

Journal of Engineering Science and Technology Review 9 (6) (2016) 87- 94

Research Article

Adaptive Scheduling Framework for Multi-Core Systems Based on the Task-Parallel
Programming Model

H. M. LU1, Y. J. CAO2, *, J. J. SONG1, T. Y. DI1, H. Y. SUN3 and X. M. HAN1

1 School of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China

2 School of Software, Zhengzhou University, Zhengzhou 450000, China
3 School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore

Received 19 May 2016; Accepted 30 November 2016

Abstract

With the rapid development of multi-core processor systems, software parallelization has become the main approach in
improving the efficiency of multi-core processors. However, the most updated multi-core parallel programming models
have defects, such as poor scalability and intensive competition in processor core resources. To prevent congestion of
system processor core resources and to improve equal distribution of processing resource and service efficiency, the
adaptive co-scheduling problem of multi-core runtime systems was studied in this paper. First, on the basis of the online
competition analysis method, a quantitative analysis of task schedulability was conducted. Second, a random work
stealing strategy was combined with work stealing frequency to dynamically redistribute multi-core resources. Third, on
the basis of closed-loop feedback control theory, an adaptive co-scheduling method that could obtain a dynamic
perception of the degree of task parallelism was proposed, and multi-core adaptive co-scheduling system A-SYS
(Adaptive SYStem) based on fine-grained task programming model was designed and implemented. Finally, the
proposed framework was used to conduct performance analysis of multiple parallel tasks, and the performances of
different algorithms were compared through a prototype system experiment. Experimental results indicated that the
proposed adaptive scheduling method and a dynamic perception of core resources could effectively improve mutual
competition between inter-core tasks and shared resources. Lower damage cost during task scheduling process, and
significantly elevated the service efficiency of multi-core processors and equal distribution in resource allocation.
Compared with traditional scheduling algorithm EQUI (EQUI-partitioning), A-SYS shortened the running time of
application programs by nearly 50%, and as the number of application programs increased, the effect of A-SYS became
more prominent. This finding is of significant reference value to performance problems caused by a continuous increase
in the inner core scale of multi-core processors in the future.

 Keywords: Multi-core processor system, Fine-grained task programming model, Runtime system, Adaptive scheduling
 __

1. Introduction

In recent years, with the elevated circuit integration and
dominant frequency of single-core processor chips,
processor technology has encountered problems, such as
manufacturing cost, power consumption, and heat
dissipation. As a result, multi-core and multi-thread
technology is steered toward a new direction in the
development of processor systems. A multi-core processor,
which is also called chip multiprocessor (CMP), integrates
several processor cores with independent functions on the
physical chip of one processor and takes the entire processor
chip as a uniform structure to provide outward computing
service. Unlike the traditional single-core processor, a multi-
core processor increases the number of physical threads or
tasks simultaneously executed by the entire processor
multiple times by integrating several single-thread cores or
multi-thread processing cores, thereby greatly improving the
parallel processing capability of the processor system. At
present, generalized processor products that integrate dozens

of cores are available. With the progress of integrated circuit
manufacturing process and increased computing demand,
future processors will integrate hundreds and even thousands
of cores. A continuous increase in the kernel scale of multi-
core processor systems guarantees its sustainably enhanced
abilities in computing and data processing; however, without
parallel programming languages or support from the system
software level, the improvement of this hardware capability
cannot enhance application program performance, and this
issue is one of the most severe challenges in the multi-core
era [1].

The concepts of parallel programming and computation
emerged early. However, even after several years, parallel
computing has not become the mainstream of pervasive
computing. The emergence and the rapid development of
multi-core processor systems have made people realize that
such systems are suitable only for designing and
constructing parallel hardware, and the difficulty and
challenges faced by application programs lie in the design of
a parallelization method with high yield and a highly
efficient parallel execution model. To improve the parallel
programming ability of multi-core processor systems and
ensure service efficiency of processor core resources and
transportability of application programs in different

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

Jestr

• E-mail address: caoyj@zzu.edu.cn
ISSN: 1791-2377 © 2016 Eastern Macedonia and Thrace Institute of Technology. All rights reserved.

