
	

	

Journal of Engineering Science and Technology Review 9 (5) (2016) 171 - 175	

	
Research Article	

Online Generation of Constant Mulitplication Accelerators

M. Dasygenis and I. Petrousov

Department of Informatics and Telecommunication Engineering, University of Western Macedonia, Kozani – 50100, Greece.

Received 30 June 2015; Accepted 25 January 2016

__

Abstract

The rising complexity of embedded digital applications and the growing importance of time-to-market require EDA
tools to automate the design and implementation process of various IP blocks. One very important class of EDA tools is
the generation of hardware descriptions for popular IP blocks. The multiplication by an integer constant is a special type
of problem that is required in a plethora of situations. Here, we present an online tool that can generate HDL descriptions
constant multiplication intellectual property blocks, using only elementary operations, like shifting and addition. Our
synthesized circuits on Xilinx Virtex 6 FPGA XC6VLX760, operate up to 589 Mhz.

Keywords: Constant multiplication , EDA tool, HDL, IP
__

1. Introduction

More and more components are implemented as IP blocks
on the same silicon, raising the number of transistors on the
same die to billions. The integration of all these IP blocks is
a difficult task that can intimidate even the best design
teams, especially when there is lack of IP block support.
Furthermore, some researchers and organizations are
investigating and investing on the implementation of some
algorithms in FPGA accelerators [1], a daunting task that
requires many EDA tools to support and alleviate the
hardware complexities.
 Multiplication by an integer constant is a fundamental
operation in algorithms that require some kind of matrix
calculations, like Karatsuba algorithm on large integer
multiplication, or the fast approximate computation of
consecutive values of a polynomial. Furthermore, in case
that a design space exploration is required, many circuits
descriptions are needed and thus the efficiency of the team
plummets. This places a lot of pressure on these teams to
develop quickly with the traditional methods of edit,
compile, simulate and verify. If only a tool could quickly
generate parametrized, verified and accurate HDL models
for such circuits, the team could reap considerable benefits
not only in development time and productivity, but also in
code maintainability and readability.
 We noticed this shortcoming and decided to create a tool
that will be able to create custom constant multiplication IP
blocks, with or without pipeline to be used for custom
architectures. Thus, our major contribution of our work is
that we present a public web accessible tool that can create
very fast syntactically correct register-transfer-level VHDL
description of a constant IP block multiplications1.
 The rest of this paper is structured as follows. In the next
section (Section 2) we present the importance of constant
multiplication, while in Section 3 we discuss some related

																																																													
1 http://arch.icte.uowm.gr/hdl/constant_multiplier.php

work. We present our algorithm in Section 4 and our tool in
Section 5. The output of our tool is discussed in Section 6.
Finally, we present some experimental results in Section 7.

2. Establishment of the multiplication function

Constant multiplication is a function much more
complicated than addition. In the early days of
microprocessors it was established that it was necessary to
create a specialized circuit that will perform this task [2].
Contemporary digital circuits that perform digital signal
processing (DSP), error correction codes (ECC), fast fourier
transformations (FFT) all implement this function [3], [6].
Specifically, FFT processing is one of the most critical
components in the orthogonal frequency division
multiplexing (OFDM) [4]. OFDM itself is used in
technologies including WiMax, WAN and LTE just to
mention a few.
 Perhaps the most important inception in improving the
speed of multiplication was made by Wallace [5], who used
full adders (FA) to add more than three numbers without
carry propagation. This design became the base for modern
multipliers. Many researches focus on improving upon this
design [7], [8], [9], [10]. One of the improvements is the
reduction of components used in the circuit, in this case full
adders. This can achieved by reducing the number of '1' in
the coefficients. Another great inception which improved the
speed of the circuit was Booth's multiplication algorithm,
which enabled the multiplication using shifting and allowed
the use of negative numbers. Booth's technique led to many
modifications of the original algorithm [11], [12] (and many
more), which greatly improved the design of the multiplier
in terms of speed and number of used components.
 The term constant multiplication is used to denote the
operation of consecutive additions of a variable x. The
number of additions is determined by a constant number α.
Our tool is able to produce such circuits in HDL, which can
perform this operation in parallel.

Jestr

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

 * E-mail address: mdasyg@ieee.org; petrousov@gmail.com
ISSN: 1791-2377 © 2016 Eastern Macedonia and Thrace Institute of Technology. All rights reserved.

