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Abstract 
 

In this work, we have proposed modified PSO algorithm based optimizer for automatic circuit design. The performance 
of the modified PSO algorithm is compared with two other evolutionary algorithms namely ABC algorithm and standard 
PSO algorithm by designing two stage CMOS operational amplifier and bulk driven OTA in 130nm technology. The 
results show the robustness of the proposed algorithm. With modified PSO algorithm, the average design error for two 
stage op-amp is only 0.054% in contrast to 3.04% for standard PSO algorithm and 5.45% for ABC algorithm. For bulk 
driven OTA, average design error is 1.32% with MPSO compared to 4.70% with ABC algorithm and 5.63% with 
standard PSO algorithm. 
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  __________________________________________________________________________________________ 
1. Introduction 
 
With the advancement in CMOS technology, the size of 
MOSFET device shrinks. The smaller device size brings 
more non-linearity in the characteristics of the device. This 
brings the problem of device sizing in design and 
optimization of the analog circuits. Under such conditions, 
the traditional design approach based on the analytical 
calculations followed by the simulation fails to provide time 
efficient ASIC development cycle. On the other hand, with 
increasing power of the modern CPU, it is possible to use 
optimization algorithms effectively for circuit design. 
 The optimization methods such as linear programming, 
integer programming, non-linear programming and quadratic 
programming are examples of deterministic programming 
techniques. These techniques require having differentiable 
objective function in order to obtain global solution of the 
optimization problem [1]. For the circuit design problem, the 
formulation of the accurate objective function is extremely 
difficult. The dynamic programming is another optimization 
technique based on stochastic programming models that 
guarantees global solution of optimization problem. 
However the computational efforts required to solve the 
problem increase exponentially as the size of problem 
increases [2]. Another class of the optimization algorithm 
includes computational intelligence based techniques such as 
Genetic Algorithm (GA), particle swarm optimization 
(PSO), artificial bee colony algorithm (ABC). They do not 
guarantee the global solution of the given problem. 
However, they do not require complex mathematical 
calculations and hence easy to implement using 

programming languages. In many multi-objective problems 
such as CMOS circuit design, we depend upon the 
simulation result and it is very difficult to form exact 
objective function mathematically. Under such situations, 
the evolutionary algorithms become obvious choice. 
 The use of the A-NSGAII algorithm was demonstrated 
in [3] to design RF low noise amplifier, leapfrog filter and 
ultra wideband LNA. In [4], single ended telescopic Op-
Amp is designed using the genetic algorithm. The PSO 
algorithm and its variants are used for automatic design of 
low-power low-voltage CMOS circuits [5]. In [6], the 
performances of the genetic algorithm (GA), PSO algorithm 
and Simulated Annealing algorithm are compared by 
designing the LC voltage controlled oscillator. An 
evolutionary approach is used to design RF low noise 
amplifier in [7]. The chaotic DE algorithm, standard DE 
algorithm, ABC algorithm and PSO algorithm are used in 
[8] to design miller OTA and their performances are 
compared.  
 In this work, we have demonstrated application of ABC 
algorithm and standard PSO algorithm for automatic circuit 
design and proposed a modified PSO algorithm. The 
performances of these three algorithms are compared by 
designing two-stage CMOS op-amp and bulk driven OTA in 
130nm CMOS technology. This paper is organized as 
follows: In Section 2, the overview of the optimizer is given. 
Section 3 discusses ABC algorithm, standard PSO algorithm 
and modified PSO algorithm. The automatic circuit design 
examples are illustrated in section 4. Finally conclusions are 
drawn in section 5. 
 
2. Optimizer for automatic analog circuit design 
 
The optimizer utilizes the circuit simulator and optimization 
algorithm to design a circuit with desired specifications. The 
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optimizer provides proper coordination between the circuit 
simulator and optimization algorithm by generating circuit 
net-list according to the parameters generated by 
optimization algorithm, initializing the circuit simulation, 
analyzing the simulator output and providing necessary data 
to the optimization algorithm to generate new set of 
parameters. The conceptual block diagram of the optimizer 
is illustrated in Fig 1. First various circuit specifications are 
decided. The various circuit parameters with their upper and 
lower bounds are estimated. Generally for the CMOS 
circuits, the circuit parameters are width and length of 
various MOS transistors. With this information optimization 
algorithm generates the set of circuit parameters and 
according to this, the circuit for simulator is generated and 
simulated against pre-determined test cases. The simulation 
results are analyzed and error is calculated. According to 
calculated error, new set of parameters is generated by the 
optimization algorithm. The aim of the optimizer is to 
reduce the error. Here, we have used root mean square 
(RMS) error. The RMS error in percentage fe can be given 
by, 
 
𝑅𝑀𝑆 𝑒𝑟𝑟𝑜𝑟 𝑓𝑒 % = 𝐸!!

