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Abstract 
 

In this work are examined the characteristics of the error from nonlinearity of the static characteristic of the measuring 
instruments. The possibilities to correct this error are analyzed. Mathematical models are presented, in order to allow 
evaluation of the error from nonlinearity regarding the permissible error of the measurement result, as well as to draw the 
necessary algorithms for correction of this error. The models are developed, based on the method of the smallest 
modules. 
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1. Introduction 
 
The static characteristic of the measuring instruments is 
determined by the relationship between the informative 
parameters of signals at the input and output of the devices, 
operating in static mode of measurement [1]. Usually, the 
measurement instruments have a linear static characteristic. 
The linear mathematical model of static characteristic of the 
measuring instruments is defined by two parameters and is 
suitable for practical use because of several advantages, the 
most important of which are: 
 
 1. The coefficients a and k have a clear physical 
significance and can easily associate in a theoretical aspect 
with the structural parameters of the measuring instruments. 
Whereupon, the a coefficient, characterizing the shift of the 
static characteristic from zero, and k is the coefficient of 
sensitivity of the measuring device. 
 2. In a linear static characteristic procedure, an 
"exclusion" of the systematic error is significantly simplified 
if the estimates and coefficients a~  and k~ . In this case, the 
structure of the possible outcome of the measurement can be 
written as 
 

o
xk~a~)x(y ε+⋅+= ,                                                          (1) 

 

where 
o
ε  is the possible value of the centered random error 

o
Ε . 
 After solving the equation (1), for x is obtained: 

 

)x(ŷx~]a~)x(y[
k~
1]a~)x(y[

k~
1x

o
==−⋅≈−−⋅= ε ,              (2) 

 
where )x(ŷx~ =   is the assessment of the measured value x, 
determined by the corrected measurement result )x(ŷ . 
 3. Using linear static characteristic, an opportunity is 
provided for easy conversion of the characteristics of the 
systematic error in the specific requirements towards the 
design parameters of the measuring equipment. 
 4. The linear model of static characteristic has a very 
important property superposition. This property can be 
described mathematically as follows. Let a=0, and the 
measured value is equal to x=x1+x2. Yielding: 
 

)x(y)x(yxkxk)xx(kxk)x(y 212121 +=⋅+⋅=+⋅=⋅= .            (3) 
 

 From (3), and the property of superposition, it follows 
that the result of the measuring of the sum of the values  x1 
and x2, with an accuracy to the shift the zero a, is equal to the 
sum of the measurement results of each of the two values 
individually. Superposition provides an opportunity for a 
summation of errors, caused by various confounding factors, 
it simplifies the procedures for conducting such important 
for the metrology events, like the verification of the 
measuring instruments and others. 
 Due to the above mentioned advantages, the majority of 
the measuring instruments have a linear nominal static 
characteristic. 
 On the other hand, due to a number of instrumental and 
systematic errors, existing in the structures of the measuring 
instruments, and as a result of some confounding external 
and internal factors, the actual static characteristic differs 
from the nominal [1]. Usually, the actual static characteristic 
has a non-linear form. Then, the difference between the 
actual and nominal static characteristics determines the error 
from nonlinearity of the measuring instrument. 
 For the most part, modern measuring devices have the 
necessary hardware part for the introduction of algorithms 
for optimal construction of the linear static, in regards to the 
actual, so that the error from nonlinearity has minimum 
values [2, 3]. This is an important and promising task in the 
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metrology science, whose effective resolution leads to an 
increases of the accuracy of measurement. 
 
 
2. Analysis of the structural scheme of measuring 
instruments in regards to the opportunities for 
correction of the error from nonlinearity  
 

A distinctive feature of the modern stage of development of 
the measurement technology is the expansion of the 
capabilities of the measuring instruments in relation to the 
response time and the volume of processed information, 
which is based primarily on the rapid development of the 
microprocessor and computer equipment [4, 5]. In light of 
the foregoing, the majority of current measuring devices are 
built on the basis of the structural diagram, shown in fig.1. 

