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Abstract 
 

Conventional Multi-User Detection (MUD) algorithms for the Multi-Input, Multi-Output-Orthogonal Frequency Division 
Multiplexing (MIMO-OFDM) system fail to consider the detection performance and algorithm complexity 
simultaneously. To address this problem, a new Joint Intelligent MUD (JI-MUD) algorithm that aims to improve the 
MUD performance of the MIMO-OFDM system and to reduce the complexity of the algorithm was proposed. First, a 
new MUD method based on the genetic algorithm (GA) for the MIMO-OFDM system was introduced. Utilizing the 
results of the Minimum Mean Square Error (MMSE) algorithm as the initial population and the criterion of the Maximum 
Likelihood (ML) algorithm as the fitness function, the proposed algorithm performs genetic operations through the 
roulette wheel selection operator, two-point crossover operator, and adjacent bit reverse mutation operator, which 
generate a new population. Second, a Hybrid GA (HGA) was presented by combining the simulated annealing and 
particle swarm optimization algorithms. The extended study on the HGA complexity and performance was conducted 
from a mathematical perspective. Finally, a quantitative analysis on the complexity and convergence of the HGA, as well 
as the correlation of the fitness function, was implemented. Research results demonstrated that the convergence 
measurement function value of the proposed HGA is 0. Furthermore, its signal-to-noise ratio is approximately 1 dB lower 
than that of the MMSE-MUD algorithm and approximately 1 dB higher than that of the ML-MUD algorithm when the 
error rate is 5 × 10˗2. This finding indicates that the proposed algorithm perform better than the MMSE algorithm and 
approach the ML algorithm at the cost of appropriate complexity. These research results can better balance complexity 
and performance and guide the follow-up on the MUD development in the MIMO-OFDM system. 
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1. Introduction 
 
 Multi-User Detection (MUD) technology deals with the 
demodulation of mutually interfering digital streams of 
information that occur in areas of 3G mobile communication 
systems such as wireless communications; this technology is 
widely utilized as the industry standard [1]. Multi-user 
detection technology is the solution from the receiver side of 
an effective Multi-User (MU) interference. Along with the 
study of B3G/4G, MUD based on Multi-Input, Multi-
Output-Orthogonal Frequency Division Multiplexing 
(MIMO-OFDM) technology in Code Division Multiple 
Access systems has become a popular research topic in 
communications [2][3]. MIMO technology can increase 
system bandwidth even without additional bandwidth to 
improve spectrum efficiency and exponentially increase 
system capacity. OFDM technology has shown several 
advantages and attracted substantial interest as it can address 
frequency selective fading and Inter-Symbol-Interference. 
The combination of MIMO and OFDM is considered as a 
major trend and basis for the development of the next 

generation mobile communication systems. Many MUD 
methods for the MIMO-OFDM system exist. However, 
existing MUD methods such as the Minimum Mean Square 
Error (MMSE) and Maximum Likelihood (ML) algorithms 
remain unsatisfactory. The MMSE algorithm has low 
computational complexity and can be realized easily, but it 
has limited detection performance. The ML algorithm can 
achieve enhanced detection performance, but the 
computational complexity increases with the exponential 
rise in the number of users, leading to extreme difficulty in 
hardware implementation [3][4]. 

Given the low performance of the MMSE algorithm and 
the high complexity of the ML algorithm, a new algorithm 
for the MIMO-OFDM system called the Joint Intelligent 
MUD (JI-MUD) based on the hybrid genetic algorithm 
(HGA) was proposed. The proposed method combines the 
Genetic Algorithm (GA), Simulated Annealing (SA) and 
Particle Swarm Optimization (PSO) algorithms to construct 
a new HGA on the one hand. On the other hand, the 
complexity and performance of the proposed algorithm were 
further explored from a mathematical perspective. Moreover, 
a quantitative analysis on the complexity and convergence of 
the proposed algorithm and the correlation of the fitness 
function were implemented. 
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2. State of the art 
 