!!!  ×100                          (1) 
 

𝐸! =
0               , 𝑖𝑓 𝑖!! 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑
!"!!!"!
!"!

!
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                          

 (2)  

 
where, N is total number of specifications, DSi is  ith desired 
specification and OSi is ith obtained specification from 
simulation. The RMS error gives equal weight to all the 
specifications. Thus, optimizer tries to satisfy all the 
specifications equally. 
 
 

 
Fig. 1.  Conceptual block diagram of optimizer 
 
 
3. Optimization algorithms 
 
3.1 Artificial Bee Colony (ABC) algorithm 
The artificial bee colony algorithm is based on swarm 
optimization technique. It simulates the intelligent behavior 
of the artificial bees searching food for finding the global 
solution of the given optimization problem [9]. The 
performance of the ABC algorithm is compared with other 
evolutionary algorithms in [9] and [1] by solving different 
benchmark functions.  
 In ABC algorithm, the swarm of the artificial bees is 
divided in two groups: Employee bees and Onlooker bees. 
The Employee bees are later converted in to Scout bees. 
Consider an optimization problem with N dimensions and 
take swarm size 2M. The number of the employee bees and 

onlooker bees are same. This leads to M number of 
Employee bees and same number of Onlooker bees. The 
algorithm starts with the random initialization. Initially M 
numbers of food sources are picked up randomly and each 
one is evaluated for its fitness. Each food source represents 
potential solution to problem. Mathematically, each food 
source is model by N-dimensional vector. Thus ith food 
source can be represented by, 
 
𝑋! =  𝑋!!,𝑋!!,𝑋!!,…… ,𝑋!"                                       (3) 
 
 Each artificial bee, tries to improve its food source by 
sharing the information with other bees. During the process 
of food source improvement, only one dimension of food 
source Xi i.e. Xij is selected randomly and updated at a time. 
The single iteration of the algorithm can be divided in three 
phases: Employee bee phase, Onlooker bee phase and Scout 
bee phase. During Employee bee phase, each employee bee 
tries to find new food source Vi around assigned food source 
Xi, by updating single dimension of Xi, as follows, 
 
𝑉!" =  𝑋!" +  𝜙!" 𝑋!" − 𝑋!"                                         (4) 
 
with, j∈{1,2,3,….,N} and selected randomly. Xkj is jth  
dimension of neighbor food source and k∈{1,2,3,….,M} and 
selected randomly. Φij is uniformly distributed random 
number between -1 and 1. The new food source Vi is 
evaluated for its fitness and greedy selection is applied 
between Xi and Vi.  
 Onlooker bees select certain food sources where the 
probability of finding better food source is higher and try to 
improve only these selected food sources same as Employee 
bees. Such probability associated with ith food source is 
given by, 
 
𝑝! =  !!

!!!
!!!

                                                                   (5) 

 
where, fi is a fitness associated with ith food source and can 
be calculated by, 
 

𝑓! =  
!

!!!"!
,   𝑓𝑒! > 0

1 + 𝑓𝑒! ,   𝑓𝑒! < 0
                                            (6) 

 
 Thus, in Employee bee phase each food source 
undergoes improvement process, while only selected food 
sources are improved during Onlooker bee phase. In Scout 
bee phase, the food sources which failed to improve after 
certain predetermined trials are abandoned and instead of 
that new food sources are picked up randomly from the 
search space. The ABC algorithm is good at exploration but 
poor at exploitation [10]. 
 
