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Abstract 
 

With the rapid development of multi-core processor systems, software parallelization has become the main approach in 
improving the efficiency of multi-core processors. However, the most updated multi-core parallel programming models 
have defects, such as poor scalability and intensive competition in processor core resources. To prevent congestion of 
system processor core resources and to improve equal distribution of processing resource and service efficiency, the 
adaptive co-scheduling problem of multi-core runtime systems was studied in this paper. First, on the basis of the online 
competition analysis method, a quantitative analysis of task schedulability was conducted. Second, a random work 
stealing strategy was combined with work stealing frequency to dynamically redistribute multi-core resources. Third, on 
the basis of closed-loop feedback control theory, an adaptive co-scheduling method that could obtain a dynamic 
perception of the degree of task parallelism was proposed, and multi-core adaptive co-scheduling system A-SYS 
(Adaptive SYStem) based on fine-grained task programming model was designed and implemented. Finally, the 
proposed framework was used to conduct performance analysis of multiple parallel tasks, and the performances of 
different algorithms were compared through a prototype system experiment. Experimental results indicated that the 
proposed adaptive scheduling method and a dynamic perception of core resources could effectively improve mutual 
competition between inter-core tasks and shared resources. Lower damage cost during task scheduling process, and 
significantly elevated the service efficiency of multi-core processors and equal distribution in resource allocation. 
Compared with traditional scheduling algorithm EQUI (EQUI-partitioning), A-SYS shortened the running time of 
application programs by nearly 50%, and as the number of application programs increased, the effect of A-SYS became 
more prominent. This finding is of significant reference value to performance problems caused by a continuous increase 
in the inner core scale of multi-core processors in the future. 
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1. Introduction 
 
In recent years, with the elevated circuit integration and 
dominant frequency of single-core processor chips, 
processor technology has encountered problems, such as 
manufacturing cost, power consumption, and heat 
dissipation. As a result, multi-core and multi-thread 
technology is steered toward a new direction in the 
development of processor systems. A multi-core processor, 
which is also called chip multiprocessor (CMP), integrates 
several processor cores with independent functions on the 
physical chip of one processor and takes the entire processor 
chip as a uniform structure to provide outward computing 
service. Unlike the traditional single-core processor, a multi-
core processor increases the number of physical threads or 
tasks simultaneously executed by the entire processor 
multiple times by integrating several single-thread cores or 
multi-thread processing cores, thereby greatly improving the 
parallel processing capability of the processor system. At 
present, generalized processor products that integrate dozens 

of cores are available. With the progress of integrated circuit 
manufacturing process and increased computing demand, 
future processors will integrate hundreds and even thousands 
of cores. A continuous increase in the kernel scale of multi-
core processor systems guarantees its sustainably enhanced 
abilities in computing and data processing; however, without 
parallel programming languages or support from the system 
software level, the improvement of this hardware capability 
cannot enhance application program performance, and this 
issue is one of the most severe challenges in the multi-core 
era [1]. 

The concepts of parallel programming and computation 
emerged early. However, even after several years, parallel 
computing has not become the mainstream of pervasive 
computing. The emergence and the rapid development of 
multi-core processor systems have made people realize that 
such systems are suitable only for designing and 
constructing parallel hardware, and the difficulty and 
challenges faced by application programs lie in the design of 
a parallelization method with high yield and a highly 
efficient parallel execution model. To improve the parallel 
programming ability of multi-core processor systems and 
ensure service efficiency of processor core resources and 
transportability of application programs in different 
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platforms, most multi-core programming models adopt the 
parallel model based on fine-grained tasks [2]. The term 
“fine-grained task” refers to a special object that includes 
several program instructions and can be independently 
executed. It is a smaller parallel granularity than the thread 
of an operating system. Compared with a system thread of 
an operating system, a fine-grained task has the following 
features: (1) establishment and termination of a task are 
more efficient and flexible than those n a system thread; (2) 
a task usually has a shorter executable code than a system 
thread does and requires a smaller expenditure on 
management and scheduling, and it can easily realize system 
load balancing; (3) a task is usually managed and scheduled 
by the runtime system and is relatively independent from the 
operating system, thereby greatly improving the 
transportability of the application program; and (4) task-
based parallel programming can support irregular 
application better with a broader application range. However, 
traditional multi-core runtime systems still have numerous 
problems and deficiencies in supporting fine-grained tasks, 
thereby resulting in a low resource utilization rate of 
application programs and poor system scalability. 
Consequently, a single application program cannot take full 
advantage of processor core resources, and the execution 
performance of the application program cannot increase 
correspondingly as usable core resources increase. 

