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Abstract 
 
In this work, a Cartesian Genetic Programming (CGP) method is presented for the evolutionary synthesis of optimal 
digital circuits.  In this evolutionary method, circuits are represented as directed graphs in the form of an MxN Cartesian 
grid. Evolved circuits are qualified using a fast custom emulator of digital circuits that was built to serve as a fitness 
function for the algorithm. The performance of the CGP algorithm is tested on six different digital circuits, used as 
benchmarks. The evolution results prove the ability of the CGP scheme to find optimal solutions with significant 
probabilities. Moreover, the CGP algorithm is able to produce unconventional solutions for known circuits. 

 
Keywords:  Cartesian Genetic Programming, Digital Circuits, Evolvable Hardware, Digital Circuit Emulation. 
__________________________________________________________________________________________ 

 
1. Introduction 
 
The field of Evolutionary Algorithms (EAs) [1], [2], is quite 
young and describes a large set of stochastic optimization 
methods inspired from biological evolution and natural 
systems. Numerous times in the literature, EAs have proved 
their merits as powerful optimizers of difficult real world 
problems. Genetic Programming (GP) [3], [4], is such a 
method that was primarily used for evolving software that 
was encoded using a special tree encoding scheme. But soon 
researchers extended GP’s applications by applying them to 
other real world problems with tree-encoded solutions, like 
the optimal design of analog and digital circuits [5], [6]. The 
evolution of circuits has moved ahead by evaluating 
potential solutions on FPGA-like platforms and thus another 
EA was born called Evolvable Hardware (EH) [7], [8]. 
 A variation of GP, named Cartesian Genetic 
Programming (CGP), was proposed by Miller and Thomson 
[9]. In CGP, circuits are not encoded as trees, but as directed 
graphs that usually have the form of MxN Cartesian grids. In 
cases where such grids are used for encoding digital circuits 
[17], [18], the grids contain MxN nodes, each representing a 
digital gate. Moreover, these nodes can interconnect with 
each other, forming arbitrary circuits of combinatorial or 
sequential nature.  
 For the application of any EA on any optimisation 
problem one has to build a Fitness Function [10], in order to 
be able to evaluate every evolved solution. This Fitness 
Function can be seen as a mapping function between the set 
of possible solutions and the set of real numbers, assigning a 
quality value to each possible solution. In our work the 
Fitness Function should be able to qualify proposed digital 
circuits. Thus a special Digital Circuit Emulator [11] was 
built in order to cover this need for the CGP algorithm. The 
Digital Circuit Emulator was built as a function that receives 
the circuit under evaluation as its input in a string-encoded 
form. It is capable of simulating both combinatorial and 

sequential circuits of up to 500 gates, and can be extended 
even more by altering its input encoding. 
 The proposed CGP implementation that uses the Digital 
Circuit Simulator is applied on six (6) digital circuit 
synthesis problems. Each problem corresponds to a well-
known digital circuit whose truth table is given as a 
specification to the CGP algorithm. The required task is to 
find an optimal digital circuit which a) exactly matches the 
specified truth table, and b) minimizes the necessary number 
of gates. The digital circuit synthesis problem defined above 
can be characterized as a Multi-Objective optimization 
problem [12]. Usually Multi-Objective optimisation 
problems need the construction of a consolidated fitness 
function that will combine all individual objective functions 
into one.  
 In order to extract useful information about the 
performance of the CGP scheme, a large number of 
simulation runs have been scheduled, for different sizes of 
the grid structure. The results of this effort are presented and 
discussed in this article. Moreover, the CGP scheme has 
revealed another merit: the ability to evolve unconventional 
designs of a particularly small number of gates. These 
solutions have to be further examined and studied against the 
literature. 
 The organization of the paper is as follows: in Section 2, 
the Cartesian Genetic Programming implementation is 
presented. The digital circuit simulator is described in 
Section 3. In Section 4, the test set used for testing the CGP 
scheme is described. The simulation results and conclusions 
are presented in Section 5.  
 
 
2. The Cartesian Genetic Programming Implementation 
 
2.1. The Cartesian Grid Structure 
The Cartesian Genetic Programming (CGP) approach used 
in this work represents a possible circuit as an MxN grid. 
Each node on the grid represents a digital gate that is defined 
by the evolutionary algorithms from a set of available 
Boolean functions. Also, the evolutionary algorithm defines 
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the interconnections between the grid nodes, in order to form 
a potential circuit. In this work, only forward connections 
are allowed between gates of adjacent columns. However, 
circuit inputs can be connected not only to the gates of the 
first column but to any gate in the grid. Moreover, the 
outputs of the circuit can be drawn not only from the gates 
of the last column, but from any gate. A grid of this form 
with a 3x3 dimension can be seen in Fig. 1.  
 Each gate in the grid can be chosen among the following 
values: 0. Non-existent, 1. AND, 2. OR, 3. NOT, 4. NAND, 
5. NOR, 6, XOR, 7, XNOR. The “non-existent” value 
allows a circuit to have less gates than MxN. The 
minimization of the number of gates is also an optimization 
goal. 