3.2 Standard PSO algorithm 
The Particle Swarm Optimization (PSO) algorithm finds a 
solution of the given optimization problem by simulating the 
social behavior of species [11].  In PSO algorithm, each 
particle of the swarm represents the solution candidate. The 
particles of the swarm are assumed to move in the search 
space with the velocity associated with them. Each particle 
of swarm remembers the best location ever visited by it and 
the overall best position visited by the all particles. For the 
optimization problem with N dimensions, the position of the 
particle and velocity associated with them can be modeled 
by N dimensional vectors. Let us consider the current 
position of the ith particle is Xi(t) and velocity associated 
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with is Vi(t). The new position of the ith particle, 𝑋! 𝑡 + 1  
can be calculated by, 
 
𝑉 𝑡 + 1 =  𝑤 ∙ 𝑉! 𝑡  

+ 𝐶! ∙ 𝑅! ∙ 𝑃! 𝑡 − 𝑋!(𝑡)  
                             +𝐶! ∙ 𝑅! ∙ 𝑃!(𝑡) − 𝑋!(𝑡)                 (7) 
 
𝑋! 𝑡 + 1 =  𝑋! 𝑡 +  𝑉! 𝑡 + 1                                   (8) 
 
where, w is an inertia weight factor, R1 and R2 are the 
uniformly distributed random numbers between 0 and 1, C1 
and C2 are acceleration constants, Pi represents the best 
position ever visited by ith particle and Pg is an overall best 
position. C1 and C2 are also called cognitive and social 
parameter respectively. Sometimes, instead of choosing a 
constant value of w, it is varied linearly between wup and wlow 
with iterations as follows, 
 
𝑤 𝑡 =  𝑤!" − 𝑤!" − 𝑤!"# ∙ !

!!"#
                           (9) 

 
where, t is a current iteration and tmax is maximum allowed 
iterations and wup > wlow. Such variations in value of w, 
promotesexploration in early stage of the optimization. 
Another concept is used widely with the standard PSO 
algorithm is velocity clamping. When absolute velocity of 
the particle in any dimension crosses predetermined upper 
limit Vmax, it is clamped at Vmax. The parameters of the 
standard PSO algorithms are w, C1 and C2. According to 
nature of optimization problem, values of these parameters 
can be tuned [12]. 
 
3.3 Modified PSO algorithm  
In standard PSO algorithm, the new position of the particle 
depends upon the current position of the particle, local best 
position Pi, global best position Pg and the velocity of the 
particle. Initially, when algorithm starts with random 
initialization, the swarm of the particle is diverse and as the 
algorithm progresses, the swarm loses its diversity. The 
swarm diversity is a very important factor for the PSO 
algorithm [13]. As long as swarm is diverse, the new 
solutions will be generated. As the swarm loses its diversity, 
the movement of the particle in the search space also 
reduces. When swarm diversity is lost completely, the 
velocity of particles become zero and their position remain 
unchanged. Thus, no new solutions will be generated. 
 In modified PSO algorithm, we emphasize on 
maintaining swarm diversity. The movement of the particle 
is decided by Equ. 7 and 8. When the global solution does 
not improve after the algorithmic iteration, velocity of each 
particle is examined. If the absolute value of particular 
velocity component for all the particles fall bellow 
predetermined value Vmin, only that component for all 
particles is re-initialized along with corresponding velocity 
component. When there is need to re-initialize more than 
one component, one is selected randomly and re-
initialization is carried out only for that dimension along 
with corresponding velocity component. After such partial 
re-initialization of swarm, next partial re-initialization, if 
required, is carried out only after the fixed number of 
iterations (Is). The partial re-initialization of the swarm is not 
carried out over the complete search space. The partial re-
initialization area in percentage for corresponding dimension 
around the global best position Pg is determined as follows, 
 
𝐴 = 𝑆 + 1 − 𝑆 ∙ 𝑓𝑔𝑏 ×100                                  (10) 

 
 Where, S is constant value between 0 and 1, fgb is a 
RMS error for current global best position Pg. Such re-
initialization scheme helps to maintain swarm diversity and 
improves the exploration capacity of the algorithm. 
Moreover, it also helps to avoid trapping of algorithm in 
local minima. 
 