To address the defects of current multi-core runtime 
systems, which easily cause intense competition among 
processor core resources and poor system scalability, an 
adaptive co-scheduling problem of multi-core runtime 
systems was studied in this paper. Resource distribution, 
runtime control, and task execution were considered an 
organic whole, and then an adaptive co-scheduling 
framework was proposed based on the concept of dynamic 
feedback control. A quantitative analysis method of 
scheduling based on work stealing strategy and work 
stealing frequency was studied from the aspect of task 
schedulability. Through online competition analysis, the 
performance analysis of the time complexity of the adaptive 
scheduling algorithm was designed and implemented. 
 
 
2. State of the art 
 
Parallel programming model, as an intermediate bridge that 
connects the application program developer and the 
hardware architecture, is crucial to pervasive parallel 
programming of multi-core processors. Good parallel 
programming model not only simplifies the programming 
process of parallel programs and lowers the design difficulty 
of application programs but also provides an application 
program with strong parallel execution capacity, thereby 
achieving a good balance between two mutually 
contradictory goals, namely, and software productivity and 
execution efficiency. 

In a broad sense, parallel programming models that 
implement parallelization of application programs can be 
divided into data parallel programming model and task 
parallel programming model [3]. The data parallel 
programming model usually focuses on data, and it executes 
data parallel processing through reasonable data partitioning 
and balanced data distribution onto parallel computing nodes. 
In traditional high-performance computing, the data parallel 
programming model is applied extensively, and typical 
representatives of this model are MPI parallel programming 
model [4], which is based on message passing and the 

MapReduce parallel programming model proposed by 
Google [5]. The data parallel programming model is 
designed mainly for large-scale data processing. During this 
process, the program developer is responsible for data 
parallel granularity partitioning, data synchronization, and 
even system load balancing. Thus, the application range of 
this model is affected by various limitations. Compared with 
the traditional data parallel programming model, parallel 
programming model based on fine-grained tasks conducts 
parallelism expression from the computing task angle. In the 
parallel model based on fine-grained tasks, the 
programmers’ emphasis is the identification of tasks or 
decomposition into computer subtasks, while the compiler 
and the runtime system are responsible for dynamic 
generation, task scheduling, and load balancing of tasks. The 
implementation method, which decomposes and separates 
task scheduling, provides strong productivity and execution 
capability [6], [7]. Research and practices in recent years 
indicate that the parallel model based on fine-grained tasks 
has become a powerful tool in implementing pervasive 
parallel programming. For example, a high-productivity 
computing systems project funded by the U.S. Defense 
Advanced Research Projects Agency used Chapel from Gray 
Corporation [8], Fortress of Sun Corporation (now Oracle 
Company) [9], and X10 from IBM [10], which are three 
programming languages developed on the basis of the 
parallel programming model based on fine-grained tasks. In 
the past several years, parallel programming models based 
on fine-grained tasks have rapidly become popular and have 
undergone development, including the concurrency library 
ForkJoin framework of Java 5[11], [12], the thread building 
blocks (TBB) of Intel [13], the task parallel library of the 
Microsoft .NET framework [14], and Cilk/Cilk++[15], [16]. 
OpenMP API specification mainly supported data parallel 
model before version 2.5, and the concept of task 
parallelization was imported into OpenMP 3.0 API 
specification [17], [18] in 2008. 