MUD technology has become a hotspot in communications 
research with the increased user population of mobile 
communication systems. This technology was proposed by 
Schneider, who first combined the codon information and 
timing of multiple users to detect each user [5]. Verdu 
presented an optimal MU detector based on ML that can 
theoretically analyze the optimal performance of MU 
detectors [6]. However, the complexity of this MU detector 
increased exponentially as user population rose, making it 
inapplicable in practice. Therefore, many scholars shifted 
their attention to suboptimum MU detectors. A suboptimum 
MU detector decreases the algorithm complexity to the level 
of actual engineering while maintaining system performance. 
Lupas presented a decorrelation MU detector that can 
suppress Multiple Access Interference (MAI) to its 
maximum extent and amplify the noise effect on 
communication quality [7]. Hence, Madhow proposed an 
MMSE detector [8]. This MMSE detector is superior to the 
decorrelation detector under the same signal-to-noise ratio 
(SNR) and can suppress noise effectively; however, it cannot 
eliminate MAI completely. With the increasing number of 
theoretical studies and actual applications of MUD 
technology, applying intelligent optimization algorithms 
(e.g., GA, SA, and PSO algorithms) into MUD technology 
has become the development trend of the future [9]. Juntti et 
al. proposed a GA-based MUD for the first time that can 
enhance system reliability and attain approximate optimal 
performance [10]. 

Given the development of the mobile communications 
technology, MUD technology can combine with OFDM and 
MIMO technologies. As a multi-carrier modulation 
technology, OFDM can effectively overcome the inter-
symbol interference caused by fading channels. Therefore, 
the combination of MUD and OFDM technologies can 
enhance the anti-interference of a system. In MIMO systems, 
simultaneously sent signals to different antennas serve as the 
different user information. Such information overlaps on 
each receiving antenna and mutually forms interference. 
This scenario is largely similar with the MU Spatial-
Division Multiple Access. Therefore, MUD can combine 

with MIMO. Jiang [11] reviewed a range of classic MU 
detectors designed for MIMO-OFDM systems and 
characterized their attainable performance and broadly 
applicable principles of various GA-assisted optimization 
techniques, which were recently proposed for use in MU 
MIMO-OFDM. The study further demonstrated that a family 
of GA-aided MUDs can accomplish a near-optimum 
performance at the cost of a significantly lower 
computational complexity than that imposed by their 
optimum ML MU-aided counterparts. 

The aforementioned studies illustrate that these methods 
are unsatisfactory with limited detection performance. 
Balancing system performance and computational 
complexity for traditional MUD algorithms is difficult. The 
MUD algorithm based on HGA in the MIMO-OFDM 
system, which has better MUD performance than the MMSE 
algorithm and approximate performance to the ML 
algorithm, was investigated in the current study. This 
algorithm aims to solve the shortcomings of the MUD 
algorithm in traditional MIMO-OFDM systems by 
simultaneously considering detection performance and 
algorithm complexity. 

The remainder of this paper is organized as follows. 
Section 3 establishes the flowchart of the proposed JI-MUD 
algorithm. Section 4 analyzes the proposed JI algorithm as 
applied to MUD in the MIMO-OFDM system. Finally, 
Section 5 summarizes the conclusions. 
 
 
3. Methodology 
 
3.1 MIMO-OFDM system 
The block diagram of the MIMO-OFDM MUD system is 
shown in Fig. 1 [12]. Assume that the L users at the 
transmitter and the signal, 		sl(l =1,...,L) , of each user by 
OFDM modulation is transmitted through the MIMO 
channel to the P element antenna array at the base station. 
The OFDM demodulated output, 		xp(p=1,...,P) , is then 

divided into different user signals, 		 yl(l =1,...,L) , by the 
MUD. Finally, the output signals are independently decoded. 
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Fig. 1.  The block diagram of MIMO-OFDM multi-user detection system 
 