 
Fig. 1. A 3x3 Cartesian Grid for digital circuit evolution 
 
 
 All gates are considered as two-input, one-output gates 
except for the NOT gate that has a single input. A gate’s 
input can connect: a) to a circuit’s input, b) to the output of a 
gate of the previous column, and c) to logic 0 or 1. 
 
2.2. The genetic representation of solutions 
Evolutionary Algorithms usually operate on solution spaces 
formed by encoding solutions in symbol strings of a usually 
binary alphabet. Thus, the following representation scheme 
has been adopted: each grid node corresponds to a binary 
chromosome that encodes the gate type and the 
interconnections of this gate. Each chromosome comprises 4 
subparts:  
 
a) gate-type subpart: a 3-bit subpart enough to encode all 8 
different node configurations. 
b) gate-input-1 subpart: a subpart encoding the connection of 
the first input of the gate. The number of bits needed for this 
subpart is: 
 
 ceil(log2 ( NoOfGridRows+NoOfCircuitInputs+2 ) )       (1) 
 
where ceil() is a function that returns the smallest integer 
greater or equal than its argument and the “+2” term is for 
including the cases of logical 0 and 1. 
c) gate-iput-2 subpart: a subpart encoding the connection of 
the second input of the gate, similar to the previous one. 
d) gate-output subpart: this subpart encodes whether the gate 
produces a circuit output or not and needs a number of bits 
equal to: 
 
 ceil ( log2 ( NoOfOutputs+1 ) )      (2) 
 
 For example, for a circuit with 3 inputs and 2 outputs 
(like the full-adder) which is optimised using a 4x4 grid, 13 
bits are needed for each gate (3 gate-type bits, 4 gate-input-1 

bits, 4 gate-input-2 bits, and 2 gate-output bits) with a total 
of 117 bits for the whole genotype.  
 The genotype encoding scheme can be seen in Fig. 2.  

 
Fig. 2. The binary representation for circuit encoding 
 
 
2.3. The Evolutionary Algorithm 
In this work, a Genetic Algorithm (GA) [13], [14] was used 
for evolving optimal digital circuits. The GA featured a 
population of 500 genotypes randomly initialized at the 
beginning, roulette wheel parent selection [13], uniform 
crossover [15], binary mutation with a low per-bit 
probability, replacement of all parents with offspring at each 
generation, the elitism mechanism [13], and a generation 
limit of 10,000 generations. Moreover, an automatic scheme 
for adaptive operator probabilities is used, described in [16]. 
 
 
3. The Digital Circuit Simulator 
 
3.1. The Simulator 
In order to evaluate each genetically produced solution, a 
fitness function must be built to provide a metric for the 
quality of the solution. In this work, we have used a fast 
digital circuit simulator, which is described in [11]. Each 
circuit under evaluation must be encoded in a string form 
and passed to the simulator as a parameter. Also the 
complete array of all input vectors to be tested is also 
passed. 
 The simulator works as follows: it first analyses and 
parses the input string describing the circuit and creates an 
internal array structure with the gates’ parameters and circuit 
topology. Then it presents all input vectors to the circuit, one 
by one, and calculates the circuit’s response for each input. 
The simulation is performed using a second internal array 
that keeps the state of binary signals for each gate and 
interconnection of the circuit.  
 The digital circuit simulator uses a discrete-time 
simulation technique inspired by the principles of the 
propagation of digital signals through the logic gates, and is 
described in [11]. The propagation of digital signals through 
gates is simulated step by step, using discrete time quantities 
that are effectively implemented as loop iterations. These 
time steps play the role of consequent periods of an informal 
internal state clock. The period of this ideal clock coincides 
with the delay of a single gate, whilst the signal propagation 
through the interconnections is considered to be 
instantaneous. 
 When all input vectors are presented to the circuit and all 
corresponding output vectors have been calculated and 
registered, the simulator creates a consolidated array of 
output vectors and returns this array to the Genetic 
Algorithm. 
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3.2. The GA Fitness Function 
When GA receives the complete output array from the 
simulator, it compares this array to the array of desired 
outputs for the specific circuit and calculates the total 
hamming distance for all bits. The minimization of this 
hamming distance is the primary objective of the GA. 
However, another optimization goal exists, and that is to 
minimize the number of gates of the circuit. This definition 
makes the problem a multi-objective optimization problem 
[12]. For handling these two optimization objectives, usually 
a consolidated objective function is formed as a weighted 
sum of the individual objective values.  
 In this work we used the following consolidated 
function: 
 