In sum, various types of runtime systems that support 
multi-core programming model currently exist. Various 
runtime systems are mutually independent, but they cannot 
mutually exchange information. When multiple application 
programs operate concurrently, a lack of a unified resource 
distribution coordinating mechanism will cause malicious 
competition among core resources, thereby reducing the 
overall handling capacity of the system. To address the 
problems and deficiencies faced by multi-core runtime 
systems, this paper studied an adaptive co-scheduling 
method that is applicable to multi-core processor systems. 
Analysis and design were conducted from various aspects, 
such as optimized resource allocation, runtime control, and 
highly efficient task scheduling to enhance the easy usability, 
adaptability and cooperation of the runtime programming 
model, and to optimize and improve the overall efficiency 
and expandability of multi-core processor systems. 

The remainder of this paper is organized as follows: 
Section 3 describes the adaptive scheduling framework 
based on fine-grained tasks and its basic principle, and it 
presents a state transition method based on the scheduling 
strategy of task sharing and worker threads of the work 
stealing strategy. Section 4 discusses the application of the 
model for performance analysis of multiple parallel task 
loading, and the performances of different algorithms are 
compared through a prototype system experiment. Section 5 
presents relevant conclusions. 
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3. Methodology 
 
3.1 Logical structure and functions of adaptive 
scheduling framework based on fine-grained tasks 
Traditional multi-core programming model runtime systems 
have problems such as lack of flexibility of core resource 
allocation, lack of a unified coordinating mechanism, and 
low resource utilization rate of application program. The 
popular programming model OpenMP and Cilk runtime 
system are taken as references, and an adaptive co-
scheduling prototype system Adaptive SYStem (A-SYS), 
which is applicable to multi-core processors, was built; its 
logical structure is shown in Figure 1. A-SYS divides the 
task loads of the system into two major types, namely, 
controlled tasks and uncontrolled tasks. Controlled tasks are 
the main control objects of A-SYS, where parallel 
application programs supported by runtime systems of 

multi-core programming models such as Cilk, OpenMP, and 
TBB are positioned. Uncontrolled tasks refer to traditional 
serial programs and parallel application programs that 
cannot be controlled by multi-core runtime systems, such as 
applications developed on the basis of PThread and MPI. A-
SYS adopted relatively simple control strategies for 
uncontrolled tasks. For example, at the initial level of 
execution of application programs, corresponding processor 
core resources are distributed according to system load state. 
Dynamic control of this type of tasks will not be 
implemented during the operating process. After the task 
operation is completed, resource recycling is performed. 
Unified management of uncontrolled tasks conducted by A-
SYS reduces bad competition between controlled tasks and 
uncontrolled tasks for processor core resources and could 
effectively improve and optimize the overall efficiency of 
multi-core processor systems. 
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Fig. 1.  Logic structure of adaptive co-scheduling system 
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Fig. 2.  Logic structure of adaptive co-scheduling of controlled tasks 

 
Dynamic management and scheduling of controlled tasks 

are core parts implemented by A-SYS. As shown in Figure 1, 
A-SYS implemented resource coordinated distribution and 
dynamic scheduling of controlled tasks mainly through 
resource distribution control, runtime support library, and 
feedback control strategy between the two. In the A-SYS 
system, resource distribution controller was further 
subdivided into resource dynamic partitioning subsystem 
and resource dynamic control subsystem. The main 
functions of resource dynamic partitioning subsystem are to 
realize dynamic partitioning and grouping management of 

multi-core processor core resources according to feedback 
information and system load information of runtime and to 
reduce bad competition between different runtime systems 
for multi-core processor resources to improve and optimize 
overall system efficiency. The main function of the resource 
dynamic control subsystem is to achieve unified and 
coordinated distribution of processor resources through 
feedback control strategies to enhance the utilization rate of 
multi-core processor core resources. 