H. M. LU, Y. J. CAO, J. J. SONG, T. Y. DI, H. Y. SUN and X. M. HAN/
Journal of Engineering Science and Technology Review 9 (6) (2016) 87-94

 88

platforms, most multi-core programming models adopt the
parallel model based on fine-grained tasks [2]. The term
“fine-grained task” refers to a special object that includes
several program instructions and can be independently
executed. It is a smaller parallel granularity than the thread
of an operating system. Compared with a system thread of
an operating system, a fine-grained task has the following
features: (1) establishment and termination of a task are
more efficient and flexible than those n a system thread; (2)
a task usually has a shorter executable code than a system
thread does and requires a smaller expenditure on
management and scheduling, and it can easily realize system
load balancing; (3) a task is usually managed and scheduled
by the runtime system and is relatively independent from the
operating system, thereby greatly improving the
transportability of the application program; and (4) task-
based parallel programming can support irregular
application better with a broader application range. However,
traditional multi-core runtime systems still have numerous
problems and deficiencies in supporting fine-grained tasks,
thereby resulting in a low resource utilization rate of
application programs and poor system scalability.
Consequently, a single application program cannot take full
advantage of processor core resources, and the execution
performance of the application program cannot increase
correspondingly as usable core resources increase.

To address the defects of current multi-core runtime
systems, which easily cause intense competition among
processor core resources and poor system scalability, an
adaptive co-scheduling problem of multi-core runtime
systems was studied in this paper. Resource distribution,
runtime control, and task execution were considered an
organic whole, and then an adaptive co-scheduling
framework was proposed based on the concept of dynamic
feedback control. A quantitative analysis method of
scheduling based on work stealing strategy and work
stealing frequency was studied from the aspect of task
schedulability. Through online competition analysis, the
performance analysis of the time complexity of the adaptive
scheduling algorithm was designed and implemented.

2. State of the art

Parallel programming model, as an intermediate bridge that
connects the application program developer and the
hardware architecture, is crucial to pervasive parallel
programming of multi-core processors. Good parallel
programming model not only simplifies the programming
process of parallel programs and lowers the design difficulty
of application programs but also provides an application
program with strong parallel execution capacity, thereby
achieving a good balance between two mutually
contradictory goals, namely, and software productivity and
execution efficiency.

In a broad sense, parallel programming models that
implement parallelization of application programs can be
divided into data parallel programming model and task
parallel programming model [3]. The data parallel
programming model usually focuses on data, and it executes
data parallel processing through reasonable data partitioning
and balanced data distribution onto parallel computing nodes.
In traditional high-performance computing, the data parallel
programming model is applied extensively, and typical
representatives of this model are MPI parallel programming
model [4], which is based on message passing and the

MapReduce parallel programming model proposed by
Google [5]. The data parallel programming model is
designed mainly for large-scale data processing. During this
process, the program developer is responsible for data
parallel granularity partitioning, data synchronization, and
even system load balancing. Thus, the application range of
this model is affected by various limitations. Compared with
the traditional data parallel programming model, parallel
programming model based on fine-grained tasks conducts
parallelism expression from the computing task angle. In the
parallel model based on fine-grained tasks, the
programmers’ emphasis is the identification of tasks or
decomposition into computer subtasks, while the compiler
and the runtime system are responsible for dynamic
generation, task scheduling, and load balancing of tasks. The
implementation method, which decomposes and separates
task scheduling, provides strong productivity and execution
capability [6], [7]. Research and practices in recent years
indicate that the parallel model based on fine-grained tasks
has become a powerful tool in implementing pervasive
parallel programming. For example, a high-productivity
computing systems project funded by the U.S. Defense
Advanced Research Projects Agency used Chapel from Gray
Corporation [8], Fortress of Sun Corporation (now Oracle
Company) [9], and X10 from IBM [10], which are three
programming languages developed on the basis of the
parallel programming model based on fine-grained tasks. In
the past several years, parallel programming models based
on fine-grained tasks have rapidly become popular and have
undergone development, including the concurrency library
ForkJoin framework of Java 5[11], [12], the thread building
blocks (TBB) of Intel [13], the task parallel library of the
Microsoft .NET framework [14], and Cilk/Cilk++[15], [16].
OpenMP API specification mainly supported data parallel
model before version 2.5, and the concept of task
parallelization was imported into OpenMP 3.0 API
specification [17], [18] in 2008.