 
4. Circuit design examples 
 
 To compare the performances of ABC, PSO and MPSO 
algorithms, two analog CMOS circuits namely two-stage 
operational amplifier (Op-Amp) and bulk driven operational 
trans-conductance amplifier (OTA) are designed in 130nm 
CMOS technology. For MPSO algorithm, the values of 
parameters are set as follows: wup = 0.9, wlow = 0.2, C1 = 
0.49, C2 = 1.99, Is = 3 and S = 0.25. For PSO algorithm, the 
designs of Op-Amp and OTA are carried out using two 
different set of parameters. For first case, the value of 
different parameters are set as suggested in [5] and they are 
wup = 0.9, wlow = 0.4, C1 = 1.49 and C2 = 1.49.  We call this 
case of PSO algorithm PSO1. For second case, we set the 
values of algorithmic parameters same as MPSO algorithm:  
wup=0.9, wlow = 0.2, C1 = 0.49 and C2 = 1.99. This second 
case of PSO is called PSO2. Each circuit is designed 
independently 25 times with MPSO, ABC, PSO1 and PSO2 
algorithm. For the Op-Amp design, swarm size is set to 15. 
For the algorithm termination criteria, maximum numbers of 
circuit evaluations are used. This limit is set to 5000 for Op-
Amp design case. For OTA design, swarm size is 12 and 
maximum circuit evaluations are 10000. For the circuit 
simulation, NG-SPICE simulator is utilized. Whole 
optimizer along with algorithm is implemented with help of 
C++. The experiment is conducted on computer having 
following major specifications: Processor - AMD-8350, 
CPU clock rate - 4GHz, RAM - 4GB, OS - Ubuntu 12.04, 
Kernel - 3.13.0.66-generic. 
 
 4.1 Two stage Op-Amp 
The two stage CMOS operational amplifier (Op-Amp) is one 
of the most widely used analog circuit. It is a building block 
of ADC, amplifiers, mixer and signal conditioning circuits. 
The circuit of op-amp is illustrated in Fig 2 [14]. The set of 
desired specification is described in Table 1. The design 
parameters are width and length of the transistors, value of 
the current source I0 and capacitor CC. The circuit is 
designed in 130nm to drive load of 0.05pF. The search space 
i.e. upper and lower bounds on width and length of 
transistor, value of I0 and value on CC, is illustrated in Table 
2. The circuit is designed twenty-five times. Table 3 shows 
the average of obtained specifications and RMS error fe over 
25 independent design runs. Table 4 and 5 show the best and 
worst obtained specifications, respectively. The variations in 
the RMS error fe with the circuit evaluations is shown in Fig. 
3. The Table 6 shows the number of times zero RMS error is 
obtained or in other words all the specifications are satisfied 
 
Table .1 Op-Amp : Desired Specifications 
Specification Desired value 
Gain > 80 dB 
UGB > 100 MHz 
Phase Margin (PM) > 62° 
Power consumption (PC) < 20 µW 
Rise Slew Rate (RSR) ≥60 V/µS 
Fall Slew Rate (FSR) ≥60 V/µS 
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PSRR ≥80 dB 
CMRR ≥75 dB 
 
 
Table 2. Op-Amp : Search space for design variables 
Parameter Search Space 
W1 to W9 (µm) 0.2 to 10 
L1 to L5 (µm) 0.2 to 1  
I0 (µm) 0.5 to 10  
CC (pF) 0.001 to 1  
VDD (V) 1.2  
. 
Table 3. Op-Amp : Average of obtained specifications, RMS 
error and CPU time for design over 25 independent runs 
 MPSO ABC PSO1 PSO2 
Gain (dB) 80.2 78.9 78.5 76.8 
UGB (MHz) 105.5 98.2 102.3 99.08 
PM ( o ) 63.2 61.6 61.8 60.9 
PC (µW) 18.9 19.6 19.1 19.2 
RSR (V/µS) 76.7 72.0 71.5 74.0 
FSR (V/µS) 63.3 65.2 62.7 64.4 
PSRR (dB) 87.4 85.9 85.9 86.5 
CMRR (dB) 76.8 76.6 77.9 76.4 
fe (%)  0.054 5.45 3.04 8.37 
CPU Time (S) 281.6 401.3 354.2 361.9 
 

 
Fig. 2 . Two-stage operational amplifier : circuit diagram 
 
 

 
Fig. 3. Two stage Op-Amp : Average RMS error vs circuit evaluations 
 
 

From the obtained results following observations can be 
made. 
 

