

 

 
Fig. 2. Flow chart of QFT design procedure. 
 
 
 The pseudo code of MOPSO is given as [41]: 
 
Algorithm 1 Pseudo Code for MOPSO 
Begin 
 Initialize Swarm 
 Initialize Leaders from the Global Repository 
 Choose Quality Leaders 
 Set Generation G=0 
 While G < GMax 
  For each Particle 
   Select Leader 
   During Flight update Position [Equation 7 

& 8] 
   Turbulence  
   Evaluation 
   Update PBest 
  End 
  Update Leader in Global Repository 
  Determine Quality Leaders 
  Update Generation G = G + 1 
 End 
Return Repository 
 
 

3. Mathematical Model of Pneumatic Servo Actuator 
 
Pneumatic servo actuators are being used widely in the 
process control and manufacturing industries, as they 
provide cheaper and reliable solutions to generate force, 
motion and torque. When a control signal is applied, the 
pneumatic servo actuator produces the output in the form of 
displacement (linear/rotational) of load. The electro-
magnetic force rotates the jet pipe. The motion in the jet pipe 
is generated by the compressed air, and the movement of 
load and piston is generated because of the pressure 
differences in the cylinder cavities. This movement depends 
on the pressure and flow of the compressed air and the load. 
A potentiometer is used to measure the displacement of the 
piston and is feedback to the servo control unit, which also 
houses power amplifier. Schematic representation of a 
polarized jet relay is shown in Figure 3 [35]. 

 
Fig. 3. Schematic representation of pneumatic servo actuator system. 
 
 
 Laws of thermodynamics, motion and fluid dynamics are 
required to be combined for obtaining the mathematical 
model of the pneumatic servo actuator. Three major 
considerations are required: 
 

1. Mass flow rates through valve,  
2. Temperature, pressure and volume of the air in the 

cylinders &  
3. Load dynamics as mentioned in [36] are required 

to be met. 
 
 From Figure 3, the 4-port pneumatic jet pipe valve can 
be deduced to 2 three-port valves, each on the ends of the 
cylinder. Here, isothermal behavior of the air is assumed and 
based upon the ideal gas equations; the equations for mass 
flow rates can be obtained as [37]: 

 

Pre-Filter Design F(s)

Implementation

Plant Model with parameter 
uncertainty

Specifications
(Stability. Tracking, etc.)

Bounds Calculation

Loop Shaping K(s)

Pre-Filter 
F(s) Controller 

K(s) Plant 
P(s) _ + 

e(t) r(t) u(t) y(t) 
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where, 
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& !M

b
 are the mass flow, ρ is the air density, and  

Va & Vb is the volume of symmetric chambers a & b 
respectively and is given by: 
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Vb =Vb − APyP        (6) 
 
where, Vo is the air volume of the cylinder at midpoint, AP is 
the area of piston, and y is the displacement produced. 
 Using the values of Va & Vb in differentiated Equations 3 
& 4 gives, 
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where, R is the gas constant, α is the specific heat ratio, Ta & 
Tb is the temperature in the symmetric chambers a & b 
respectively and Pa & Pb is the pressure in the symmetric 
chambers a & b respectively. 
 The overall performance of the piston is governed by 
load dynamics, so Equation 7 & 8 becomes: 
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 The equations for control valve can be obtained as: 
 

   
!M

a
= K

V

P
s

2
u  and 

		 
!Mb = −KV

Ps
2 u                  (12) 

 
where, M is the mass of the load, FL is the disturbing force, 
Ff is the force of friction, KV is coefficient of the valve, Ps is 
the applied pressure, and u is the input electrical signal. 
 Using the equation 12 in Equations 9 & 10; and taking 
the Laplace transformations of Equation 9, 10 and 11; and 
linearizing the actuator and valve characteristics at the 
operating point, a 4th order open loop transfer function has 
been obtained as [35]:  
 

𝐺 𝑠 =
!!!"#!!!!!

! !!∙!!! !!! !
!!

!"#!!
!!!

∙!!
!! !!

!
!!

!!!
!!"#!!!!!!!!

       (13) 

 
here, τv is the valve time constant, f is the coefficient of 
viscous friction, La is chosen to be small as compared to 
other system parameters and in case of chocked flow La = 0; 
and bounding the chocked flow and unchecked flow rate by 
chocked flow rate leads to the maximum mass flow rate.  
 