M. Dasygenis and I. Petrousov / Journal of Engineering Science and Technology Review 9 (5) (2016) 171 - 175
	

	

172

3. Related work

The process of generation of hardware description language
(HDL) code from a higher level language is not new. We
selected to present only a few tools that we found to be more
relevant to ours. MyHDL [13] is a framework where the
multipurpose programming language python is used for the
construction of structures which are translated to VHDL.
The SPARK project [14] is a similar tool which accepts
specifications written in C and produces system on chip
(SoC) designs in VHDL. The aforementioned systems work
only offline and require their installation on the local
machine. This process requires root privileges and
knowledge on the Linux system administration and the
existence of other tools and libraries such as the gcc
compiler. Furthermore, this process may differ from one
operating system to another. We believe that when it comes
to circuit design and space exploration, a properly
configured and ready to use EDA tool able to produce
syntactically correct circuit designs is a key essence.
 Generators are tools which given a set of parameters are
able to produce HDL code. The given parameters determine
the behavior and possibilities of the produced circuit. The
code must be syntactically correct and synthesizable. The
flopoco project [15] is a tool which falls under the category
of such generators. Specifically it is a generator of arithmetic
functions. This work is not online and must be downloaded
and compiled. Also, their integer multiplication units utilize
binary compressors specific for the DSP blocks of an FPGA,
and they are not architectural neutral, like our
implementation.
 In the scientific electronics libraries we have also located
a few references [18], [19] which mention a tool named
DiaHDL. This tool is presented to be a web-based EDA
generator able to produce circuits and their testbenches in
VHDL. According to [19], this tool can be run from any web
browser with Java Runtime Environment and it is available
to students at any place in the world. Despite our best
efforts, we were unable to locate this tool and provide
comparison results.
 One last generator to mention is the SPIRAL tool [21]
which is accessible online. This tool is able to handle only
fractional numbers and does not provide a testbench to
verify the multiplication results. Also our tool is able to
calculate the number of components and transistors, two
metrics which can be fairly useful when developing digital
circuits. One more difference worth mentioning is the fact
that our output descriptions are in VHDL while SPIRAL
produced Verilog files.

4. The multiplication algorithm

From hardware point of view, it's always a waste of space
and time to implement a generic constant multiplier [6].
Considering this we have realized our multiplier design
using the simple functions of shifting and addition. The
algorithm can be better understood from an example shown
in Eq. (1).
	

f x()= x ⋅6 (1)	

 Here we want to implement the function which given a
number x will multiply it by 6. To do this, first we need to
find the binary representation of the number 6, which is 110.

The number of ‘1’s in the binary constant determines the
number of coefficients which will have be added in the end.
Each coefficient is a product of left shifts of the original
number x. Here we have two ‘1’ and thus we have two
coefficients. The number of left shifts of the two coefficients
is determined by the position of each ‘1’ in the binary
constant starting from the least significant bit (LSB). In our
example the two ‘1’s are located in the positions 1 and 2.
Considering this, the first coefficient is a single left shift of
the number x and the second is the two times left shift of the
number x. After the shifts we add the two coefficients to get
the result. The realization of the example is summed in
equation (2).
	

f x()= x <<1()+ x << 2() (2)

 Here we can clearly see the two coefficients which are
essentially left shifts of the original number.
 We present the generic algorithm used in Figure 1.

Fig. 1. Constant multiplication algorithm

This algorithm can be scaled to any constant and variable
number because we can easily compute the number of ‘1’s
and their positions in the constant.

5. Our online EDA tool

Having faced the task of circuit design and space exploration
ourselves, we have created a tool2, which automatically
generates syntactically correct VHDL code. Knowing how
time consuming this task might be, we decided to share our
work with the scientific community. In the scope of this
paper we have designed a new function able to generate
VHDL code for constant multipliers. Unlike some
previously mentioned works, our tool requires no
installation, is online and publicly accessible by anyone
through a web browser. We utilize a number of technologies
(PHP, Python, JSON) in order to deliver a syntactically
correct and synthesizable VHDL description. Our tool is
partitioned in two different departments, according to their
function: the front end and the back end. These modules
exchange information using the Javascript object notation
(JSON) format [16].
 The front end is a web based form, where the user inputs
parameters for the circuit. These parameters include the
bitwidth of the variable, the constant number that will
multiply the input, the option to pipeline the circuit or not,
the number of random generated vectors to be created and
the option for these vector to be unique (requiring more time
to be created). Validation of the inputs occurs upon
submission.
 The back end provides the analysis and construction
modules for the multipliers. It consists of three modules: (i)
the Multiplier design module, which analyzes the user inputs
																																																													
2 http://arch.icte.uowm.gr/hdl/

M. Dasygenis and I. Petrousov / Journal of Engineering Science and Technology Review 9 (5) (2016) 171 - 175
	

	

173

and creates the specific design description in a special netlist
format called α-HDL [20], (ii) the HDL Generator module,
which takes as input this netlist format and creates signals,
networks, assignments, and connections, resulting in the
output description in VHDL, and (iii) the VHDL Test bench
creator, which takes as input the constructed data structures
of the previous module, and generates a full VHDL test
bench, with handles for automatic design validation.