 

 
Fig.1. Structural diagram of a measuring instrument 

 
 

 The structural scheme consists of a sensor, subjected to 
the direct impact of the measured value, primary converter, 
analog module, commonly used for the amplification and 
filtering of the signal, analog-to-digital converter (ADC), 
module for digital data processing (DDPM) and detection 
device. 
 The module for digital processing enables the 
implementation of a number of algorithms, related to 
improving the quality of the measurement information [6, 7, 
8, 9]. These algorithms can be based on mathematical 
models, allowing both the expansion of the types of the 
measurement information, and the increase of the accuracy 
of measurement [10]. It is through this module that 
algorithms for correction of the error from nonlinearity can 
be implemented. 
 Therefore, in modern measuring devices, the error from 
nonlinearity of the static characteristic is usually removed in 
the digital part of the device, where the corresponding 
algorithm for calculation of the measurement result is 
carried out [11]. Therefore, as a basic condition, related to 
the metrological characteristics of measuring instruments, is 
considered less the linearity requirements of the static 
characteristic in the hardware part of the device, as its 
stability, ie, the immutability of this feature in the changing 
conditions of actual use [12, 13]. 

 
 

3. Mathematical model for the identification and 
correction of the errors from nonlinearity 
 
For the realization of the necessary algorithms for the 
identification and correction of the errors from nonlinearity 
of the static characteristics, corresponding mathematical 
models that adequately reflect the characteristics of this error 
should be drawn up. The error from nonlinearity has 
different values in the range of measurement, which are 
defined by the coordinate of the measured value, using the 
function of the error )x(ϕε = . From a methodological point 
of view, the problems, associated with the nonlinearity of the 
static characteristic, pose to solve two basic metrology tasks 
[14]:  
 

• task to determine the errors from nonlinearity;  
• task to correct the errors from nonlinearity.  

 
 The task of the determination of the errors from 
nonlinearity is solved by finding the function )x(ϕε =  that 
is based on the absolute differences between the graphically 
expressed functions of the actual characteristic, y = fr(x) and 
the approximating straight line xBAyn ⋅+= . The actual 
static characteristic y = fr(x) usually occurs experimentally, 
and the nominal (the specified, the desired) characteristic 

 
xBA)x(fy n ⋅+== .                                                        (4) 

 
is the straight line, drawn in a certain way, connected with 
the accepted criteria to ensure the accuracy of the measuring 
instrument.  
 The parameters A and B define the position of the 
straight line in the Cartesian coordinate system and, in 
practice, are identified by the coefficient a, characterizing 
the shift of the static characteristic from zero and the 
coefficient of sensitivity of the measuring device k. 
Depending on how the construction of the straight line 

xBAyn ⋅+= , the error from nonlinearity can be estimated 
by the method of the maximal reduced error and by the 
method of the average quadratic reduced error. In the first 
case, the approximated straight is constructed by the method 
of the smallest modules, and the second - by the method of 
the smallest squares. The object of this work will be the first 
of these two methods. 
 Depending on the mode, with which the second problem 
is solved, it can be divided into two types 
 

• task, solved in the design stage of the measuring 
device; 

• task, solved by the algorithm for correction in the 
digital part of the measuring device.  
 
 The first of these two tasks is decided by calculations, 

which gives the nominal values of the coefficients n
ii qq = , 

corresponding to the nominal static function of the 
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measuring device 
 

)q,,q,q,q,x(fy n
m

n
3

n
2

n
1n …= .                                    (5) 

