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Abstract 
 

The velocity of permanent magnet synchronous motors (PMSMs) must be exactly controlled to promote the development 
of high-performance drive systems. This work proposed an enhanced adaptive controller to improve the tracking 
performance of PMSM based on a new higher-order adaptive control mechanism. Firstly, the controller adopted a novel 
higher-order weighted one-step-ahead criterion function to generate the control law for an equivalent partial form 
linearization system. This model-free design depended on a pseudo partial derivative (PPD) that was derived online from 
the input and output (I/O) information of the controlled plant. This approach is especially useful for nonlinear systems 
with vague dynamics. Secondly, the design guaranteed the stability of the bounded input and output and ensured tracking 
error monotonic convergence under a restricted set of parameters. Thirdly, the design was simulated and applied on an 
actual PMSM system to demonstrate the effects of different control parameters. Results show that the approach is fit for 
motor control and yields satisfactory velocity tracking precision and fault tolerance along with the increased order. 
Moreover, the approach involves lesser calculation efforts for parameter estimation and simplifies the controller design. 
This study can meet the demand of velocity tracking and demonstrates the effective applications of this approach for real 
nonlinear motor systems that are typically difficult to model and control. 
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1.  Introduction 
 
Permanent magnet synchronous motors (PMSMs) are widely 
used in high-performance servo applications owing to the 
high efficiency, superior power density, and large torque to 
inertia ratio [1]. However, PMSMs are nonlinear 
multivariable dynamic systems and it is difficult to control 
their velocity with high precision due to the parameter 
perturbations and the non-modeled dynamics. Adaptive 
control has been widely used for such uncertain systems [2], 
but this approach is typically assumed that the mathematical 
model of the system is known and the parameters are 
unknown or slow time-varying [3]. For practical PMSM 
systems, the models are often complex to build and the 
parameters are hard to identify, which make the adaptive 
control questionable. This motivates us to study data-driven 
control approaches.  

Data-driven control approaches mainly concentrate on 
the importance of input and output (I/O) information in 
studying systems behavior and design controller merely 
using I/O data of a plant. Since these approaches do not 
require any explicit model or the structural information of 
the plant, the modeling process and the non-modeled 
dynamics all disappear. Now, several data-driven control 
approaches can be found, such as simultaneous perturbation 
stochastic approximation control, multi-level recursive 
control, model free adaptive control (MFAC), unfalsified 
control, iterative feedback tuning, virtual reference feedback 

tuning and lazy learning [4], [5], [6]. Compared with other 
approaches, the MFAC offers low computational burden, 
easy implementation and strong robustness, which make it 
suitable for many practical applications. But its main 
problems that need to be solved are the utilization amount 
and the utilization ratio of the historical I/O information. 
Therefore, to solve the mentioned problems, this paper 
focuses on an enhanced adaptive control approach. 

 
 

2. State of the art  
 

As a novel data-driven approach, MFAC is based on ‘pseudo 
partial derivative (PPD)’, a new concept of partial derivative 
derived from I/O information [7], [8]. This approach differs 
from proportional-integral-derivative (PID) control, fuzzy 
control, neural network control and expert system control [9], 
and does not require support from the model, rule or prior 
knowledge.  

The convergence analysis, stability analysis and general 
procedures of controller design are directed by fairly 
complete guidelines [10]. The recent developments in this 
field have focused on improving the designs and 
applications of adaptive controllers for nonlinear dynamic 
systems. For instance, [11] proposed a second-order 
universal model adaptive controller which parameters were 
optimized by a gradient descent algorithm, whilst [12] 
designed a higher-order model free adaptive controller for 
controlling a class of single-input single-output (SISO) 
nonlinear systems that could obtain promising results using 
only input information. However, these designs do not fully 
utilize the historical I/O data of the controlled plant, and 
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using incomplete or missing data results in the poor 
robustness, oscillation and instability of these systems. 
Model-free predictive control [13], [14] and model-free 
iterative learning control [15], [16], [17] have been 
developed integrating MFAC with advanced control 
strategies to improve their performance. The former offers 
strong robustness and economic requirements in an 
optimization criterion, but its performance greatly depends 
on the prediction accuracy of the model. However, incorrect 
model parameters can lead to inaccurate predictions. The 
latter finds a control input that generates the desired output 
over a finite time interval through trial repetition. However, 
this process only limits the motor control.  

MFAC has been widely applied to address the theoretical 
and actual problems in control engineering, power grids and 
systems, intelligent transportation systems, electrical drives 
and process industry [18]. This approach can also be used to 
control nonlinear PMSM systems. 