3.1 Uncertain model of pneumatic servo actuator 
In industrial applications, air pressure is kept low from the 
safety point of view; which results in narrow bandwidth of 
the system. Hence it becomes tough to design high 
performance position control actuators. Also because of the 
limited pressure supplies the actuator stiffness is very 
limited and in case of varying loads it becomes very difficult 
to assure quality control. Non-linear behavior of flow valves 
and parametric uncertainties’ leads to time varying dynamics 
which makes it difficult for the controller to assure quality 
control over time and this results in time varying outputs. 
Table 1 shows the nominal values of the parameters and the 
range of uncertainty. Figure 4 shows the open loop step 
response and Bode plot of the uncertain system. 

 
Table 1 Nominal parameters and the range of parametric uncertainty. 

Parameters Nominal Value Range Degree of 
Uncertainty 

Piston Area Ap (m2) 0.005 - - 
Gas Constant R (J/kg.K) 287 - - 
Air Volume 
(Piston at midpoint) Vo (m3) x 104 2.5 [1.5, 4] [-40, 60 %] 

Chamber Pressure Pi (bar) 3 [3, 4] [0, 33.3 %] 
Mass of the Load M (kg) 1 [0.1, 5] [-90, 500 %] 
Coefficient of Viscous 
Damping f (N.s/m) 60 [50, 80] [-16.67, 33.33 %] 

Valve Gain K (kg/s.V) x 103 3.4 [3.2, 3.4] [-5.88, 0 %] 
Air Temperature T (K) 293.15 - - 
Specific Heat Ratio α 1.4 - - 
Potentiometer Constant Kp (V/m) 400 - - 
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Fig. 4. Time and frequency domain response characteristics of the open-loop pneumatic servo actuator system with parametric uncertainties. 
 
 
4. QFT Controller Design Requirements 
 
The QFT performance objectives of robust stability, tracking 
performance and sensitivity, which have been used in the 
design process, are discussed in this section. 
 
4.1 Robust Stability 
Minimization of the peak magnitude of the closed loop 
frequency response of the systems ensures robust stability, 
and is given as: 
 

! !"
!!! !"

≤ 𝛿!                                                                    
(14) 

 
 where, L(jω) = K(jω)G0(jω) is the nominal open loop 
transfer function and δ1 is the constant and is obtained from 
the desired gain and phase margins. 
 Robust stability must be satisfied at each design 
frequency. For designing the controller K(jω), frequency 
range is selected as ω = [0.4, 0.8, 1.2, 1.7, 2.1, 10, 25, 50, 
100, 200] rad/sec. The maximum variation of magnitudes 
δP(jωi) at each design frequency ωi for the uncertain plant 
G(jω) is given by Equation 15 and difference between the 
tracking bounds is given by δR(jωi) and is expressed by 
Equation 16. 
 
𝛿! 𝑗𝜔! = 𝐺 𝑗𝜔! − 𝐺! 𝑗𝜔!                                            (15) 
 
𝛿! 𝑗𝜔! = 𝑇! 𝑗𝜔! − 𝑇! 𝑗𝜔!                                      (16) 
 
 Equation 17 gives the maximum closed loop magnitude 
variation because of the parametric uncertainty: 
 
𝛿! 𝑗𝜔! = ! !!! ∙! !!!

!!! !!! ∙! !!!
− !! !!! ∙! !!!

!!!! !!! ∙! !!!
                  (17) 

 
 For achieving robust stability, δL(jωi) must be minimized 
and its constraint is given by Equation 18. 
 
𝛿! 𝑗𝜔! ≤ 𝛿! 𝑗𝜔!                                                             (18) 
 

4.2 Tracking Performance 
The desired time domain characteristics of rise time, settling 
time, overshoot %age is declared on the onset of the design 
process. These tracking ratios act as guidelines for shaping 
the time and frequency domain characteristics of the closed 
loop system. The optimal response must lie within these 
bounds. The upper and lower bounds TU(jω) & TL(jω) are 
given by equation 19 & 20 and their time & frequency 
domain response is shown in Figure 5. Based upon the 
system design requirements, TL(jω) has over-damped 
characteristics with a rise time of 0.5714 sec, settling time of 
1.065 sec and maximum overshoot of 0 %. Whereas TU(jω) 
has a rise time of 0.0852 sec, settling time of 0.8854 sec and 
maximum overshoot of 36.41 %. 
 
𝑇! 𝑗𝜔 = !"""""