Fig. 1 shows that the P element antenna array in the MIMO-
OFDM system receives the nth OFDM symbols in the kth 
way carrier transmission of a complex signal vector, 		x[n,k]   
(i.e., 		[n,k]  is omitted in the following equation for 
simplicity, similar to other instances): 
 

		xP×1 =HP×L ⋅sL×1 +nP×1                                    (1) 
 
where x is the received signal of the antenna at the receiver, 
s is the input signal, and n is the channel noise, which can be 
expressed as Eq. (2). 
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xP×1 = x1 ,x2 ,!,xP⎡⎣ ⎤⎦
T

sL×1 = s1 ,s2 ,!,sL⎡⎣ ⎤⎦
T

nP×1 = n1 ,n2 ,!,nP⎡⎣ ⎤⎦
T

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

                          (2) 

 
The complex signal 	sl transmitted by the lth user has a zero-

mean and variance 		σ l
2 . The Additive White Gaussian Noise 

signal 
	
np also has a zero-mean and variance 		σ n

2 . H is the 

frequency domain channel transfer function in Eq. (1), 
which is given in Eq. (3) as follows: 
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             (3) 

 
where 

	
Hpl is the transmitting coefficient from the lth user’s 

transmitting antenna to the pth receiving antenna in a P-
element antenna array. The transmitting coefficients differ 
from various p values. These values are assumed as 
independent and identically distributed Gaussian distribution 
with a zero-mean and a variance of 1. 
 
3.2 JI-MUD algorithm 
A flowchart of the proposed JI-MUD algorithm is shown in 
Fig. 2. 

 

SA algorithm simulated annealing operation generated 
P3(d)

JI-MUD algorithm parameter settings

MMSE algorithm generated initial population P0(d)

GA algorithm selection, hybridization, mutation 
operation generated P2(d)

PSO algorithm particle swarm update operation 
generated P1(d)

Termination condition

Output the current optimal solution,
 the end of JI-MUD algorithm

Yes
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Fig. 2.  Flowchart of the proposed joint intelligent multi-user detection 
algorithm 

 

The initial population selection, PSO algorithm, GA 
(including the fitness function, selection operation, cross-
over operation, and mutation operation), SA algorithm, and 
optimal solution conditions are all key parts of the JI-MUD 
algorithms. These concepts will be discussed in detail in the 
following sections. 

 
3.2.1 Initial population selection 
The MMSE algorithm results are set to the initial group P0 
of the JI-MUD algorithm. The P-element antenna array 
assisted by the MMSE algorithm weight matrix receives a P 
number of different antenna signals. The MMSE algorithm 
detection signal vector can be obtained using linear 
combination as expressed in Eq. (4). 

 

	sM =WMx                                            (4) 
 
where 	WM  is the weight matrix of the MMSE algorithm 
defined as Eq. (5). 
 

		WM = HHH +σ n
2I( )−1H                              (5) 

 
 The L user vector detected by the MMSE algorithm is set 
to the first generation of the JI-MUD algorithm which can be 
expressed as a group that contains a population of M 
individuals. The mth (m = 1, 2, ... M) individual can be 
expressed as Eq. (6). 
 

		 
!s
d ,m( ) = !s d ,m( )

1 , !s
d ,m( )
2 ,", !s

d ,m( )
L⎡

⎣⎢
⎤
⎦⎥

                      (6) 

 
where 		d∈[1,D]  is the iteration number, D is the maximum 

iteration number, and 
		 
!s
d ,m( )
l ∈Mc  is the complex-valued 

symbol of individuals [13]. 
 
3.2.2 PSO algorithm 
 
Iteration particles update the velocity and position according 
to Eq. (7). 
 