A. Constant multiplier design module
The multiplier design module creates a netlist in an internal
format developed at our laboratory, which we call α-HDL
format, and operates in three stages: (a) locate all the ‘1’, (b)
carry save addition, (c) ripple carry addition. This module
can be used to create multiplication units of unsigned vector
for arbitrary bit lengths. Due to the fact that we use the
Python language, there is no restriction as to the bitwidth of
the input vector to be multiplied. For example the Xilinx
Core generator can only create multiplication units up to
64×64 bits. Our tool has been used to create multiplication
units with input vectors up to 512 bits. Such large vectors
are usually found in cryptographic applications [17]. This
module operates in three stages.
 The first stage computes the network of shift wires. The
outcomes of the first stage are two: (a) the α-HDL structure
and (b) a two dimensional array that specifies for every
column the bits that should be taken into consideration.

The second stage, accepts as input the array created in
the previous stage and performs an optimized addition, using
carry save adders. We have named this stage with the term
reduction stage. This stage consists of many iterations. In
every iteration i the reduction stage, scans all columns j
starting from the least significant column, locates the
columns that have more than one bit and places full adders
(FA) or half adders (HA). The placement of adders is done
in the best efficient way, in order to minimize the total
number of FAs or HAs. This is achieved by delaying the
placement of an FA or HA in favor of a better placement in a
future iteration.
 The third stage of the multiplier design module, is the
final addition using a ripple carry adder. This stage, which is
also optimized, places the best number and types of adders.

B. HDL generator module
The netlist created in the previous stage is given as input to
the HDL Generator Module. This is a general purpose
VHDL generator library that can be easily connected to
many different generators. This module accepts as input a
special and compact netlist format, which we name it
abstracted HDL α-HDL. This netlist format, as well as the
HDL Generator Module have already been presented in
other works [20] and do not belong to the scope of this
paper, and thus we will not describe them further.

C. The VHDL Test bench creator
We consider this module as of out most importance, as it
produces testbenches which verify the generated VHDL
designs. Our tool accepts as input the number of input cases
to create, and generates the test bench in a VHDL file. To do
this, first it creates an empty entity declaration, then it
instantiates the top level component and creates signals for
every input and output port. Furthermore, it creates a clock
process and a function that is used to convert bits to integer.
The next step is to create the requested number of input test
cases.

 For the number of input test cases, the module performs
a loop in which a random number ranging from 0 to the
maximum bitwidth is produced. This number is converted to
binary and extended to the full bitwidth of the constant.
Then the multiplication of the random input and the constant
is precomputed and a VHDL assert clause is written on the
testbench file to check the precomputed output, with the
output that will be computed by the circuit. A ‘wait’ clause
is used in order to keep the correct timing. The latency has
been reported by the HDL generator, and is known in this
tool.
 All the test bench vectors are created randomly and
automatically, according to the requested number of tests.
As mentioned before, the user can also include the
generation of unique testvectors. If this option is selected,
the generated random numbers will all be unique and non
repeating. This module also predicts the case where the
requested number of testbenches supersedes the maximum
random number able to be generated from the provided
bitwidth. The outcome depends on the option for the unique
testvectors. If it is selected, our function will generate the
greatest possible number of unique tests for the given
bitwidth. If not, the function will produce the requested
number of tests and include repeating numbers. This process
can be better understood from an example where the
designer requests 10 tests to be generated for the bitwidth of
2 and constant of 2. According to equation (1) the possible
results for the maximum generatable number 4 (2

2) are 0,
2, 4 and 8. If the option for the uniqueness is included, the
outcome will be 4 tests (0, 2, 4, 8). Otherwise, there will be
produced exactly 10 tests with repeating results (for example
4, 2, 0, 2, 4, 4 and so on). Also, all the checks are done
automatically, which means that the designer can load the
test bench file into his HDL Synthesis and Simulator tool,
and can execute it without any other intervention.
 Although our designs are syntactically correct and we
perform many random test to verify the correctness of the
produced circuits results. With this module we give the
designer the ability to create his own custom testbenches and
verify his designs.