In sum, various types of runtime systems that support
multi-core programming model currently exist. Various
runtime systems are mutually independent, but they cannot
mutually exchange information. When multiple application
programs operate concurrently, a lack of a unified resource
distribution coordinating mechanism will cause malicious
competition among core resources, thereby reducing the
overall handling capacity of the system. To address the
problems and deficiencies faced by multi-core runtime
systems, this paper studied an adaptive co-scheduling
method that is applicable to multi-core processor systems.
Analysis and design were conducted from various aspects,
such as optimized resource allocation, runtime control, and
highly efficient task scheduling to enhance the easy usability,
adaptability and cooperation of the runtime programming
model, and to optimize and improve the overall efficiency
and expandability of multi-core processor systems.

The remainder of this paper is organized as follows:
Section 3 describes the adaptive scheduling framework
based on fine-grained tasks and its basic principle, and it
presents a state transition method based on the scheduling
strategy of task sharing and worker threads of the work
stealing strategy. Section 4 discusses the application of the
model for performance analysis of multiple parallel task
loading, and the performances of different algorithms are
compared through a prototype system experiment. Section 5
presents relevant conclusions.

H. M. LU, Y. J. CAO, J. J. SONG, T. Y. DI, H. Y. SUN and X. M. HAN/
Journal of Engineering Science and Technology Review 9 (6) (2016) 87-94

 89

3. Methodology

3.1 Logical structure and functions of adaptive
scheduling framework based on fine-grained tasks
Traditional multi-core programming model runtime systems
have problems such as lack of flexibility of core resource
allocation, lack of a unified coordinating mechanism, and
low resource utilization rate of application program. The
popular programming model OpenMP and Cilk runtime
system are taken as references, and an adaptive co-
scheduling prototype system Adaptive SYStem (A-SYS),
which is applicable to multi-core processors, was built; its
logical structure is shown in Figure 1. A-SYS divides the
task loads of the system into two major types, namely,
controlled tasks and uncontrolled tasks. Controlled tasks are
the main control objects of A-SYS, where parallel
application programs supported by runtime systems of

multi-core programming models such as Cilk, OpenMP, and
TBB are positioned. Uncontrolled tasks refer to traditional
serial programs and parallel application programs that
cannot be controlled by multi-core runtime systems, such as
applications developed on the basis of PThread and MPI. A-
SYS adopted relatively simple control strategies for
uncontrolled tasks. For example, at the initial level of
execution of application programs, corresponding processor
core resources are distributed according to system load state.
Dynamic control of this type of tasks will not be
implemented during the operating process. After the task
operation is completed, resource recycling is performed.
Unified management of uncontrolled tasks conducted by A-
SYS reduces bad competition between controlled tasks and
uncontrolled tasks for processor core resources and could
effectively improve and optimize the overall efficiency of
multi-core processor systems.

Processor core

OS

... ...
...

Feedback control
strategy

Simple control
strategy

C
IL

K

O
PE

N
M

P

Se
ria

l t
as

k

Controlled task Non-controlled task

...PT
H

R
EA

D

… … …

R
un

tim
e

sy
st

em

Resource allocation controller
Resource allocation Resource control

Fig. 1. Logic structure of adaptive co-scheduling system

Controlled task Controlled task

Runtime library Runtime library

Resource scheduling adapter
A-WS

Resource scheduling adapter
A-CONTROL

C
or

e
1

C
or

e
2

C
or

e
P

…

… C
or

e
1

C
or

e
2

C
or

e
P

…

…

OpenMPCilk

Breadth-first
Task-sharing scheduling

Depth-first
Task-stealing scheduling

In
fo

rm
at

io
n

fe
ed

ba
ck

In
fo

rm
at

io
n

fe
ed

ba
ck

Resource co-allocationResource co-allocation

Fig. 2. Logic structure of adaptive co-scheduling of controlled tasks

Dynamic management and scheduling of controlled tasks

are core parts implemented by A-SYS. As shown in Figure 1,
A-SYS implemented resource coordinated distribution and
dynamic scheduling of controlled tasks mainly through
resource distribution control, runtime support library, and
feedback control strategy between the two. In the A-SYS
system, resource distribution controller was further
subdivided into resource dynamic partitioning subsystem
and resource dynamic control subsystem. The main
functions of resource dynamic partitioning subsystem are to
realize dynamic partitioning and grouping management of

multi-core processor core resources according to feedback
information and system load information of runtime and to
reduce bad competition between different runtime systems
for multi-core processor resources to improve and optimize
overall system efficiency. The main function of the resource
dynamic control subsystem is to achieve unified and
coordinated distribution of processor resources through
feedback control strategies to enhance the utilization rate of
multi-core processor core resources.