		

v
mn

d+1 = wv
mn

d + c1r1 pmn − zmn
d( )+ c2r2 pgn − zmnd( )

z
mn

d+1 = z
mn

d + v
mn

d+1

⎧
⎨
⎪

⎩⎪
        (7) 

 
where w and d are the inertia weight and iteration number, 
respectively, both r1 and r2 are the random variables on [0, 1] 
utilized to maintain group diversity, and 		c1 and 		c2  are 
learning factors that provide the particles with the ability of 
a groups’ summary and learning from outstanding 
individuals. Thus, each particle moves to its own historical 
and global best positions. 		c1r1 pmn − zmn

d( )  and 		c2r2 pgn − zmn
d( )  

are the cognitive and social parts, respectively, which 
represent the particles’ learning and mutual cooperating 
abilities. 

The particles update their speed according to the last 
iteration of the velocity, current position of each particle, 
distance between their own best experience, and groups’ best 
experience as expressed in Eq. (7); afterwards, the particles 
fly to a new location [14]. Each individual corresponds to a 
particle. The new group P1 is generated after the operation 
updates the speed and location utilizing the PSO algorithm. 
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3.2.3 GA 
The proposed PSO-based network-clustering algorithm 
works as follows: 
 
(1) Fitness function 
The optimal decision criterion is applied based on the ML 
algorithm, and the transmitted symbols vector 	sG  is detected. 
The signal vector in the pth receiving antennas based on L 
users can be expressed as Eq. (8). 
 

		
sG
p = arg min

s
Gp s( )⎡
⎣

⎤
⎦{ }                                 (8) 

 
 The symbol vector 	s  that sets the objective function 

	
Gp s( )  as the smallest value is 	sG  in Eq. 8, and the total 

objective functions of all P-receiving antennas are expressed 
as Eq. (9). 
 

		
G s( ) = Gp s( )

p=1

P

∑ = x −Hs
2

                            (9) 

 
 The decision rules of the JI-MUD algorithm determine 
the vector 	sG  that minimizes 

	
G s( ) . 

 

		 
fdm =GdT −G !s d ,m( )( )+Cmin                          (10) 

 
where 		Cmin  is the minimum constant that ensures a positive 

fitness function value 	 fdm , and 	GdT  is the maximum 
objective function that corresponds to T individuals in the 
dth generation hybrid group as expressed in Eq. (11). 
 

		 
GdT =maxt∈ 1,T⎡⎣ ⎤⎦

G !s
d ,m( )( ){ }                               (11) 

 

(2) Selection operation 
First, T individuals with a higher fitness in group 		P1  were 
selected to create a hybrid set. 		T =M /2  at this point; in 
particular, the individuals with higher fitness value is half of 
the group. 		T /2 pairs of individuals from the hybrid set are 
then selected as hybrid parents. The survival probability of 
the tth individual in the dth generation hybrid set is 
expressed as Eq. (12). 
 

	pt = fdt fdt∑                              (12) 
 
where 	 fdt is the fitness function of the tth individual in the 

dth generation hybrid set, and 	 fdt∑  is the sum of the 
fitness functions of the T individuals in the dth generation 
hybrid set. 

The cumulative probability from the first individual to 
the current tth individual can thus be obtained by Eq. (13). 
 

		 pd t( ) = p1 + p2 +!+ pt                             (13) 

 
 A random number distributed in the interval [0, 1] is 
produced based on the roulette wheel selection method. If 
this number satisfies the condition in Eq. 14, then the tth 
individual in the hybrid set is placed in the paired library. 
 

		pd t-1( ) < r < pd t( )                                (14) 

 
(3) Cross-over operation 
The two-point cross-over method is adopted in the cross-
over operation. The front location of the two genes is 
selected randomly as the intersection, and then the two 
middle portions of the intersection from each of the hybrid 
parents are interchanged. A binary-coded string based on the 
two-point cross-over method diagram is shown in Fig. 3. 
The cross-over probability 	Pc determines whether 
hybridization occurs. The 		T /2  pairs of the hybrid parents’ 
cross-over to generate T new individuals ready for mutation 
operation. 
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Fig. 3.  Diagram of the two-point cross-over method 
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Fig. 4.  Diagram of inversed order mutation method based on adjacent position 
 
(4) Mutation operation 
An inverse order method based on the adjacent position is 
employed in the mutation operation. Two adjacent coding 

positions of individuals are selected randomly, and then their 
genetic value conversion is obtained. The binary string “A” 
in Fig. 4 is taken as an example. The corresponding adjacent 
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position inversed order mutation method diagram is shown 
in Fig. 4. The aforementioned mutation method also depends 
on the mutation probability PM to determine whether 
mutation operation occurs. The T individuals generate T new 
individuals after mutation. 