!!!!"#∙!!!!"!#∙!!!!"#$$$∙!!!"""""
                       (19) 

 
𝑇! 𝑗𝜔 = !"##∙!!!"##

!!!!!"∙!!!!"#$∙!!!"##
                                          (20) 

 
 Equation 21 gives QFT tracking performance bound. 
 
𝑇! 𝑗𝜔 ≤ ! !"

!!! !"
≤ 𝑇! 𝑗𝜔                                       (21) 

 
 Minimization of δF(jωi) has been carried out to satisfy 
the tracking bounds. δF(jωi) is given as: 
 
𝛿! 𝑗𝜔! = !! !!! !!! !!!

!
− ! !!! ∙! !!!

!!! !!! ∙! !!!
                     (22) 

 
4.3 Sensitivity 
To insure the robustness of the designed system to external 
disturbances, minimization of the sensitivity function over a 
range of ω ≤ 10rad/sec has been considered. Equation 23 
gives the design bound on sensitivity such that its maximum 
value at each design frequency is less than unity. 
 
𝑆 𝑗𝜔! ∙𝑊! 𝑗𝜔! < 1 (23) 
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𝑆 𝑗𝜔! =
1

1 + 𝐺 𝑗𝜔! 𝐾 𝑗𝜔!
 

 
 Equation 24 is the performance weighting function 
Wp(jω) and has been chosen as: 
 

𝑊! 𝑗𝜔 =

𝑠
𝑀!

+ 𝑤!

𝑠 + 𝑤! 𝜀
 (24) 

 
 where, Ms is the maximum peak magnitude of the S(jω)  
and is taken as 4, wb is minimum allowable bandwidth and is 

taken as 10 rad/sec and e is taken as 0.01. Using these 
values, Wp(jω)  is given as: 

 

𝑊! 𝑗𝜔 =
𝑠 + 20
2 ∙ 𝑠 + 2 

  
 For the closed loop uncertain system to satisfy the 
desired disturbance rejection criterion, the minimization of 
sensitivity performance index given in Equation 25 has been 
considered. 
 
𝐽! = 𝑆 𝑗𝜔! ∙𝑊! 𝑗𝜔  (25) 
 

 
Fig. 5. Upper and lower tracking bounds in time and frequency domain. 
 
5 Optimisation based Design of QFT Controllers using 

MOPSO 
 
The automatic loop shaping of the QFT controller has been 
posed as a multi-objective optimization problem, such that 
the desired criterias of robust stability, tracking performance 
and senstivity are satisifed. Multi-objective particle swarrm 
optimization has been used for obtaining the optimal values 
of the controller gains [Kg, z1, z2, p1, p2] by minimizing the 
proposed objective function J  given by Equation 26. 
 

Find 𝐾 =

𝐾!
𝑧!
𝑧!
𝑝!
𝑝!

, which minimizes, 𝐽 =
𝛿! 𝑗𝜔!
𝛿! 𝑗𝜔!
𝐽!

 (26) 

 
 A fixed structure controller given by Equation 27 has 
been considered for the design process. Minimization of J, 
lessens the variation in response of the closed loop system in 
presence of parametric uncertainties, ensures proper tracking 
performance and disturbance rejection at each frequency of 
interest. 
 
𝐾 𝑠 = 𝐾!

!!∙!!! !!∙!!!
!!∙!!! !!∙!!!

                                                         (27) 
 
6 Results and Discussions 
 
The proposed objective function J has been minimized using 
multi-objective particle swarm optimization for finding the 

optimal controller coefficients given by Equation 27. In the 
QFT design procedure the nominal plant has been chosen 
from the parameters given in Table 1 and is given by 
Equation 28. Equation 29 gives the compensated nominal 
open loop transfer function L0(s). 
 
𝐺! 𝑠 = !"#$

!!!!"!!!!"×!"!!!
                                                  (28) 

 
𝐿! 𝑠 = 𝐾!

!!∙!!! !!∙!!!
!!∙!!! !!∙!!!

∙ !"#$
!!!!"!!!!"×!"!!!

                    (29) 

 
Fig. 6. Pareto front obtained between various controller design 
objectives 
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process are given in Table 2. The automatic loop shaping of 
QFT controller using MOPSO has been performed in Matlab 
with above-mentioned parameters. At the end of the 
optimization process, a set of Pareto optimal solutions (POS) 
has been obtained. Each solution in the Pareto optimal set is 
an optimal solution, such that no further improvement can be 
achieved on one optimization objective without the 

sacrificing of the remaining objectives. Figure 6 gives the 
visualization of the Pareto front obtained. The obtained 
solutions have been show in in Figure 7. The step response 
and Bode plot of the closed loop system with the controller 
parameters obtained in POS is shown in Figure 8 & 9. 
 