In the aspect of runtime support library, A-SYS mainly 
made the following improvements to address the problems 
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in the traditional programming model runtime system: first, 
it removed the disadvantages of the manual static 
distribution processor core resources of the traditional 
runtime system and provided application programs with a 
runtime adaptive regulation ability; second, it imported a 
runtime dynamic feedback control mechanism and 
coordinated fair resource distribution between different 
runtime systems; and finally, it imported highly efficient 
acquisition mechanism runtime dynamic behavior 
characteristics of application programs to guide and 
optimize distribution and task scheduling of multi-processor 
system resources. Figure 2 shows a logical structure of 
adaptive co-scheduling of controlled tasks, and the A-SYS 
runtime library adopted two scheduling strategies with 
extensive applications, such as work sharing scheduling 
strategy based on breadth-first principle represented by 
OpenMP and work stealing strategy based on depth-first 
principle represented by Cilk. Between different runtime 
systems, A-SYS realized coordinated distribution of multi-
core processor resources through provided resource 
distribution controller, as shown in modules in the virtual 
frame in Figure 2. Core resource distribution controller 
operates on an operating system, and it is the kernel module 
of dynamic distribution and management of multi-core 
processor core resources. In concrete implementation, 
resource distribution controller adopted the background 
Daemon method of Linux to realize dynamic distribution 
and control of processor core resources, and realized 
communication and data transmission with runtime system 
process through the methods of shared memory, semaphore, 
and the like. 
 
3.2 Adaptive control of A-SYS runtime resources 
Highly efficient realization of dynamic distribution and 
timely adjustment of processor core resources on the 
condition that normal execution of application programs is 
not affected is a complicated and difficult problem because 
of the following reasons: first, the resource regulation 
process must ensure normal operation with no interruption 
of application programs; second, ensuring accurate program 
execution results is necessary, that is, disorder between 
different program data and erroneous operating results need 
to be avoided; finally, additional expenditure due to resource 
regulation when the program is operating should be minimal 
to avoid significantly affecting program execution 
performance. In view of the above reasons, A-SYS adopted 
an indirect method to realize dynamic control and adaptive 
regulation of processor core resources, that is, A-SYS 
realized dynamic control of processor core resources through 
dynamic control of the working state of worker threads in 
the runtime system and dynamic mapping relation between 
the worker thread and the processor core. 

To realize dynamic management of processor core 
resources, A-SYS established a one-to-one mapping relation 
between the system worker thread and the processor core, 
and realized runtime’s indirect control of core resources by 
assigning different working states to each worker thread. In 
a runtime system (like OpenMP) that supports the task-
sharing scheduling strategy based on the breadth-first 
principle, A-SYS assigned three correspondingly different 
states to each worker thread, namely, working, mugging, and 
sleeping. A state transition during the execution process is 
shown in Figure 3. The different working states of the 
worker thread are described as follows: (1) working 
represented that the worker thread was under a working state, 
that is, the local working queue and the stack were under 

non-null state; (2) sleeping indicated that the worker thread 
was under the sleeping state; (3) mugging, which is a special 
sleeping state that is also called transfer state, referred to a 
situation in which a worker was under the sleeping state, and 
its local queue and stack were under the non-null state, that 
is, this worker had uncompleted tasks, and other local 
queues were tabbed as “mugged.” 
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Fig. 3.  State transition diagram of worker thread based on task-sharing 
scheduling strategy 

 
In the task-sharing scheduling strategy based on the 

breadth-first principle, the basic working principle of an A-
SYS runtime system that realizes adaptive regulation of core 
resources is that at system initialization, A-SYS establishes a 
corresponding system thread, namely, worker, for each 
processor core. Under initialization execution of the 
application program, A-SYS set one worker under the 
working state and scheduled the main thread of the 
application program to this worker, while other workers 
were under the sleeping state. During the execution process 
of the application program, according to an increase or a 
decrease in the distribution quantity of the processor core 
resource, A-SYS dynamically adjusted the working state of 
the corresponding worker thread to make it consistent with 
the actual distribution quantity of core resources. 