The T new individuals are generated after the genetic 
operation. They combine with T individuals in the hybrid set 
together to form the new group 		P2 . 
 
3.2.4 SA algorithm 
The system in the SA algorithm encounters a type of 
disturbance that can change the state of x. The energy 
functions of the system 		E(x) correspondingly changes. The 
acceptance probability of the process wherein the original 
state of 	xold turns into a new state of 	xnew  in the system is 
determined by the Meteopolis rules as shown in Eq. (15). 
 

		
p=

1
exp −ΔE C( )

⎧
⎨
⎪

⎩⎪

,ΔE <0
,ΔE ≥0

                     (15) 

 
where 		ΔE = E(xnew )−E(xold ) , and C is the current 
temperature. The meaning of the Meteopolis rules is as 
follows: when the new state decreases the system energy 
function value, then the system accepts the new state with 
the probability p = 1; when the new state increases the 
system energy function value, then the system accepts the 
new state with the probability 		p= exp(−ΔE /C) . 

Each individual corresponds to a state of the SA 
algorithm. The new group 		P3 is generated by the judgment 
operation of the acceptance probability. 
 
3.2.5 Optimal solution 
The aforementioned analysis shows that the OFDM 
subcarriers with the highest fitness values can be detected by 
the L users’ transmission symbol vector. When the algorithm 
attains the maximum iteration times D or the average fitness 
of M/10 and the individuals with the highest fitness value in 
every generation does not change for five consecutive 
generations, then the optimal solution has been determined 
[15]. 
 
3.3 Computational complexity and convergence analysis 
of the proposed JI algorithm 
 
3.3.1 JI algorithm complexity 
The following section details the algorithm complexity 
analysis of the HGA in the MIMO-OFDM system based on 
MUD. Time complexity is considered in this study. The 
complexities of the MMSE and ML algorithms increase 
linearly and exponentially, respectively, with increasing 
number of users. The multiplication and addition 
computational complexity of the MMSE algorithm are 

	MMSE×  and 	MMSE+ , respectively. The MMSE result is the 
initial population of the GA. Given Eqs. (4) to (6), the 
computational complexity is expressed as Eq. (16). 
 

		

Multiplication:MMSE× =2L2 ⋅P ⋅M
Addition:MMSE+ = L

2 ⋅ 2P +1( )⋅M
⎧
⎨
⎪

⎩⎪
            (16)  

 

(1) Individual evaluation 
The individual evaluation process complexity in every 
generation is expressed as Eq. (17). 
 

		

Multiplication: L+1( )⋅P ⋅M
Addition: 2L+ 52

⎛
⎝⎜

⎞
⎠⎟
⋅M

⎧

⎨
⎪⎪

⎩
⎪
⎪

               (17)  

 
(2) Genetic operation 
 
The genetic operation complexity in each generation is 
shown as Eq. (18) according to the selection operation. 
 

		

Multiplication: 1
2M +2

Addition: 1
2M

2 + 34M

⎧

⎨
⎪⎪

⎩
⎪
⎪

                 (18) 

 
Given Eqs. (16) to (18), the algorithm complexity of the GA 
based on the results of the MMSE algorithm after the D 
generation genetic operations is expressed as Eq. (19). 
 

		

Multiplication:MMSE× +D⋅ L+1( )⋅P ⋅M + 1
2M +2⎛
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⎞
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧

⎨

⎪
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⎩

⎪
⎪
⎪

(19)              

 
Thus, the multiplication and addition computational 
complexity of the GA are expressed as Eq. (20). 