 

 
Fig. 7.  Pareto optimal set of controller parameter obtained. 

 
Fig. 8. Step response of the closed loop system with all the controller 
parameters. 

 
Fig. 9. Magnitude plot for the frequency response of the closed loop 
system with all the controller parameters. 
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Table 2. Multi-objective Particle Swarm Optimization 
Algorithm Parameters Considered in Design Process. 
MOPSO Parameters Value 
Swarm Size 100 
Repository Size 100 
Inertia Weight 0.729 
Inertia Weight Damping Ratio 1 
Personal Learning Coefficient 1.4962 
Global Learning Coefficient 1.4962 
Leader Selection Pressure Parameter (β) 2 
Extra Repository Member Selection Pressure 
(γ) 2 

Maximum Iterations 100 
 
 
7 Selection of Ideal Solution from POS using Level 

Diagrams 
 
As all the controller coefficients are Pareto optimal, the 
decision maker has to choose a trade-off amongst the design 
objectives to choose the best set of controller parameters. 
The difficulty arises in graphically analyzing the Pareto front 
for m-dimensional problems. Generally, scatter matrices and 
parallel coordinate representations are used, but they provide 
very compact representation of the data and the results 
looses clarity. The paper, explores the use of level diagrams 
for visualizing the Pareto front and Pareto set for choosing 
the ideal controller parameters [42]. 
 Level diagrams categorizes the Pareto front J*

p 
intuitively. Each design objective is Jq(θ) is normalized and 
is given by Equation 30. 
 

𝐽! 𝜃 =
!! ! !!!!"#

!!!"#!!!!"# 𝑞𝜖 1 … 𝑚                                   (30) 

 
where, 
 

𝐽!"# = 𝑚𝑖𝑛
!! ! ∈!!∗

𝐽! 𝜃 ⋯ 𝑚𝑖𝑛
!! ! ∈!!∗

𝐽! 𝜃   

𝐽!"# = 𝑚𝑎𝑥
!! ! ∈!!∗

𝐽! 𝜃 ⋯ 𝑚𝑎𝑥
!! ! ∈!!∗

𝐽! 𝜃   

 
 P-norm 𝐽 𝜃

!
 of each normalized objective 𝐽 𝜃  is 

evaluated for calculating the distance to the ideal solution 
Jideal = Jmin. Most commonly norms are 1-norm, 2-norm and 
∞-norm; and are given as: 
 

𝐽 𝜃
!
= 𝐽! 𝜃

!

!!!

 

 

𝐽 𝜃
!
= 𝐽! 𝜃

!
!

!!!

 

 
𝐽 𝜃

!
= 𝑚𝑎𝑥 𝐽! 𝜃  

 
 Level diagram offers a 2-dimensional representation of 
every design objective 𝐽! 𝜃 𝐽 𝜃

!  
and the decision 

variable 𝜃! 𝐽 𝜃
!  in ordered pairs. So, a given solution 

will have same value along the y-axis for all the graphs. This 
makes it easier for the characterization of the inclination of 

the Pareto front and the comparison of solutions with respect 
to the selected norm. 
 In this work, ∙ ! (2-norm) has been considered for the 
estimation of the best controller parameters. Level diagrams 
for the QFT design objectives is shown in Figure 10 and for 
QFT controller parameters in Figure 11. The selecting the 
best set of controller parameters, the point with minimum 
value on the level diagrams (marked as Green Square) has 
been chosen. The controller parameters corrosponding to the 
chosen point on the level diagram are shown in Table 3. 

 
Fig. 10. Level diagrams for the QFT design objectives. 
 

 
Fig. 11. Level diagrams for the QFT controller parameters. 
 
 
Table 3. Best controller coefficients and their respective 
QFT objective values. 
Control
ler 
Coeffici
ents 

𝛿! 𝑗𝜔!
  

𝛿! 𝑗𝜔!
  Js Kg 

Z
1 

Z2 P1 P2 

Values 
52.38 0.002

07 
1.1
07 

0.78
019 

1.
3 

2.88
15 

0.0
08 

0.92
527 

 
 
 The closed loop response of the selected controller for 
the pneumatic servo actuator system (nominal case) has been 
shown in Figure 12 along with the magnitude plot for the 
frequency response of the system in Figure 13. 