In the aspect of runtime support library, A-SYS mainly
made the following improvements to address the problems

H. M. LU, Y. J. CAO, J. J. SONG, T. Y. DI, H. Y. SUN and X. M. HAN/
Journal of Engineering Science and Technology Review 9 (6) (2016) 87-94

 90

in the traditional programming model runtime system: first,
it removed the disadvantages of the manual static
distribution processor core resources of the traditional
runtime system and provided application programs with a
runtime adaptive regulation ability; second, it imported a
runtime dynamic feedback control mechanism and
coordinated fair resource distribution between different
runtime systems; and finally, it imported highly efficient
acquisition mechanism runtime dynamic behavior
characteristics of application programs to guide and
optimize distribution and task scheduling of multi-processor
system resources. Figure 2 shows a logical structure of
adaptive co-scheduling of controlled tasks, and the A-SYS
runtime library adopted two scheduling strategies with
extensive applications, such as work sharing scheduling
strategy based on breadth-first principle represented by
OpenMP and work stealing strategy based on depth-first
principle represented by Cilk. Between different runtime
systems, A-SYS realized coordinated distribution of multi-
core processor resources through provided resource
distribution controller, as shown in modules in the virtual
frame in Figure 2. Core resource distribution controller
operates on an operating system, and it is the kernel module
of dynamic distribution and management of multi-core
processor core resources. In concrete implementation,
resource distribution controller adopted the background
Daemon method of Linux to realize dynamic distribution
and control of processor core resources, and realized
communication and data transmission with runtime system
process through the methods of shared memory, semaphore,
and the like.

3.2 Adaptive control of A-SYS runtime resources
Highly efficient realization of dynamic distribution and
timely adjustment of processor core resources on the
condition that normal execution of application programs is
not affected is a complicated and difficult problem because
of the following reasons: first, the resource regulation
process must ensure normal operation with no interruption
of application programs; second, ensuring accurate program
execution results is necessary, that is, disorder between
different program data and erroneous operating results need
to be avoided; finally, additional expenditure due to resource
regulation when the program is operating should be minimal
to avoid significantly affecting program execution
performance. In view of the above reasons, A-SYS adopted
an indirect method to realize dynamic control and adaptive
regulation of processor core resources, that is, A-SYS
realized dynamic control of processor core resources through
dynamic control of the working state of worker threads in
the runtime system and dynamic mapping relation between
the worker thread and the processor core.

To realize dynamic management of processor core
resources, A-SYS established a one-to-one mapping relation
between the system worker thread and the processor core,
and realized runtime’s indirect control of core resources by
assigning different working states to each worker thread. In
a runtime system (like OpenMP) that supports the task-
sharing scheduling strategy based on the breadth-first
principle, A-SYS assigned three correspondingly different
states to each worker thread, namely, working, mugging, and
sleeping. A state transition during the execution process is
shown in Figure 3. The different working states of the
worker thread are described as follows: (1) working
represented that the worker thread was under a working state,
that is, the local working queue and the stack were under

non-null state; (2) sleeping indicated that the worker thread
was under the sleeping state; (3) mugging, which is a special
sleeping state that is also called transfer state, referred to a
situation in which a worker was under the sleeping state, and
its local queue and stack were under the non-null state, that
is, this worker had uncompleted tasks, and other local
queues were tabbed as “mugged.”