 

		

GA× = 2L2 ⋅P + L+1( )⋅P ⋅D+ 12 ⋅D
⎡

⎣
⎢

⎤

⎦
⎥⋅M
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1
2 ⋅D⋅M
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⎛
⎝⎜

⎞
⎠⎟
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅M

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  (20) 

 
 The aforementioned analysis of the GA process shows 
that the multiplication and addition complexity of GA is 
slightly higher than that of the MMSE algorithm. With the 
assistance of GA, the operation complexity of the SA 
operation and PS update operation are analyzed. 
 
(3) SA operation 
Given Eqs. (15) and (20), the multiplication and addition 
operations complexity of the Genetic Simulated Annealing 
Algorithm (GSAA) are expressed as Eq. (21). 
 

		

GSAA× = 2L2 ⋅P + L+1( )⋅P ⋅D+ pgs ⋅D+ 12 ⋅D
⎡

⎣
⎢

⎤

⎦
⎥⋅M

GSAA+ =
1
2 ⋅D⋅M

2 + L2 ⋅ 2P +1( )+ 2L+ 174
⎛
⎝⎜

⎞
⎠⎟
⋅D

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅M

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (21)  

 
SA operation can improve the local convergence ability 

of GA, which can lessen genetic iterations. We denote 	ΔD  
as the lowered genetic iterations. The complexity of GSAA 
is lower than that of GA when 		ΔD>3 . 
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(4) PS update operation 
Given Eqs. (7) and (20), the multiplication and addition 
operations complexity of the Genetic Particle Swarm 
Algorithm (GPSA) are expressed as Eq. 22. 
 

		

GPSA× = 2L2 ⋅P + L+1( )⋅P ⋅D+ 112 ⋅D
⎡

⎣
⎢

⎤

⎦
⎥⋅M

GPSA+ =
1
2 ⋅D⋅M

2 + L2 ⋅ 2P +1( )+ 2L+ 334
⎛
⎝⎜

⎞
⎠⎟
⋅D

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅M

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (22) 

 
The PS update operation can improve the ability of the 

GA population convergence, which can lessen genetic 
iterations. We denote 	ΔD  as the reduced genetic iterations. 
The complexity of GPSA is lower than that of GA when 
		ΔD>5 . 

The aforementioned analyses show that the complexity 
levels of the two types of HGAs (i.e., GSAA and GPSA) are 
between those of the GA and MMSE algorithms when 
		ΔD>5 . Without loss of generality, the HGA complexity is 
slightly higher than that of the MMSE algorithm and far 
lower than that of the ML algorithm. 
 
3.3.2 JI algorithm convergence 
Every generation population in the HGA can be regarded as 
a type of state. If the algorithm process is random, then the 
Markov chain can be utilized to analyze this theory [16]. 
Basic GA can be described as a homogeneous Markov chain, 

		Pt = P t( ) ,t ≥0{ } , where 	Pt  denotes the probability of a 

transferred state being independent on the starting time. The 
selection, cross-over, and mutation operations in basic GA 
are independent and random. New groups are only 
dependent on their parents’ groups and genetic operator 
parameters. These groups are unrelated to the generation of 
groups generated before their parents’ groups. GA observes 
the following theorems: (1) the probability of the basic GA 
converging to the optimal solution is less than 1; (2) the 
probability of the GA with the scheme that retains the best 
individual converging to the optimal solution is equal to 1. 
Both conclusions ensure the optimal solution searched 
process in the GA theoretical analysis and practical 
application. Further conclusions can be obtained as follows 
based on the probabilistic convergence theorems of GAs: the 
probability of an individual strongly converging to the 
optimal solution set in the GSAA when 		T→0  can be 
expressed as 

	 

!
X n( ){ } . 