 
 After obtaining the necessary values  of the coefficients 

n
ii qq = , the corresponding meanings of these functional 

parameters of the structure of the measuring device, upon 
which they depend, can be selected. Therefore, in this case, 
the task is solved in terms of the synthesis of the measuring 
device, in which nominal values of the coefficients 

n
m

n
3

n
2

n
1 q,,q,q,q …  can be defined, in which static 

characteristic coincide completely with nominal or differ 
from it by an amount, not exceeding the permissible error 
from nonlinearity. 
 The second task can be solved with the aid of the digital 
processing module (Figure 1), allowing the introduction of 
the algorithms, with which the nominal function 

xBAyn ⋅+=  may be constructed in advance or in real 
time, depending on the actual static characteristic, so as to 
correspond to a certain optimization criterion. 
 The linear function, constructed by the method of the 
smallest modules, is called the straight xBAyn ⋅+= , whose 
maximum deviation from the curve of the actual static 
characteristic y = fr(x) in the range xmin ≤ x ≤ xmax has a 
minimum value. The parameters of the straight line are 
defined namely from the condition of the minimal value of 
the maximum deviation from the curve y = fr(x), ie 
 

min)xBA()x(fmax)B,A( r
xxx

max
mod

maxmin

=⋅+−=
≤≤

ε   (6) 

 
 From (6) it is clear that the minimum of the implicitly set 
two variables function is achieved through an optimal choice 
of the arguments A and B that define the position of the 
straight in the Cartesian coordinate system and can be 
considered as the only functional parameters of the straight 
of the smallest modules xBAyn ⋅+= . 
 

 
Fig.2. The straight line of the smallest modules and the  function of the 
error 
 
 
 It can be proven that the maximum deviation has a 
minimum, when the straight xBA)B,A(yn ⋅+=  is 
equidistant from the extremes of the error from nonlinearity. 

The geometric interpretation of the concept equidistant is 
expressed in practice through such construction of a straight 
line of the static characteristic, whereby the maximum 
module values of the absolute error from nonlinearity are 
equal. This condition can be represented via the following 
system of  nonlinear algebraic equations [1]: 

 
H321 δδδδ ==== … , 

 

0)B,A,x(
dx
d

i
i

=ε ,   i = 1, 2, 3, ..., K,     (7) 

 
where H321 δδδδ ==== …  - maximum module values 
of the absolute error from nonlinearity, whose number H 
depends on the specifics of the function y = fr(x); 
 

)xBA()x(f)B,A,x( r ⋅+−=ε .                                       (8) 
 
- function, expressing successive values on the coordinate of 
the measured parameter x on the absolute error from 
nonlinearity; xi - abscissae of these points from the actual 
static characteristic y = fr(x), where it has extrema; K - 
number of extrema, which depend on the characteristics of 
the function y = fr(x). 
 The second equation in the system (7) is based on the 
property of the derivative of a function at a point. As shown 
in fig.2, the tangent of the angles, whose tangents 1 and 2 to 
the function of the error )x(ϕε =  in the respective points 
conclude with the positive direction of the x-axis, have zero 
values. The straight, defining the nominal static 
characteristic xBA)B,A(yn ⋅+= , in fig.2 is constructed, 
according to the expressed through the system (7) condition 
of equidistance according to the actual static characteristic y 

= fr(x). In this case, K=2 (the points with abscissae K
ix ), 

and Н=4 (the points with abscissae H
jx ) (fig.2). 

 
 
4. Methods for calculating the parameters of the straight 
lines of the smallest modules 
 
In practice, the parameters A and B, defining the straight line 
of the smallest modules can be calculated in two ways. The 
first is performed by solving the system of equations (7), 
expressing the condition of equidistance of the straight 

xBAyn ⋅+=  in relation to the extrema of the function y = 
fr(x). The second way consists in determining, on the basis of 
(6), these values of the parameters A and B, in which the 
maximum difference between the nominal static 
characteristic xBAyn ⋅+=  and the actual characteristic  y 
= fr(x) will have a minimum value. 
 The degree of complexity of the solution of the problem 
in the first way is determined primarily by the type of the 
actual static characteristic y = fr(x). Very often, in solving 
the problem in practice, the actual characteristic is broken 
down into a series connected simple functions, whose 
solutions can be defined easily by the above presented 
models. For example, if the actual characteristic is described 

by the function 2
r x15,3)x(f ⋅=  for the interval xmin= 0≤ x 

≤1 =xmax, then it has a relatively simple solution in relation 
to the model (7). 
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Fig. 3. The first way to construct the straight line of the smallest 
modules 
 