• In 25 independent design runs of Op-Amp, the 
average RMS error is only 0.054% with MPSO in 
contrast with 5.45% with ABC, 3.04% with PSO1 
and 8.37% with PSO2. 

• Out of 25 design runs, MPSO designs Op-Amp 21 
times with zero RMS error and thus obtaining all 
specifications while ABC is successful only 2 
times, PS01 and PSO2 are for 7 times. 

• The worst obtained design with MPSO RMS error 
is 0.59% which is much less than 17.2% with 
ABC, 12.2% with PSO1 and 20.1% with PSO2. 

• The average CPU time required to design Op-Amp 
with MPSO is 281.6 seconds. That is 401.3 
seconds for ABC, 354.2 seconds for PSO1 and 
361.9 seconds for PSO2. 

 
 Table 4. Op-Amp : Best obtained specifications and RMS 
error over 25 independent runs 
 MPSO ABC PSO1 PSO2 
Gain (dB) 81.2 80.3 80.0 80.0 
UGB (MHz) 104.9 111.7 100.4 100.1 
PM ( o ) 63.3 63.2 63.7 62.5 
PC (µW) 19.8 19.5 19.7 19.3 
RSR (V/µS) 80.8 76.6 74.6 72.1 
SR (V/µS) 60.9 60.6 60.0 62.4 
PSRR (dB) 87.3 81.2 104.7 89.2 
CMRR (dB) 75.4 80.8 75.4 76.21 
fe (%)  0.0 0.0 0.0 0.0 
 
 The obtained results for Op-Amp design show the 
robustness of the modified PSO algorithm compared to 
standard PSO algorithm and ABC algorithm 
 
Table 5. Op-Amp : Worst obtained specifications for design 
over 25 independent runs 
 MPSO ABC PSO1 PSO2 
Gain (dB) 79.7 74.5 75.2 64.6 
UGB (MHz) 99.5 90.4 93.5 98.3 
PM ( o ) 61.8 60.0 59.2 59.7 
PC (µW) 19.7 19.9 21.2 20.1 
RSR (V/µS) 81.5 53.0 59.4 99.5 
FSR (V/µS) 68.6 58.5 59.1 63.6 
PSRR (dB) 105.5 77.4 77.6 77.2 
CMRR (dB) 74.9 80.1 84.5 72.5 
fe (%)  0.59 17.2 12.2 20.1 
 
Table 6. Op-Amp : Number of times all the specifications 
are satisfied 
Algorithm No of times zero RMS error is obtained 
MPSO 21 
ABC 2 
PSO1 7 
PSO2 7 
 

 
Fig. 4: Bulk-driven OTA : circuit diagram 
 



Subhash Patel and Rajesh A Thakker/Journal of Engineering Science and Technology Review 9 (4) (2016) 192 - 197 
 

 196 

 
Fig. 5. Bulk-driven OTA : Average RMS error vs circuit evaluations 
 
 
4.2 Bulk-driven OTA 
In the bulk-driven circuit technique, the voltage signal is 
applied at the bulk terminal of the MOSFET. In low voltage 
application, i.e. supply voltage is less than 1V; this 
technique enhances the performance of the circuit by 
overcoming the limitations imposed by the threshold 
voltage. Another advantage of bulk-driven technique for low 
voltage application is that, it does not require any 
modification in the structure of MOSFET [16-18]. 
 The operational trans-conductance amplifier (OTA) is 
used widely to drive large capacitive load. The circuit 
diagram of the bulk driven OTA is shown in Fig.4. This 
circuit is proposed in [15]. The set of desired specifications 
and simulation results obtained with 350nm technology in 
[15] are shown in Table 7.The design parameters with their 
upper and lower bounds are illustrated in Table 8. The 
circuit is design twenty-five times indecently in 130nm 
technology to drive load of 15pF. The obtained results are 
illustrated in Tables 9, 10, 11.  The variation in average 
RMS error with the circuit evaluations is illustrated in Fig. 5.  
 