In the runtime system (like Cilk) of work stealing 
strategy based on depth-first principle, each worker thread 
corresponded to four different working states, namely, 
working, mugging, sleeping, and stealing, and state 
transition during its execution process, as shown in Figure 4. 
The definitions of working, mugging, and sleeping states are 
consistent with those under the task-sharing scheduling 
strategy based on the breadth-first principle. The stealing 
state represented that the worker thread was under the 
stealing state, that is, the local working queue and stack were 
empty, and the working loads of other worker threads were 
stolen according to a set stealing protocol. 

In the work stealing strategy based on the depth-first 
principle, the basic working principle of an A-SYS runtime 
system that realizes adaptive regulation of core resources is 
that at system initialization, A-SYS establishes a 
corresponding worker thread for each processor core. When 
the application program started to operate, A-SYS set one 
worker under the working state and other workers under the 
sleeping state; the main thread of the application program 
was scheduled to this worker for execution. During the 
execution process of the application program, A-SYS 
dynamically adjusted the working state of the corresponding 
worker thread according to an increase or a decrease in the 
distribution quantity of the processor core resource to make 
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it consistent with the actual distribution quantity of core resources.
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Fig. 4.  State transition diagram of worker thread based on work-stealing strategy 
 
4 Result analysis and discussion 
 
4.1 Performance analysis of typical programming model 
runtime system 
A detailed experimental verification of two typical 
programming models, namely, MIT Cilk and OpenMP 3.0, 
based on fine-grained tasks was conducted. The 

experimental platform was Sun Fire X4600 M2 32-core 
server with a 256 GB memory and Linux operating system 
kernel version 2.6.28. Test loads selected the standard test 
set officially released by Cilk [15] and the OpenMP standard 
test set Barcelona OpenMP Task Suite (BOTS) [19]. 
Detailed descriptions of the test sets are shown in Table 1 
and Table 2. 

 
Table 1. Cilk test set list and descriptions 

No. Load name Scale Load descriptions 

1 CK Searching depths of two parties are 10 
and 13 Checkers 

2 FIB Series size is 45 Fibonacci series 
3 FFT Sequence scale is 228 Fast Fourier transform 

4 Heat Granularity is 10, number of columns 
is 8,192 and number of rows is 8,192 

Heat dissipation problem based on finite difference 
method 

5 LU 8192×8192 matrix LU matrix decomposition 

6 Strassen 4096×4096 matrix Strassen algorithm is used to realize matrix 
multiplication 

 
Table 2. BOTS standard test set list and descriptions 

No. Load name Scale Load descriptions 
1 Alignment 100 sequence pairs Protein molecular sequence alignment 
2 Health 4 levels, each level has 36 cities Columbia healthcare system simulation 

3 Sort 128M integers Use one group of mixed sorting algorithm to sort 
arrays 

4 SparseLU Main matrix size is 100 and submatrix 
scale is 50 

Calculate LU decomposition of sparse matrixes 

5 Strassen 2048×2048 maxtrix Strassen algorithm is used to realize matrix 
multiplication 

 
(1) Performance speed-up ratio experiment of single 
application program 

Test results are shown in Figure 5. The experimental 
results indicate that as the number of processor cores used 
by application programs increased, most application 
programs could obtain performance speed-up ratios of 
different degrees. When a few processor cores were present 
in the system, for example, when the number of processor 
cores in Figure 5(a) did not exceed 8, the speed-up ratios of 
most Cilk application programs presented approximately a 
linear growth as the number of processor cores increased. 
However, as the number of processor cores increased further, 
the increasing amplitudes of performance speed-up ratios of 