Exploiting a larger amount of historical I/O information 
can improve design accuracy. However, the appropriate 
amount and the utilization ratio of the I/O information 
remain unclear. This paper proposed a higher-order 
model-free adaptive control (HMFAC) approach to improve 
the tracking performance of a PMSM system. To design the 
adaptive control law, this approach adopted a novel 
weighted one-step-ahead input criterion function with an 
online-derived PPD. The approach exploited a larger amount 
of historical I/O information in a sliding time window and 
improved the robustness and stability of the controlled 
system. Theoretical analysis and simulations were performed 
to validate the effectiveness of this approach. 

The rest of this paper is organized as follows. Section 3 
describes the HMFAC design that employs the linearization 
method for a SISO nonlinear system and presents the 
convergence and stability analyses. Section 4 presents a 
simulation to illustrate the effectiveness and superior 
performance of HMFAC. Section 5 concludes the paper. 

 
 

3. Methodology  
 
3.1 Problem formulation and dynamic linearization 
method  
The controlled system is described by the following SISO 
nonlinear time-varying equation: 
 

(t 1) ( (t), (t 1), , (t ),

      (t), (t 1), , (t ))
y

u

y f y y y n
u u u n

+ = − −

− −

L
L

                                  (1) 

 
where (t)y  and (t)u  are the output and input at time t  
respectively, yn  and un  are the unknown orders and ( )f L  
is an unknown nonlinear function. 

To guide our discussion, we make the following 
assumptions: 

 
Assumption 1: The input and output of system (1) are 
observable and controllable, that is, for the desired bounded 
output signal * 1(t )y + , there exists a bounded feasible input 
signal that makes the practical output equal to the desired 
output. 
 
Assumption 2: The partial derivatives of ( )f L  with 
respect to control input (t)u  are continuous. 
 

Assumption 3: System (1) presents the generalized 
Lipschitz condition, that is, (t 1) (t)y b uΔ + ≤ Δ  for any t , 
where (t) (t) (t 1)u u uΔ = − − , (t 1) (t 1) (t)y y yΔ + = + − , 

(t) 0uΔ ≠  and b  is a positive constant. 
 
Theorem 1: For the nonlinear system (1) that satisfies 
assumptions 1, 2, and 3, there must exist PPD vectors (t)φ  
and (t) bφ ≤  when (t) 0uΔ ≠ , such that system (1) can be 
transformed into the following partial form dynamic 
linearization  description: 

 
(t 1) (t) (t)y uφΔ + = Δ                                                             (2) 

 
Equation (2) is the universal model of system (1) that 

converts a complex SISO nonlinear system into a linear 
system with the time-varying parameter (t)φ . 
  
3.2 Adaptive control law algorithm 
The adaptive control law finds a suitable control input (t)u  

sequence to achieve the desired trajectory *(t)y , that is, 
 

*lim (t) lim[ (t) (t)] 0
t t
e y y

→∞ →∞
= − =                                              (3) 

 
where (t)e  is the tracking error of the output. 

Unlike the control law in [5], the novel weighted 
one-step-ahead control criterion function of system (2) is 
defined as follows: 

 
2

*

1

2

1

( (t), , ) ( (t 2) (t 2))

( (t 1) (t ))

y

u

L

i j i
i

L

j
j

J u a b a y i y i

b u j u jλ

=

=

= − + − − +

+ − + − −

∑

∑

                (4) 

 
where λ  is a positive weight factor that restricts the 
variation of control inputs. The first and second items in 
equation (4) denote the weighted output and input errors of 
the previous i  or j  sampling instances, respectively, which 
are defined at sampling instant t . ia  and jb  denote the 
weight factors that directly determine the region and degree 

of previous information. 1 2( , , , )
y

T
i La a a a= L  with 

1
1

yL

i
i
a

=

=∑ , 

while 1 2( , , , )= L
u

T
j Lb b b b  with 

1
1

=

=∑
uL

j
j
b . 

Substituting equation (2) into equation (4) defines 
( (t), , )i jJ u a b  as follows: 

 

*

1

2

2

1

( (t), , ) ( (t 2) (t 1)

(t 1)( (t 1) (t )))

( (t 1) (t ))

y

u

L

i j i
i

L

j
j

J u a b a y i y i

i u i u i

b u j u j

φ

λ

=

=

= − + − − +

− − + − + − −
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∑
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                (5) 
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Using the optimal condition 1 ( (t), , ) / (t) 0
2 i jJ u a b u∂ ∂ =   

yields the following: 
 

*1
12 2 2

1 1

*

2

1
2 2 2

21 1

(t)(t) (t 1) ( ( (t 1) (t))
(t)

( (t 2) (t 2)))

(t 1)
(t)

y

u

L

i
i

L

j
j

au u a y y
b a

a y i y i

b b u j
b a

φ
λ φ

λ
λ φ

=

=

= − + + −
+

+ − + − − +

− Δ − +
+

∑

∑

                (6) 

 
Remark: The novel control criterion function (5) differs 
from the general function in [5]. This function contains not 
only the control inputs in a j  sliding time window but also 
the output error in an i  sliding time window before the 
current sampling instant to achieve a highly accurate control. 