Table 7. Bulk-driven OTA : Desired Specifications 
Specification Desired value Results of [15] 
Gain (dB) > 45  41.7 
UGB (MHz) > 15  10 
PM ( o ) > 60° 58 
PC (µW) < 200  200 
RSR (V/µS) ≥10 8.9 
FSR (V/µS) ≥10  8.3 
 
Table 8. Bulk-driven OTA : Search space for design 
variables 
Parameter Search Space 
Width of all transistors (µm) 1 to 100 
Length of all transistors (µm) 0.2 to 5 
IB (µA) 3 to 50  
IBM  (µA) 3 to 50  
VDD (V) 0.6  
 
Table 9. OTA : Average of obtained specifications, RMS 
error and CPU time for design over 25 independent runs 
 MPSO ABC PSO1 PSO2 
Gain (dB) 44.5 42.1 42.6 40.9 
UGB (MHz) 18.7 16.6 18 16.4 
PM ( o ) 60.5 58.9 59.4 57.3 
PC (µW) 124.5 117.9 120.8 124.7 
RSR (V/µS) 13.5 12.2 12.5 13.5 
FSR (V/µS) 14.2 12.5 12.9 15.4 
fe (%)  1.32 4.70 5.63 120.7 
CPU Time (S) 342.1 462.1 405.8 432.6 
 

Table 10. OTA : Best obtained specifications and RMS 
error for design over 25 independent runs 
 MPSO ABC PSO1 PSO2 
Gain (dB) 45.0 44.9 46.6 46.1 
UGB (MHz) 15.1 22.1 16.6 17.7 
PM ( o ) 61.2 59.9 61.1 60.7 
PC (µW) 94.6 90.8 81.1 82.1 
RSR (V/µS) 13.5 10.6 10.7 14.4 
FSR (V/µS) 13.7 20.5 10.6 15.9 
fe (%)  0.0 0.22 0.0 0.0 
 
 
 In the design of the bulk-driven OTA, the performance 
of modified PSO is found better than standard PSO and 
ABC algorithms. The average RMS error is 1.32% for the 
modified PSO algorithm, 5.63% for the PSO1 algorithm, 
12.07% for PSO2 and 4.70% for the ABC algorithm. In 
twenty-five independent runs, modified PSO algorithm has 
designed OTA successfully 13 times, while ABC, PSO1 and 
PSO2 algorithms are only successful zero time, 6 times, 3 
times respectively. The average CPU time for designing 
bulk driven OTA is also less in case of the modified PSO 
algorithm. With automatic circuit design technique, obtained 
results are better than obtained with manual design of [15]. 
 
Table 11. OTA : Worst obtained specifications and RMS 
error for design over 25 independent runs 
 MPSO ABC PSO1 PSO2 
Gain (dB) 42.5 40.0 35.9 39.0 
UGB (MHz) 18.5 14.8 23.2 12.6 
PM ( o ) 59.6 56.3 57.3 44.3 
PC (µW) 149.2 100.9 136.1 90.5 
RSR (V/µS) 12.8 15.8 12.6 9.9 
FSR (V/µS) 9.89 11.1 9.8 84.5 
fe (%)  5.51 12.62 20.66 33.04 
 
Table 12 : OTA : Number of times all the specifications are 
satisfied 
Algorithm No of times zero RMS error is obtained 
MPSO 13 
ABC 0 
PSO1 6 
PSO2 3 
 
 
5. Conclusion 
 
In this work, we have demonstrated application of the 
computational intelligence based techniques such as 
standard PSO algorithm and ABC algorithm to solve the 
multi-dimension and multi-constrained problem of the 
analog CMOS circuit design and synthesis. We have also 
proposed modified PSO algorithm for the automatic 
circuit design. The performances of the standard PSO 
algorithm, ABC algorithm and modified PSO algorithm 
are compared by designing the two stage op-amp and 
bulk driven OTA. The results show that the performance 
of the modified PSO algorithm is far better than that of 
standard PSO algorithm and ABC algorithm. For the two-
stage Op-Amp, the average RMS error with modified 
PSO algorithm is 0.054% while that is 5.45% for ABC, 
3.04 % for the PSO1 algorithm and 8.37% for the PSO2 
algorithm. In case of the bulk driven OTA, the average 
RMS error with modified PSO algorithm is almost three 
and half times smaller than that of ABC algorithm.
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