both Cilk and OpenMP application programs and even those 
of some applications became relatively slow; the programs 
presented a descending tendency. The above experimental 
results indicated that present programming model runtime 
systems were effective when the number of processor cores 
was small, but as the number of system processor cores 
increased to more than 8 cores, their performance became 
poor, thus resulting in poor performance expandability of 
application programs. In sum, by only relying on a 
scheduling strategy provided by present programming model 
runtime systems, single parallel application programs could 
not sufficiently and effectively use all processor core 
resources. Moreover, blind distribution of excess processor 



H. M. LU, Y. J. CAO, J. J. SONG, T. Y. DI, H. Y. SUN and X. M. HAN/ 
Journal of Engineering Science and Technology Review 9 (6) (2016) 87-94 

 92 

core resources could not ensure corresponding improvement 
of performance of application programs; instead, such 
performance would probably deteriorate. 

 
(a) Clik 

 
(b) OpenMP 

Fig. 5.  Comparison of performance speed-up ratios of application loads 
 
 

(2) Performance analysis under concurrent execution of 
multiple application programs 

Previous analysis indicated that to achieve highly 
efficient usage of processor core resources, multi-core 
programming runtime systems usually included load 
balancing strategy of their internal threads. For example, 
OpenMP supported static, dynamic, and runtime scheduling 
strategies [20], and Cilk supported the work stealing 
scheduling strategy [21], [22]. However, these scheduling 
strategies were limited only to load balancing of the internal 
worker thread of a single application program without 
considering the optimized scheduling of resources of the 
entire processor system. In addition, traditional operating 
systems usually adopted a scheduling mechanism based on 
time slice and thread with a lack of a co-scheduling 
mechanism for multi-core runtime systems. The same 
experimental environment was used to conduct a 
comparative verification of performance under concurrent 
operation of multiple Cilk and OpenMP application 
programs. By submitting multiple different application 
programs and taking the minimum completion time of all 
application programs as the evaluation index, this 
experimental process conducted a comparative test between 
two different scheduling strategies, and experimental results 
are shown in Figure 6. The default represented the 
scheduling algorithm with default support from Cilk and 
OpenMP runtime systems, and each application program 

was statically distributed with 16 cores by the runtime 
system under its initialization; Equi-partitioning (EQUI) 
represented classical balanced distribution algorithms, that is, 
processor core resources were averagely distributed 
according to the number of application programs in the 
system. 

 

 
(a) Clik 

 
(b) OpenMP 

Fig. 6.  Comparison of concurrent operation time among multiple 
application programs 

 
 
As shown in Figure 6, the minimum completion time of 

tasks taken as the evaluation index resulted in a significant 
difference between the scheduling algorithm with default 
support from Cilk and OpenMP runtime systems and the 
EQUI algorithm in program execution time. Consequently, 
as the number of concurrently operating application 
programs in the system increased, the difference between the 
two different algorithms in terms of the operating time of 
application programs became obvious. For example, when 
the number of concurrently operating programs in the 
system reached 8, the difference between the two scheduling 
strategies was doubled or more. The difference in the 
operating times of the application programs under two 
different scheduling strategies indicated that many problems 
still exist in present programming model runtime models in 
practical utilization. When multiple application programs 
simultaneously operated, resource competition would be 
easily generated. Consequently, the utilization rate of 
processor core resources lowered, and the runtime 
performance of application programs reduced. 
 
4.2 Comparative analysis of A-SYS performance 
During the experimental process, three different types of test 
loads were selected. The first type was the OpenMP standard 
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test set BOTS provided by Barcelona Supercomputer Center 
[19], and its detailed information is shown in Table 2. The 
second type was the Cilk standard test set [15], and its 
detailed information is shown in Table 1. The third type was 
serial program FIBs calculating Fibonacci number and 
realized on the basis of C language. Through a comparison 
with the traditional runtime system scheduling strategy, the 
actual performance of the A-SYS system was verified. 