Mugging

Working
Sleeping

De
qu

e e
m

pt
y

Sleep signal

Wakeup signal

Deque

nonem
pty

M
ug

 fa
ile

d

M
ug failed

Fig. 3. State transition diagram of worker thread based on task-sharing
scheduling strategy

In the task-sharing scheduling strategy based on the

breadth-first principle, the basic working principle of an A-
SYS runtime system that realizes adaptive regulation of core
resources is that at system initialization, A-SYS establishes a
corresponding system thread, namely, worker, for each
processor core. Under initialization execution of the
application program, A-SYS set one worker under the
working state and scheduled the main thread of the
application program to this worker, while other workers
were under the sleeping state. During the execution process
of the application program, according to an increase or a
decrease in the distribution quantity of the processor core
resource, A-SYS dynamically adjusted the working state of
the corresponding worker thread to make it consistent with
the actual distribution quantity of core resources.

In the runtime system (like Cilk) of work stealing
strategy based on depth-first principle, each worker thread
corresponded to four different working states, namely,
working, mugging, sleeping, and stealing, and state
transition during its execution process, as shown in Figure 4.
The definitions of working, mugging, and sleeping states are
consistent with those under the task-sharing scheduling
strategy based on the breadth-first principle. The stealing
state represented that the worker thread was under the
stealing state, that is, the local working queue and stack were
empty, and the working loads of other worker threads were
stolen according to a set stealing protocol.

In the work stealing strategy based on the depth-first
principle, the basic working principle of an A-SYS runtime
system that realizes adaptive regulation of core resources is
that at system initialization, A-SYS establishes a
corresponding worker thread for each processor core. When
the application program started to operate, A-SYS set one
worker under the working state and other workers under the
sleeping state; the main thread of the application program
was scheduled to this worker for execution. During the
execution process of the application program, A-SYS
dynamically adjusted the working state of the corresponding
worker thread according to an increase or a decrease in the
distribution quantity of the processor core resource to make

H. M. LU, Y. J. CAO, J. J. SONG, T. Y. DI, H. Y. SUN and X. M. HAN/
Journal of Engineering Science and Technology Review 9 (6) (2016) 87-94

 91

it consistent with the actual distribution quantity of core resources.

Mugging

Working Sleeping

Stealing

Stea
l su

cce
ssf

ul

Deq
ue

 em
pty

Mug failed

Sleep signal

Sleep signal

Wakeup signal

Deque nonem
pty

Mug
 su

cce
ssf

ul

Sleep signal

Steal failed

Fig. 4. State transition diagram of worker thread based on work-stealing strategy

4 Result analysis and discussion

4.1 Performance analysis of typical programming model
runtime system
A detailed experimental verification of two typical
programming models, namely, MIT Cilk and OpenMP 3.0,
based on fine-grained tasks was conducted. The

experimental platform was Sun Fire X4600 M2 32-core
server with a 256 GB memory and Linux operating system
kernel version 2.6.28. Test loads selected the standard test
set officially released by Cilk [15] and the OpenMP standard
test set Barcelona OpenMP Task Suite (BOTS) [19].
Detailed descriptions of the test sets are shown in Table 1
and Table 2.

Table 1. Cilk test set list and descriptions

No. Load name Scale Load descriptions

1 CK Searching depths of two parties are 10
and 13 Checkers

2 FIB Series size is 45 Fibonacci series
3 FFT Sequence scale is 228 Fast Fourier transform

4 Heat Granularity is 10, number of columns
is 8,192 and number of rows is 8,192

Heat dissipation problem based on finite difference
method

5 LU 8192×8192 matrix LU matrix decomposition

6 Strassen 4096×4096 matrix Strassen algorithm is used to realize matrix
multiplication

Table 2. BOTS standard test set list and descriptions

No. Load name Scale Load descriptions
1 Alignment 100 sequence pairs Protein molecular sequence alignment
2 Health 4 levels, each level has 36 cities Columbia healthcare system simulation

3 Sort 128M integers Use one group of mixed sorting algorithm to sort
arrays

4 SparseLU Main matrix size is 100 and submatrix
scale is 50

Calculate LU decomposition of sparse matrixes

5 Strassen 2048×2048 maxtrix Strassen algorithm is used to realize matrix
multiplication

(1) Performance speed-up ratio experiment of single
application program

Test results are shown in Figure 5. The experimental
results indicate that as the number of processor cores used
by application programs increased, most application
programs could obtain performance speed-up ratios of
different degrees. When a few processor cores were present
in the system, for example, when the number of processor
cores in Figure 5(a) did not exceed 8, the speed-up ratios of
most Cilk application programs presented approximately a
linear growth as the number of processor cores increased.
However, as the number of processor cores increased further,
the increasing amplitudes of performance speed-up ratios of