6. Output

 The output of the tool includes a library with the used
components, the circuit for the multiplier and a summary
report of that circuit. The first two are downloadable as
VHDL files while the third is directly presented to the user.
The produced VHDL descriptions are vendor neutral and
can be synthesized in FPGA or ASIC circuits. The library
can also be included in other designs and be repurposed
accordingly. The summary presents information about the
produced circuit including the number of components used,
such as D flip-flops (FF), full adders (FA), half adders (HA)
and more. Also, the tool is able to calculate the number of
transistors used for the design.

7. Experimental results

In order to evaluate the efficiency of our web tool, we
generated a large number of VHDL descriptions for different
design parameters. Even though, both Xilinx and Altera
provide a tool to create a parametrized multiplier for two
input, the outcome is not a VHDL file and has a binary
encrypted implementation netlist, which can be used only in
a project targeting a specific FPGA board family. In contrast

M. Dasygenis and I. Petrousov / Journal of Engineering Science and Technology Review 9 (5) (2016) 171 - 175
	

	

174

with these two vendors, our tool creates generic VHDL code
that is vendor neutral and can be freely synthesized either in
FPGA or in ASIC, and creates single-vector multiplications.
 Another remark is, that even though there are few offline
tools to create multiplication cores for only two input
vectors, all these cores do not use carry save adders to
compute the product, but they use special structures that
make use of fast DSP blocks found on modern FPGA
boards. Thus, on the one hand we cannot provide
measurements with other CSA multipliers, and on the other
hand, comparing our CSA multiplier scheme, with other
schemes of multiplication can be used only to extract some
general conclusions and not to determine the efficiency of
our circuits. Some of our designs are summarized in Table 1.

Table 1. Automatically generated design results (non
pipelined)

#bits constant transistors FA HA	
16 46 1274 43 5	
32 57 2604 90 6	
64 78 5292 186 6	

128 92 10682 379 5	
256 121 28574 1017 7	

 In this table we can see some metrics that were
calculated automatically by our tool and presented in the
logfile. The respective pipelined versions of the designs are
shown in Table 2 (DFF is the number of pipeline FF).

Table 2. Automatically generated design results (pipelined)
#bits constant transistors DFF stages	

16 46 7104 453 21	
32 57 22680 1608 36	
64 78 85032 6516 70	

128 92 314208 25037 133	
256 121 1230588 99484 261	

 Additionally, we synthesized the generated VHDL codes
with Leonardo Spectrum, Xilinx Vivado 2013.2, Altera

Quartus II 12.0. The synthesis results (Table 3) from Xilinx
Vivado (Virtex6, speed grade -2) show that for small input
bitwidths (16 bits), the occupied slices for the pipeline
version (denoted with the letter ‘p’) are low.

Table 3. Synthesis results for the Virtex 6 FPGA family

#bits constant slices Freq(MHz) power(W)	
16 46 13 157.480 4.447	

16 (p) 46 70 589.970 4.447	
32 57 29 103.584 4.447	

32 (p) 57 335 589.970 3.441	
64 78 73 57.198 4.447	

64 (p) 78 631 538.213 4.447	
128 (p) 92 1387 538.213 4.473	
256 (p) 121 2989 538.213 3.422	

8. Conclusions

Complicated system-on-chip designs require EDA tools to
perform various tasks, one of which is IP block generation.
One important IP block is constant multiplication. Our tool
can generate valid and verified VHDL description of
parametrized constant multiplication blocks, that can operate
up to 589Mhz on a Xilinx Virtex 6. As our tool is web-
based, no local installation is required. Therefore, it ensures
easy access to anyone in the world. There are many tools
which can generate HDL code, but they are not online and
some of them are commercial and expensive. Except the
HDL description, our tools is able to supply a schematic and
a random created testbench file to the user. The tool is public
accessible from our webserver.

This paper was presented at Pan-Hellenic Conference on
Electronics and Telecommunications - PACET, that took
place May 8-9 2015, at Ioannina Greece.

References

1. A. Putnam, A. M. Caulfield et al., “A reconfigurable fabric for

accelerating large-scale datacenter services,” SIGARCH Comput.
Archit. News, vol. 42, no. 3, pp. 13–24, Jun. 2014. [Online].
Available: http://doi.acm.org/10.1145/2678373.2665678

2. A.C. Davies and Y.T. Fung. “Interfacing a hardware multiplier to a
general-purpose microprocessor,” Journal on Microprocessors, vol. 1,
no. 7, pp. 425-432, October 1977.