The experimental process is as follows: six Cilk test 
programs in Table 1, five OpenMP test programs, and one 
serial program FIBs in Table 2 generated 6×3+5×3+1×3 for 
a total of 36 test cases. Test loads in different quantities were 
randomly selected and submitted to the system in batches. 
The traditional scheduling strategy with default support from 
OpenMP and Cilk 5.4.6 runtime systems was taken as 
reference, and the completion time of the task set was taken 
as the evaluation index. A comparative verification of actual 
performance of A-SYS was conducted. During the 
experimental process, each OpenMP application load and 
Cilk application load were distributed with 16 default 
processor cores, and serial program FIBs was distributed 
with one default processor core. The experimental results are 
shown in Figure 7. 

 

 
Fig. 7.  Comparisons between the performances of A-SYS and the 
traditional scheduling algorithm 

 
 
Experimental results indicated that compared with the 

scheduling strategy with default support from traditional 
OpenMP and Cilk runtime systems, A-SYS significantly 
improved the execution efficiency of application loads, and 
as the number of concurrent application loads in the system 
increased, its advantages became more obvious. For 
example, when the number of concurrent application loads 
in the system reached 8, compared with the traditional 
scheduling strategy, A-SYS reduced the execution time of 
application loads by nearly 60%. The above experimental 
results are due to two main reasons. First, A-SYS adopted 
resource adaptive scheduling through runtime, thus 
eliminating the defects of static distribution of processor 
core resources of the traditional programming model 
runtime system and effectively improving the service 
efficiency of processor core resources and the parallel 
execution ability of application loads. Second, according to 
the operating characteristics of application loads, A-SYS 
could realize coordinated distribution and dynamic 
partitioning of processor core resources to reduce bad 
competition between processor resources at different 

application loads and improve the overall efficiency of 
multi-core processor systems. 
 
 
5. Conclusions 
 
To solve the performance optimization problem faced by 
multi-core processor systems with an increase in the number 
of cores, an adaptive co-scheduling method applicable to 
multi-core parallel processor systems was proposed. Starting 
from a quantitative analysis of scheduling of tasks, the 
multivariate scheduling problem with constraints of mutual 
exclusive access to shared resources was modeled in this 
paper, and the blocking time of tasks under the random task 
stealing mechanism and schedulability loss generated by 
adaptive scheduling were analyzed. On the basis of feedback 
control theory and with the use of online competition 
optimization theory, an adaptive co-scheduling framework 
with function of dynamic perception of task parallelism 
degree was established. The following conclusions were 
drawn: 
 
(1) Through the abstraction of the task scheduling problem 
of multi-core processor systems into an online scheduling 
problem model, an online competition analysis method was 
used for analysis; results indicate that the adaptive 
scheduling algorithm was of minor time complexity. 
(2) The proposed resource adaptive scheduling algorithm for 
dynamic perception of task parallelism degree could realize 
stability and convergence rate of closed-loop feedback 
control model through control theory z-transformation rule 
and transfer function. 
(3) Online analysis could acquire the communication and 
synchronization relationship between multi-core threads. 
Random work stealing scheduling strategy realized by 
dynamic compilation technique had less scheduling cost and 
was more applicable to multi-core processing systems. 

 
An adaptive scheduling method with dynamic perception 

of core resources was proposed in this paper. This method is 
of significant applicability to the issue of performance 
optimization of multi-core processors in the future. A study 
was conducted with focus on homogeneous multi-core 
processor systems. Homogeneous multi-core processors are 
gradually maturing with technological progress. Thus, the 
next step is to study an adaptive scheduling method that is 
applicable to heterogeneous multi-core processor systems 
and is based on the proposed adaptive work stealing 
scheduling strategy to realize load balancing of multi-core 
processor systems under asymmetric processing 
performance. 
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