both Cilk and OpenMP application programs and even those
of some applications became relatively slow; the programs
presented a descending tendency. The above experimental
results indicated that present programming model runtime
systems were effective when the number of processor cores
was small, but as the number of system processor cores
increased to more than 8 cores, their performance became
poor, thus resulting in poor performance expandability of
application programs. In sum, by only relying on a
scheduling strategy provided by present programming model
runtime systems, single parallel application programs could
not sufficiently and effectively use all processor core
resources. Moreover, blind distribution of excess processor

H. M. LU, Y. J. CAO, J. J. SONG, T. Y. DI, H. Y. SUN and X. M. HAN/
Journal of Engineering Science and Technology Review 9 (6) (2016) 87-94

 92

core resources could not ensure corresponding improvement
of performance of application programs; instead, such
performance would probably deteriorate.

(a) Clik

(b) OpenMP

Fig. 5. Comparison of performance speed-up ratios of application loads

(2) Performance analysis under concurrent execution of
multiple application programs

Previous analysis indicated that to achieve highly
efficient usage of processor core resources, multi-core
programming runtime systems usually included load
balancing strategy of their internal threads. For example,
OpenMP supported static, dynamic, and runtime scheduling
strategies [20], and Cilk supported the work stealing
scheduling strategy [21], [22]. However, these scheduling
strategies were limited only to load balancing of the internal
worker thread of a single application program without
considering the optimized scheduling of resources of the
entire processor system. In addition, traditional operating
systems usually adopted a scheduling mechanism based on
time slice and thread with a lack of a co-scheduling
mechanism for multi-core runtime systems. The same
experimental environment was used to conduct a
comparative verification of performance under concurrent
operation of multiple Cilk and OpenMP application
programs. By submitting multiple different application
programs and taking the minimum completion time of all
application programs as the evaluation index, this
experimental process conducted a comparative test between
two different scheduling strategies, and experimental results
are shown in Figure 6. The default represented the
scheduling algorithm with default support from Cilk and
OpenMP runtime systems, and each application program

was statically distributed with 16 cores by the runtime
system under its initialization; Equi-partitioning (EQUI)
represented classical balanced distribution algorithms, that is,
processor core resources were averagely distributed
according to the number of application programs in the
system.

(a) Clik

(b) OpenMP

Fig. 6. Comparison of concurrent operation time among multiple
application programs

As shown in Figure 6, the minimum completion time of

tasks taken as the evaluation index resulted in a significant
difference between the scheduling algorithm with default
support from Cilk and OpenMP runtime systems and the
EQUI algorithm in program execution time. Consequently,
as the number of concurrently operating application
programs in the system increased, the difference between the
two different algorithms in terms of the operating time of
application programs became obvious. For example, when
the number of concurrently operating programs in the
system reached 8, the difference between the two scheduling
strategies was doubled or more. The difference in the
operating times of the application programs under two
different scheduling strategies indicated that many problems
still exist in present programming model runtime models in
practical utilization. When multiple application programs
simultaneously operated, resource competition would be
easily generated. Consequently, the utilization rate of
processor core resources lowered, and the runtime
performance of application programs reduced.

4.2 Comparative analysis of A-SYS performance
During the experimental process, three different types of test
loads were selected. The first type was the OpenMP standard

H. M. LU, Y. J. CAO, J. J. SONG, T. Y. DI, H. Y. SUN and X. M. HAN/
Journal of Engineering Science and Technology Review 9 (6) (2016) 87-94

 93

test set BOTS provided by Barcelona Supercomputer Center
[19], and its detailed information is shown in Table 2. The
second type was the Cilk standard test set [15], and its
detailed information is shown in Table 1. The third type was
serial program FIBs calculating Fibonacci number and
realized on the basis of C language. Through a comparison
with the traditional runtime system scheduling strategy, the
actual performance of the A-SYS system was verified.