 

 
Fig. 4. A second way to build on the straight line of the smallest 
modules 
 
 The straight line of the smallest modules in this case can 
be built in two ways. In the first method, illustrated 
graphically in fig.3, achieves better results the condition of 
equidistance of the straight in relation to the function y = 
fr(x) for the limits of the whole interval. In this case, the 
straight of the smallest modules will фе xBAyn ⋅+= , and 
the system (7) takes the following form: 

 
                                                            
21 δδ = ; 
31 δδ = ; 

⎟
⎠
⎞⎜

⎝
⎛ ⋅−−⋅= 1

2
11

1
1

xBAx15,3
dx
d)B,A,x(

dx
d
ε .                 (9) 

 
 In the second method of construction, the graph of the 
straight passes through the origin of the coordinate system, 
where it intersects with the curve of the actual static 
characteristic y = fr(x), that at x=0 has a value of  fr(0)=0 
(fig.4). This method has the important advantage of setting 
persistent initial conditions of the problem, which makes it 
easier to automate the process of constructing the straight of 
the smallest modules. Therefore, this task will be viewed in 
more detail. 

Equation of the approximating straight will be 
 

xB)x(f)B,x(y nn ⋅== ;   А = 0,    (10) 
 

since 0)0(f)0(f nr ==  and 0xmin = . 

 The analytical expression of the function, defining the 
error from nonlinearity in this case will be 
 

xBx15,3)B,x( 2 ⋅−⋅=ε .                                                (11) 
 

 With the help of fig.4, the following condition (7) can be 
presented for the equidistance of the straight from the 
extrema of the error from nonlinearity as follows: 

 

21 δδ = ; 
 

0)B,x(
dx
d

1
1

=ε .                                                            (12) 

 
where δ1 and δ2 are the maximum values of the module of 
the absolute error from nonlinearity; x1 – the axis of the 
point, defining the extremum of this error. 
 In this case, based on fig.4, following expressions of the 
elements from (12) can be represented:  

1
2
111 xBx15,3)B,x( ⋅+⋅−=−= εδ ; 

B15,3xBx15,3)B,x( max
2
maxmax2 −=⋅−⋅== εδ ;   (13) 

Bx3,6)B,x(
dx
d

11
1

−⋅=ε . 

 
 Then, based on (12) , can be written 

 

B15,3xBx15,3 1
2
1 −=⋅+⋅− ; 

0Bx3,6 1 =−⋅ .                                                                (14) 
 

 Wherein
3,6
Bx1 = , after substitution in the first equation 

of (14), the following remains 
 

015,3B
3,6
B

2
1 2

=−+⋅ .                                                      (15) 

 
 From fig. 4, it follows that the negative root of the 
quadratic equation (15) makes no sense, therefore the 
searched for values will be 609,2B = ; 

414,0
3,6
609,2

3,6
Bx1 === , and the equation of the straight of 

the smallest modules has the form  
 

x609,2yn ⋅= .                                                              (16) 
 

 The graphical appearance of the location of those 
straight lines, in relation to the actual function of the static 

characteristic 2
r x15,3)x(f ⋅=  , is shown in fig.5.  

 Interesting from a methodological point of view is the 
case, when the actual function of the static characteristics 
can be divided into a series of simple curves, like in the 
discussed above example. In these cases, model (7) is 
difficult to apply because the decisions are considerably 
more complicated. For example, if the actual static 
characteristic of the measuring device is set by the function 

 

⎥⎦
⎤
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 xmin= -1,4≤ x ≤ 2 =xmax,                 (17) 
 

then the derivative of this function significantly complicates 
the procedure for determining the parameters A and B, 
according to model (7). 
 