If ( F1(S) > 0 )  Fitness(S) = 100 x F1(S) 
Else  Fitness(S) = 100 x F1(S) + 1 x F2(S)   (3) 
 
where: 
 
F1(S) = HammingDistance( Os , D )     (4) 
 
F2(S) = NoOfGates(S)       (5) 
 
where S is a solution (circuit) under evaluation, F1(S) and 
F2(S) are the two individual optimization functions, Os is 
the output array for solution S, and D is the array of desired 
outputs. 
 This makes the GA to work in two stages: in the first 
stage the GA tries to find a digital circuit that will satisfy the 
complete truth table, ignoring the number of gates needed 
for the circuit, and in the second stage, when it has already 
satisfied the truth table, it tries to minimize the circuit size.  
This fitness function has proved to give much better 
optimization results over all test cases. 
 
 
4. The Simulation Test Set 
 
For testing the CGP scheme proposed in this work, a set of 
six (6) elementary and well known digital circuits of 
increasing complexity and of increasing number of gates has 
been employed. The test set is shown in Table 1. 
 
Table 1. Parameters of the digital circuits included in the 
test set 

Circuit 
No of 

2-input 
gates 

No of 
inputs 

No of 
input 

combina
tions 

No of 
output

s 

No of 
output 

bits 

Half Adder 2 2 4 2 8 

Decoder 2 to 4 6 2 4 4 16 

Full Adder 5 3 8 2 16 

2-bit Multiplier 8 4 16 4 64 

Decoder 3 to 8 19 3 8 8 64 

2-bit 
Comparator 15 4 16 3 48 

 
 In Table 1, the “No of Output Bits” column contains the 
product of the “No of Input Combinations” and the “No of 
Outputs”, thus expressing the size of the output vector that 
has to match the desired one from the circuit’s truth table. 

The typical synthesis of such circuits as well as their 
complete truth tables is well described in the literature [19].  
For example, the picture of a typical “2-bit Comparator” 
circuit is shown in Fig. 3.  
 

A1

B1

A0

B0

A<B

A>B

A=B
 

Fig. 3. The 2-bit comparator used in the test set  
 
 
5. Simulation Results 
 
Simulation results were performed using the same set of GA 
parameters for all test cases. The complete set of GA 
parameters is shown in Table 2. For each circuit case, a 
number of different simulation experiments have been 
conducted for different grid sizes. For the simpler circuits 
four different grid sizes have been considered, while for the 
larger ones three grid sizes have been considered. 
 Since Evolutionary Algorithms are stochastic algorithms, 
and in order to avoid statistical errors, ten (10) runs have 
been made for each circuit case and each grid size. Thus, for 
each test case several statistical figures have been calculated 
in order to judge the performance of the proposed 
implementation. 
 
Table 2. Parameters of the Genetic Algorithm 
GA Parameter Value GA Parameter Value 

Population 500 Crossover 
Probability 0.4 to 0.9 

Selection Roulette 
Wheel 

Mutation 
Probability 0.001 to 0.1 

Crossover Uniform Elitism Yes 

Mutation Binary 
Mutation 

Population 
Replacement 

Whole 
Population 

Operator 
Probabilities 

Automatically 
adapted Termination  10,000 

generations 

 
 
 The simulation results are shown in Table 3. A test case 
was considered successful if it could find a solution that 
completely satisfied the circuit’s truth table. This was 
achieved when the hamming distance between the output 
vector of the genetically produced solution and the desired 
one was equal to zero (0). 
 The results were obtained on an Intel Core-i7 
workstation with 8GB RAM, running Windows 8.1, and the 
software was developed using native C++.  
 As can be seen from Table 3, the CGP scheme manages 
to find optimal solutions that completely justify the desired 
truth table, in all test cases.  
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Table 3. Simulation Results 

Circuit CGP 
Grid 
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op
tim

um
 Avg 

exec. 
time per 

task 
(minutes) 

Half Adder 2x2	 100%	 2	 2	 2	 <	50	 2,0	

Half Adder 3x3	 100%	 2	 2	 2	 <	50	 2,9	

Half Adder 4x4	 100%	 2,3	 2	 4	 275	 3,8	

Half Adder 5x5	 100%	 2,6	 2	 3	 1150	 5,0	
Decoder 2 to 
4 3x3	 100%	 4,6	 4	 5	 345	 3,6	