 

		 limn→∞
P
!
X n( )⊂M{ }=1                               (23) 

 
The HGA convergence is analyzed according to the GSA 

algorithm and combined with the conclusion of the 
aforementioned basic GA. The HGA has numerous factors 
and parameters. The best individual fitness in each 
generation or average fitness of groups is applied to evaluate 
the algorithm performance. 

(1) De Jong [17] proposed an evaluation criterion that 
contains a quantitative analysis of the on-line and off-line 
performance of GA. 

The on-line performance evaluation criterion is as 
follows: suppose 		F1 s( )  is the on-line performance of 

scheme s. 
	
f d( )  is the average fitness value of the dth 

generation. The on-line performance can then be represented 
as the average value from the first generation to the current 
generation of the optimization process, i.e. 
 

		
F1 s( ) = 1D f d( )

d=1

D

∑                                  (24) 

 
The off-line performance evaluation criterion is as 

follows: suppose 		F2 s( )  is the off-line performance of 

scheme s. It can be expressed as the cumulative average 
value of the best performance in a particular generation, i.e. 
 

		 
F2 s( ) = 1D !f d( )

d=1

D

∑                                  (25) 

 
where 		 

!f d( ) =max f 1( ) , f 2( ) ,", f d( ){ } . 

The on-line performance evaluation criterion is utilized 
to evaluate the dynamic algorithm performance, whereas the 
off-line performance evaluation criterion is utilized to 
evaluate the algorithm convergence. The evaluation process 
aims to determine the best fitness or best average fitness in 
the population from the beginning to the current generation, 
as well as the average number of evolution calculation 
iterations. The average values of the fitness functions in GA 
and HGA increase, so the performance difference between 
the two aforementioned criteria is minimal and the natures 
they reflect are basically the same. 

(2) Himmeblau proposed the termination criterion of the 
optimization method, which can be expressed as Eq. (26). 

 

		

f xi+1( )− f xi( )
f xi( ) ≤ ε  or 		 f xi+1( )− f xi( ) < ε          (26) 

 
where ε is an appropriate less positive number. 

The termination criterion of the optimization method is 
introduced into GA, such that the convergence criterion GA 
is proposed. This criterion is also applied to the HGA. 

The convergence evaluation criterion is as follows: 
suppose 		F3 s( )  is the convergence measurement function of 

scheme s; this can be expressed as the mean difference of the 
fitness function in each generation, i.e. 
 

		
F3 s( ) = 1D f d +1( )− f d( )⎡

⎣
⎤
⎦

d=1

D

∑                       (27) 

 
 
4 Result analysis and discussion 
 
The proposed JI algorithm is applied to the MUD in a 
MIMO-OFDM system. In the MIMO-OFDM system, the 
user number is set as 		L=2 , the number of receiving 
antennas is 		P =2 , the SNR is from 0 to 9 dB, and the 
subcarrier number is K = 1024. Binary coding is utilized for 
the JI-MUD algorithm. The other parameters of the JI 
algorithm are listed in Table 1. 
 
Table 1. The simulation parameters used in MIMO-OFDM 
system joint intelligent multi-user detection algorithm 

Intelligent 
algorithm 

Parameters Value 
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PSO 
Learning factors c1=c2 2 
Inertia weight w 1 
Maximum speed Vmax 4 

GA 

Population size M 10000 
Cross-over probability pc 0.8 
Mutation probability pm 0.02 
Number of genetic iterations D 10 

SA Initial temperature T 10 
 

The performance results of the JI-MUD, MMSE, and 
ML algorithms are shown in Fig. 5, as well as performance 
of the MUD based on the JI-MUD algorithm in the MIMO-
OFDM system between those of the MMSE-MUD and ML-
MUD algorithms. The SNR of the JI-MUD algorithm is 1 
dB less than that of the MMSE-MUD algorithm and 1 dB 
more than that of the ML-MUD algorithm when 

		BER =5×10−2 . Given the MMSE-MUD algorithm, the PS 
update, genetic, and SA operations are added to the JI-MUD 
algorithm, which can increase the acceptable algorithm 
complexity. Thus, the JI-MUD algorithm outperforms the 
MMSE-MUD algorithm and approaches the ML-MUD 
algorithm performance at the cost of slightly higher 
complexity. 