3. A. H. Malini, C.Srimathi, “Low complexity digital serial FIR filter by
multiple constant multiplication algorithms”, IJRET 2014, vol. 3. no.
4, pp. 222-226, [Online]. Available:
http://ijret.org/Volumes/V03/I04/IJRET_110304040.pdf

4. T. Chen, H. Liu, B. Zhang, “A Scalable, Fixed-Shuffling, Parallel
FFT Butterfly Processing Architecture for SDR Environment,”
Journal Electronic Express, vol. 11, no. 2, pp. 20130905, December,
2013 [Online]. Available: http://dx.doi.org/10.1587/elex.10.20130905

5. C. S. Wallace. A Suggestion for a Fast Multiplier. IEEE Transactions
on Electronic Computers, EC-13:14–17, February 1964.

6. F. de Dinechin, V. Lefèvre, “Constant Multipliers for FPGAs”,
International Conference on Parallel and Distributed Processing
Techniques and Applications, PDPTA 2000, Las Vegas, Nevada,
USA, June 2000.

7. K. Namba and H. Ito, “Redundant Design for Wallace Multiplier”,
IEICE - Transactions on Information and Systems, Volume E89-D
Issue 9, pp. 2512-2524, September 2006.

8. S. Abed, B. J. Mohd, Z. Al-bayati and S. Alouneh, “Low power
Wallace multiplier design based on wide counters”, journal of circuit

theory and applications, vol. 40 Issue 11, pp. 1175-1185, November
2012.

9. R. S. Waters and E. E. Swartzlander, “A Reduced Complexity
Wallace Multiplier Reduction”, IEEE Transactions on Computers,
vol. 59, no. 8, pp. 1134-1137, 2010.

10. S. Rajaram, K. Vanithamani, “Improvement of Wallace multipliers
using parallel prefix adders”, ICSCCN-Signal Processing,
Communication, Computing and Networking Technologies,
Thuckafay, July 2011.

11. C. Efstathiou, N. Moshopoulos, N. Axelos, K. Pekmestzi, “Efficient
modulo 2n+1 multiply and multiply-add units based on modified
Booth encoding”, Integration, vol. 47 no. 1, pp. 140-147, January
2014.

12. K. N. Vijeyakumar, V. Sumathy, S. Elango, “VLSI Implementation of
Area-Efficient Truncated Modified Booth Multiplier for Signal
Processing Applications”, Arabian Journal for Science and
Engineering, vol. 39, no. 11, pp 7795-7806, November 2014.

13. myhdl. [Online]. Available: http://www.myhdl.org/info.html
14. spark. [Online]. Available: http://mesl.ucsd.edu/spark/
15. F. de Dinechin. (2011) flopoco. [Online]. Available:

http://flopoco.gforge.inria.fr/
16. I. E. T. Force, “Introducing JSON,” September 2013. [Online].

Available: http://www.json.org/
17. L. Hars, “Long modular multiplication for cryptographic

applications,” in Cryptographic Hardware and Embedded Systems -
CHES 2004, ser. Lecture Notes in Computer Science, M. Joye and J.-
J. Quisquater, Eds. Springer Berlin Heidelberg, 2004, vol. 3156, pp.

M. Dasygenis and I. Petrousov / Journal of Engineering Science and Technology Review 9 (5) (2016) 171 - 175
	

	

175

45–61. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-
28632-5_4

18. C. Widiasmoro, T. Schumann, "DiaHDL: A web-based VHDL code
generator,"in Proc. of the European Conference on the Use of Modern
Information and Communication Technologies (ECUMICT 2010),
Gent, Belgium, ISBN 9-78908082-553-6, 2010.

19. A. R. D. Susanti, W. Thoyib, T. Schumann, "Development of a
reliable GUI for DiaHDL: A web-based VHDL code generator,"in

Proc. of IEEE International Conference of Electrical Engineering and
Informatics (ICEEI 2011), Bandung, Indonesia, 2011.

20. M. Dasygenis, “A web EDA tool for the automatic generation of
synthesizable VHDL architectures for a rapid design space
exploration,” in International Conference on Design and Test of
Integrated Systems in Nanoscale Technology (DTIS). IEEE, 2014.

21. SPIRAL. [Online]. Available: spiral.ece.cmu.edu/mcm/gen.html