The experimental process is as follows: six Cilk test
programs in Table 1, five OpenMP test programs, and one
serial program FIBs in Table 2 generated 6×3+5×3+1×3 for
a total of 36 test cases. Test loads in different quantities were
randomly selected and submitted to the system in batches.
The traditional scheduling strategy with default support from
OpenMP and Cilk 5.4.6 runtime systems was taken as
reference, and the completion time of the task set was taken
as the evaluation index. A comparative verification of actual
performance of A-SYS was conducted. During the
experimental process, each OpenMP application load and
Cilk application load were distributed with 16 default
processor cores, and serial program FIBs was distributed
with one default processor core. The experimental results are
shown in Figure 7.

Fig. 7. Comparisons between the performances of A-SYS and the
traditional scheduling algorithm

Experimental results indicated that compared with the

scheduling strategy with default support from traditional
OpenMP and Cilk runtime systems, A-SYS significantly
improved the execution efficiency of application loads, and
as the number of concurrent application loads in the system
increased, its advantages became more obvious. For
example, when the number of concurrent application loads
in the system reached 8, compared with the traditional
scheduling strategy, A-SYS reduced the execution time of
application loads by nearly 60%. The above experimental
results are due to two main reasons. First, A-SYS adopted
resource adaptive scheduling through runtime, thus
eliminating the defects of static distribution of processor
core resources of the traditional programming model
runtime system and effectively improving the service
efficiency of processor core resources and the parallel
execution ability of application loads. Second, according to
the operating characteristics of application loads, A-SYS
could realize coordinated distribution and dynamic
partitioning of processor core resources to reduce bad
competition between processor resources at different

application loads and improve the overall efficiency of
multi-core processor systems.

5. Conclusions

To solve the performance optimization problem faced by
multi-core processor systems with an increase in the number
of cores, an adaptive co-scheduling method applicable to
multi-core parallel processor systems was proposed. Starting
from a quantitative analysis of scheduling of tasks, the
multivariate scheduling problem with constraints of mutual
exclusive access to shared resources was modeled in this
paper, and the blocking time of tasks under the random task
stealing mechanism and schedulability loss generated by
adaptive scheduling were analyzed. On the basis of feedback
control theory and with the use of online competition
optimization theory, an adaptive co-scheduling framework
with function of dynamic perception of task parallelism
degree was established. The following conclusions were
drawn:

(1) Through the abstraction of the task scheduling problem
of multi-core processor systems into an online scheduling
problem model, an online competition analysis method was
used for analysis; results indicate that the adaptive
scheduling algorithm was of minor time complexity.
(2) The proposed resource adaptive scheduling algorithm for
dynamic perception of task parallelism degree could realize
stability and convergence rate of closed-loop feedback
control model through control theory z-transformation rule
and transfer function.
(3) Online analysis could acquire the communication and
synchronization relationship between multi-core threads.
Random work stealing scheduling strategy realized by
dynamic compilation technique had less scheduling cost and
was more applicable to multi-core processing systems.

An adaptive scheduling method with dynamic perception

of core resources was proposed in this paper. This method is
of significant applicability to the issue of performance
optimization of multi-core processors in the future. A study
was conducted with focus on homogeneous multi-core
processor systems. Homogeneous multi-core processors are
gradually maturing with technological progress. Thus, the
next step is to study an adaptive scheduling method that is
applicable to heterogeneous multi-core processor systems
and is based on the proposed adaptive work stealing
scheduling strategy to realize load balancing of multi-core
processor systems under asymmetric processing
performance.

Acknowledgements
This work was supported by the Science and Technology
Development Plan of Jilin Province under the project No.
20150204005GX, the Significant Science and Technology
Plan of Changchun City under the project No. 14KG082, the
Industrial Technology Research and Development Special
Project of Jilin Province under Grant No. 2011006-9. This
work was also supported by the National Natural Science
Foundation of China under the project No.U1304603, No.
11301488, and No. 61472049.

H. M. LU, Y. J. CAO, J. J. SONG, T. Y. DI, H. Y. SUN and X. M. HAN/
Journal of Engineering Science and Technology Review 9 (6) (2016) 87-94

 94

References

1.Pile D., “Microprocessors: electronic-photonic chip”, Nature

Photonics, 10(3), 2016, pp. 145-145.
2. Nandivada V K., Shirako J., Zhao J., Sarkar V., “A transformation

framework for optimizing task-parallel programs”, ACM
Transactions on Programming Languages and Systems, 35(1),
2013, pp. 1-48.