 
Fig. 5. Construction of the straight for the static characteristic 

2
r x15,3)x(f ⋅=  

 
 
 Therefore it is necessary to solve the task in another way, 
based on other conditions, which on one hand have to 
simplify the calculation procedure, and on the other - not to 
change the concept of constructing a nominal static 
characteristic as the straight line of the smallest modules. It 
can be taken into consideration, in this context, the method, 
in which the approximated straight is constructed so that the 
average error from nonlinearity is zero. Such straight must 
meet the following condition: 

 

[ ] 0dx)xBA()x(fdx)B,A,x(
max

min

max

min

x

x
r

x

x
=⋅⋅+−=⋅= ∫∫εε .           (18) 

 
 From (18), a ratio to determine the parameter А can 
easily be found 

 

)xx(
2
Bdx)x(f

xx
1A minmax

x

x
r

minmax

max

min

+⋅−⋅⋅
−

= ∫ .    (19) 

 
 The determination of the parameter B can be realized 
with different models, the most effective of which are made 
according to the shape of the curve, defining the actual static 
characteristic y = fr(x). One of these models consists in the 
determination of such two points, situated within the 
measuring range, in which the error from nonlinearity (8) is 
equal to zero. Research shows that the most appropriate 
points in the model can be the limits of the measuring range 
(xmin, xmax). In this case the parameter В will be determined 
by the formula 

 

minmax
minrmaxr

xx
)x(f)x(f

B
−

−
= .                                           (20) 

 
 The graphical appearance of the solution of the task of 
the construction of a straight for the static characteristic in 
accordance with the condition (18) that the average error 
from nonlinearity is zero, is shown in fig.6 (straight 1). The 

problem is solved for the model (17), defining the function 
of the actual static characteristic. 
 On fig.7 via curve 1 are represented, in graphical form, 
the values of the error from nonlinearity, when the task is 
solved according to the model (19) and curve 2 - the values 
of the error in solving the problem through model (7), which 
corresponds to straight 2 from fig.6. 
 Fig.7 shows that the differences between the values of 
the error from nonlinearity in solving the task, using 
respectively models (19) and (7), is not essential, but model 
(19) gives a better opportunity to automate the process of 
construction of the straight, determining the nominal static 
characteristic.  
 

 
Fig. 6. Constructing the straight according to condition (18) 
 

 
   
Fig. 7. Values of errors of nonlinearity 
 
5. Conclusion  
 
The error from nonlinearity of the static characteristic is one 
of the most common in the measuring practice constituting 
of the cumulative error. This error occurs at the end of the 
metering circuit of the measuring instruments and can be due 
to instrumental inaccuracies of the parameters, involved in 
the design scheme of the equipment, as well as due to 
reasons, conditioned by the imperfection of the measurement 
method. 
 In modern measuring devices, the error from 
nonlinearity of the static characteristic is usually removed in 
the digital part of the device, where the necessary algorithm 
for calculation of the measurement results is carried out. 
Therefore, as a basic condition, is considered less the 
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linearity requirements of the static characteristic in the 
hardware part, as its stability, ie, the immutability of this 
feature in the changing conditions of actual use. This does 
not mean however, that the task of assessing the error from 
nonlinearity of the static characteristic of the measuring 
instruments has lost its relevance today. As before, the 
preliminary assessment of this error allows to estimate its 
value with the permissible error of the measurement results 
and to adopt informed decisions about the need to use some 
of the other means of removing the error. 

 The above presented mathematical models allow the 
evaluation of the error from nonlinearity in relation to the 
permissible error of the measurement results and the creation 
of the necessary algorithms for correction this error. The 
models were developed, based on the requirements to 
achieve greater accuracy in the assessing and greater 
accuracy in the measurements. The structure of the models is 
in conformity with the conditions for automating the 
handling procedures in the digital modules of the measuring 
instruments. 

______________________________ 
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