Eqs. (24) and (25) show the simulations on the on-line 
and off-line performance of GA and HGA (Fig. 6). Fig. 6 
shows that the on-line and off-line performance curves of the 
HGA completely overlap. Therefore, this result indicates 
that the HGA has satisfactory stability and rapid 
convergence. The on-line and off-line performance curves of 
GA did not completely overlap; however, the difference is 
insignificant and gradually converges with increasing 
hereditary generation. 
 

 
Fig. 5. The performance of multi-user detection in MIMO-OFDM 
system based on joint intelligent optimization algorithm 
 

HGA convergence measurement function is shown in 
Fig. 7. This figure shows the convergence measurement 
function values of HGA at completely zero. This result 
indicates the excellent convergence of the HGA. The 
convergence measurement function values of GA vary in a 
small range and are slightly larger than 0, which can be 
considered as an approximate convergence. Therefore, the 
convergence of HGA is superior to that of the GA. 
 

 
Fig. 6. Simulation of performance evaluation 
 

 
Fig. 7.  Simulation of convergence evaluation 
 
 

Given Eqs. (26) and (27), the simulation of the GA and  
 
 
5. Conclusions 
 
Conventional MUD, MMSE, and ML algorithms in a 
MIMO-OFDM system failed to consider the detection 
performance and algorithm complexity simultaneously. This 
study proposed a new JI-MUD MIMO-OFDM algorithm 
based on HGA, which can effectively solve the 
aforementioned problem. The MUD algorithm model in the 
MIMO-OFDM system is theoretically constructed utilizing a 
hybrid strategy with the GA, SA, and PSO algorithms. 
Furthermore, a quantitative analysis on the HGA complexity 
and convergence, as well as the correlation of the fitness 
function, is performed from a mathematical perspective. The 
following conclusions are derived: 

(1) The performance of GA is between those of the 
MMSE and ML algorithms. The SNR of the GA-MUD 
algorithm is approximately 1 dB lower than that of the 
MMSE-MUD algorithm and approximately 1 dB higher than 
that of the ML-MUD algorithm when BER = 5 × 10˗2. 
Therefore, the GA-MUD algorithm in the MIMO-OFDM 
system showed better MUD performance than the MMSE-
MUD algorithm and approximated the ML-MUD algorithm 
performance. The GA-MUD algorithm optimized based on 
the MMSE-MUD algorithm only has a slightly higher 
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complexity than the MMSE-MUD algorithm, which can 
easily be attained in practical engineering. 

(2) The complexities of the MMSE and ML algorithms 
increase linearly and exponentially, respectively as user 
population increased. The HGA complexity is slightly 
higher than that of the MMSE algorithm, but is significantly 
lower than that of the ML algorithm. The on-line and off-
line performance curves of the HGA overlap completely, 
which indicates its proper stability. The convergence 
measurement function values of HGA are 0, which indicates 
that it can attain rapid convergence. 

(3) The correlation coefficient of the fitness function 
decreases gradually as SNR rises. When the SNR is 
sufficiently high, then HGA has suitable randomness and 
high solving quality. 

This study proposed a new HGA-MUD algorithm in the 
MIMO-OFDM system by combining the GA, SA, and PSO 
algorithms. The proposed algorithm not only balances the 
detection performance and complexity properly, it also 
approaches actual engineering applications. Thus, it provides 
a novel trade-off between the computational complexity and 
detection performance. The proposed algorithm is also 
significant in demonstrating and promoting the follow-up 

development of MUD in MIMO-OFDM systems. Theory is 
currently verified by analogue simulation because of the lack 
of MU actual data. Future research can combine the mobile 
user monitoring data and proposed algorithm model, as well 
as correct them to obtain a more accurate understanding of 
the laws of the MU MIMO-OFDM system. 
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