3. Dongarra J., Abalenkovs M., Abdelfattah A., “Parallel programming
models for dense linear algebra on heterogeneous systems”,
Supercomputing Frontiers and Innovations, 2(4), 2016, pp. 67-86.

4. Gropp W., Thakur R., “Thread-safety in an MPI implementation:
requirements and analysis”, Parallel Computing, 33(9), 2007, pp.
595-604.

5. Kumar R., Moseley B., Vassilvitskii S., “Fast greedy algorithms in
mapreduce and streaming”, ACM Transactions on Parallel
Computing, 2(3), 2015, pp. 14-28.

6. Ayguadé E., Copty N., Duran A., Hoeflinger J., Lin Y., Massaioli
F., Teruel X., Unnikrishnan P., and Zhang G., “The design of
openMP tasks”, IEEE Transactions on Parallel and Distributed
Systems, 20(3), 2008, pp. 404-418.

7. Streit K., Doerfert J., Hammacher C., “Generalized task parallelism”,
ACM Transactions on Architecture and Code Optimization”, 12(1),
2015, pp. 1-25.

8. Chamberlain B., Callahan D., and Zima H., “Parallel
programmability and the chapel language”, International Journal of
High Performance Computing Applications, 21(3), 2007, pp. 291-
312.

9. Allen E., Chase D., Hallett J., Luchangco V., Maessen J., Ryu S.,
Steele Jr G., Tobin-Hochstadt S., Dias J., Eastlund C., “The fortress
language specification”, Sun Microsystems, 139(1), 2005, pp. 140-
152.

10. Cunningham D., Grove D., Herta B., “Resilient X10: efficient
failure-aware programming”, ACM SIGPLAN Notices, 49(8), 2014,
pp. 67-80.

11. Leijen D., Schulte W., Burckhardt S., “The design of a task parallel
library”, ACM SIGPLAN Notices, 44(10), 2009, pp. 227-242.

12. Zambas C., Luján M., “Introducing aspects to the implementation of
a java fork/join framework”, Algorithms and Architectures for
Parallel Processing, 5022(1), 2008, pp. 294-304.

13. Pheatt C., “Intel threading building blocks”, Journal of Computing
Sciences in Colleges, 23(4), 2008, pp. 298-298.

14. Leijen D., Schulte W., Burckhardt S., “The design of a task parallel
library,” ACM SIGPLAN Notices, 44(10), 2009, pp. 227-242.

15. Blumofe R D., Joerg C F., Kuszmaul B C., Leiserson C E., Randall
K H., Zhou Y., “Cilk: An efficient multithreaded runtime system,”
Journal of Parallel and Distributed Computing, 37(1), 1996, pp.
55-69.

16. Leiserson C., “The Cilk++ concurrency platform,” The Journal of
Supercomputing, 51(3), 2010, pp. 244-257.

17. Chapman B., Huang L., “Enhancing openMP and its
implementation for programming multicore systems”, Parallel
computing: architectures, algorithms, and applications, 15(2),
2008, pp. 3-18.

18. Broquedis F., Diakhaté F., Thibault S., Aumage O., Namyst R.,
Wacrenier P., “Scheduling dynamic openmp applications over
multicore architectures”, OpenMP in a New Era of Parallelism,
5004(1), 2010, pp. 170-180.

19. Massaioli F., Filippo C., Massimo B., “OpenMP parallelization of
agent-based models”, Parallel Computing, 31(10), 2005, pp: 1066-
1081.

20. Duran A., “A proposal to extend the openMP tasking model with
dependent tasks”, International Journal of Parallel Programming,
37(3), 2009, pp. 292-305.

21. Liao C., Hernandez O., Chapman B., Chen W., Zheng W., “Openuh:
An optimizing, portable openMP compiler”, Concurrency and
Computation: Practice and Experience, 19(18), 2007, pp. 2317-
2332.

22. Yu F., Yang S C., Wang F., “Symbolic consistency checking of
OpenMp parallel programs”, ACM SIGPLAN Notices, 47(5), 2012,
pp: 350-355.

23. Edmonds J., “Scheduling in the dark (improved result),” Theoretical
Computer Science, 235(1), 2007, pp. 109-141.