Decoder 2 to 
4 4x4	 100%	 4,8	 4	 6	 2850	 4,8	

Decoder 2 to 
4 5x5	 100%	 5,5	 4	 7	 1815	 6,0	

Decoder 2 to 
4 6x6	 100%	 6,1	 4	 9	 3720	 8,9	

Full Adder 3x3	 80%	 5,4	 5	 7	 1705	 4,7	

Full Adder 4x4	 90%	 5,6	 5	 6	 880	 6,5	

Full Adder 5x5	 100%	 7	 5	 10	 1660	 8,8	

Full Adder 6x6	 100%	 7,3	 6	 9	 2120	 17,2	

2bit multiplier 4x4	 30%	 8,7	 8	 9	 4750	 18,6	

2bit multiplier 5x5	 30%	 11	 9	 13	 4950	 44,4	

2bit multiplier 6x6	 50%	 10,6	 8	 12	 5920	 114,6	
Decoder 3 to 
8 5x5	 20%	 17	 17	 17	 1900	 25,5	

Decoder 3 to 
8 6x6	 10%	 20	 20	 20	 7250	 90,8	

Decoder 3 to 
8 7x7	 40%	 22,5	 18	 26	 6350	 155,2	

2bit 
comparator 5x5	 40%	 12	 11	 13	 4875	 40,6	

2bit 
comparator 6x6	 60%	 12,2	 9	 17	 7175	 113,1	

2bit 
comparator 7x7	 20%	 22	 22	 22	 5925	 286,9	

 
 
 For the problems of the Half Adder and the Decoder 2-
to-4 the CGP scheme finds the optimum consistently with a 
100% success rate, for all grid sizes. However, for the rest of 
the cases a general decrease of the success rate is observed, 
as the circuits become more complex and with a larger 
number of gates. 
 Also, it is obvious from the results in Table 3, that for 
each specific test case the grid size on which the circuit is 
evolved plays a significant role in the overall performance. 
In the easier cases of the Half Adder and the Decoder 2-to-4, 
smaller grids lead to smaller search spaces that make the 
search process easier and faster. But in more complex 
circuits, the small grids seem to make the search more 
difficult. 
 For example, in the case of the Full Adder, using a 4x4 
grid seems a better idea than using a 3x3 grid, as the success 
rate, the solution quality and the speed are better. The 4x4 
grid leads to fast discovery of optimal solutions (880 
generations needed on average) but there is a slight 

possibility of missing the optimum (90% success rate). 
However, when using a 5x5 grid the CGP consistency seems 
to increase (100% success rate) but with a sacrifice in 
convergence speed, possibly due to the larger search space. 
 Similar conclusions can be drawn for the other circuit 
cases as well. For the 2-bit Multiplier, the 6x6 grid gives 
better success rate but lower convergence speed. For the 
Decoder 3-to-8 the best grid choice is 7x7. And for the 2-bit 
Comparator the 6x6 grid outperforms the other two. 
 It is also worth mentioning that in most cases the CGP 
algorithm has produced many unconventional solutions with 
the same minimal number of gates as the conventional ones, 
and in some cases even less. The most profound example is 
that of the 2-bit Comparator. Typical circuit designs as the 
one shown in Fig. 3 use a total of 15 two-input gates. By 
searching the web, designs with as few as 11 gates can be 
found. The CGP scheme has produced a solution that 
completely satisfies the desired truth table and uses only 9 
two-input gates, as can be seen in the case of the 6x6 grid. 
The schematic diagram of this genetically produced 2-bit 
comparator circuit is depicted in Fig. 4. Moreover, it can be 
also noted that in the 5x5 grid case, all solutions use less 
gates than the 15 of the typical design, as the best one uses 
only 11 and the worst uses 13. 
 

B0

B1

A1

A0

AEQB

AGTB

ALTB

 
Fig. 4. The 2-bit comparator implementation with 9 gates proposed by 
the CGP scheme.  
 
 
 A similar case is that of the Decoder 3-to-8 where typical 
designs use a number of 19 two-input gates, while the CGP 
scheme has produced solutions with only 17 gates.   
 These unconventional solutions produced by the CGP 
scheme with less than typical number of gates, will be 
further studied in our future work. The ability of the CGP 
scheme to discover unconventional solutions with the same 
or even lower number of gates than the typical designs, is 
justifying its characterization as an “invention machine”. 
 
This paper was presented at Pan-Hellenic Conference on 
Electronics and Telecommunications - PACET, that took 
place May 8-9 2015, at Ioannina Greece.  
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