52.38 52.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 J1 (θ) :
 Robust Stability

∥Ĵ
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Fig. 12. Step response of the closed loop system for nominal plant case. 
 
 

 
Fig. 13. Magnitude plot for the frequency response of the closed loop 
system for nominal plant case. 

 
 
 The nominal open loop transfer function L0(s) has been 
visualized on the Nichols chart in Figure 14 and the plot for 
the disturbance rejection at the input of the plant is shown in 
Figure 15. In Table 4 various time and frequency domain 
performance characteristics for the nominal and worst-case 
response are given. 
 
Table 4. Time domain performance of the closed loop 
system for the nominal and worst-case plant. 

Time Domain Performance 
Index 

Nominal 
System 

Worst Case 
Response 

Rise Time 0.1963 secs. 0.1345 secs. 
Settling Time 0.3613 secs. 0.4613 secs. 
Overshoot Percentage  0.287 % 12.92 % 
Gain Margin 17.542 9.7703 
Phase Margin 170.259 95.315 
 
8 Design Validation 
 
The validation of the designed optimal QFT controller is 
must, such that it satisfies the desired performance criteria 
over a range of plant parametric uncertainty. In this paper, 
we consider two cases, one for the complete parametric 
uncertainty as given in Table 1 and other case only for the 
varying actuator loads. 
 

 
Fig. 14. Nichols chart for the nominal open loop system. 
 

 
Fig. 15. Plot for input disturbance rejection for nominal plant case. 
 

 
8.1 For parametric uncertainties 
The designed QFT controller has been implemented for the 
pneumatic servo actuator system with parametric 
uncertainties as in Table 1. Figure 16 shows the worst-case 
step response of the closed loop system with uncertainties; 
and the magnitude plot for the frequency response of the 
system is shown in Figure 17. From both these figures, it can 
be seen that the designed controller produces a satisfactory 
response and in the limits of design requirements.  

 
Fig. 16 Worst-case step response of the closed loop system for servo 
pneumatic servo actuator system. 
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Fig. 17. Magnitude plot for the worst-case frequency response of the 
closed loop system for servo pneumatic servo actuator system. 
 
 The plot for input disturbance rejection in case of 
parametric uncertainties is shown in Figure 18 followed by 
the Nichols chart for the open loop transmission for plant’s 
worst case in Figure 19. 
 

 
Fig. 18. Input disturbance rejection for the worst-case of the closed loop 
system for servo pneumatic servo actuator system. 
 

 
Fig. 19. Nichols chart for the worst-case open loop transmission for 
servo pneumatic servo actuator system. 
 
 

8.2 For varying loads 
As the actuator stiffness is very limited because of the 
limited air pressure supply. So, in case of varying loads, the 
actuator may not present a desired response. To check the 
system’s performance in case of varying load, a variation of 
-90 % to 500 % (against nominal value) has been 
considered. Figure 20 & 21 shows the step and frequency 
response of the closed loop system and it can be seen from 
the figures even in presence of such high uncertainty in the 
system, the compensated system produces a stable response. 

 
Fig. 20. Step response of the closed loop pneumatic servo actuator 
system with varying load with best set of controller coefficients. 

 
Fig. 21. Frequency response of the closed loop pneumatic servo actuator 
system with varying load with best set of controller coefficients. 
 
9 Conclusions 
 
This paper presents the automation of the loop-shaping step 
of the synthesizing QFT controller for a highly uncertain 
pneumatic servo actuator system. Predominantly the loop 
shaping is performed manually on Nichols chart and requires 
considerable loop shaping experience, and still there is no 
guarantee that an optimal controller has been designed. In 
this paper, the automatic synthesis of the QFT controller has 
been posed as a multi-objective problem and multi-objective 
variant of particle swarm optimization has been used for 
minimizing proposed cost function. This automates the loop-
shaping procedure and gives flexibility to the designer to 
pre-specify the controller structure and order. The use of 
MOPSO facilitate the designer with Pareto optimal set of 
solutions, which provide even more flexibility to the 
designer to choose controller coefficients based upon the 
desired tradeoff among several objectives. At the decision 
making step for choosing the best parameters from the 
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Pareto optimal set, level diagrams has been used for 
intuitively finding out the ideal solution. From the results 
obtained in this paper, it can be clearly seen that the 
designed QFT controller for pneumatic servo actuator offers 

a robust response in presence of parametric uncertainties and 
varying load. Thus ensuring quality of control, quality of the 
product and well as the systems’ safety and integrity. 

______________________________ 
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