 
3.3 PPD estimation algorithm 
Let ˆ(t)φ  denotes the estimation of the parameter (t)φ  as 
described in [5]. The PPD estimation criterion function for 
system (2) is defined as follows: 

 
2

2

ˆ ˆ( (t)) [ (t) (t 1) (t) (t 1)]
ˆ ˆ[ (t) (t 1)]

J y y uφ φ

µ φ φ

= − − − Δ −

+ − −
                              (7) 

 
where 0µ >  is the penalty factor of the changes in the 
parameter estimation. 

Using the optimal condition 1 ˆ ˆ( (t)) / (t) 0
2
J φ φ∂ ∂ = yields 

the following estimation algorithms: 
 

2

(t 1)ˆ ˆ(t) (t 1) [ (t)
(t 1)

ˆ(t 1) (t 1) (t 1)]

k u y
u

y u

η
φ φ

µ

φ

Δ −
= − +

+Δ −

− − − − Δ −

                                          (8) 

 
ˆ ˆ ˆ(t) (1),  if (t)  or (t 1)  

ˆ ˆ                       or ( (t)) ( (1))

u

sign sign

φ φ φ ε ε

φ φ

= ≤ Δ − ≤

≠
                           (9) 

 

where 0 2kη< <  is the step-size constant series added in 
equation (8) to generalize the function, ε  is a small positive 
constant and ˆ(1)φ  is the initial estimated value of ˆ(t)φ . 
Equation (9) is the reset mechanism that confirms the 
condition of (t) 0uΔ ≠  and the tracking ability of equation 
(8). 

The control law algorithm (6), the parameter estimation 
algorithms (8) and the reset mechanism (9) yield the 
following higher-order adaptive control scheme: 

 

2

(t 1)ˆ ˆ(t) (t 1) [ (t)
(t 1)

ˆ(t 1) (t 1) (t 1)]

k u y
u

y u

η
φ φ

µ

φ

Δ −
= − +

+Δ −

− − − − Δ −

                                        (10) 

 
ˆ ˆ ˆ(t) (1),  if (t)  or (t 1)  

ˆ ˆ                       or ( (t)) ( (1))

u

sign sign

φ φ φ ε ε

φ φ

= ≤ Δ − ≤

≠
                   (11) 
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1 1

*

2

1
2 2 2

21 1

(t)(t) (t 1) ( ( (t 1) (t))
(t)

( (t 2) (t 2)))

(t 1)
(t)

y

u

L

i
i

L

j
j

au u a y y
b a

a y i y i

b b u j
b a

φ
λ φ

λ
λ φ

=

=

= − + + −
+

+ − + − − +

− Δ − +
+

∑

∑

          (12) 

 
Figure 1 shows the system structure block diagram of the 

proposed control scheme. A model-free controller is 
designed using only the I/O information of the controlled 
plant to yield a practical output. This information, along with 
the controller output, is used by an adaptive mechanism to 
estimate directly the parameter (t)φ  in real time and to force 
asymptotically the error to zero. When the output tracking 
characteristic is influenced by parameter variations, 
non-modeled dynamics or external disturbances, the 
estimator corrects the adjustable parameter (t)φ  to prevent 
any differences in tracking. 

 

 

Model-free controller

Differentiator

Estimator

Controlled plant

1Z −

1Z −

*(t 1)y +

(t)uΔ

(t 1)uΔ −

(t)φ

(t)u (t 1)y +

(t)y

 
Fig. 1. System structure block diagram of the proposed approach 
 
3.4 Convergence and stability analysis 
Assumption 4: The sign of parameter (t)φ  remains constant 
in any t  and (t) 0uΔ ≠ , that is, (t) 0φ ε> >  or (t)φ ε< − . 
Only (t) 0φ ε> >  is considered. 
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Lemma [19]: Let 

1 2 1

1 0 0 0
A 0 1 0 0

0 0 1 0

L La a a a−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L
L
L

M M M M M
L

. If 

1
1

L

i
i
a

=

<∑ , then (A) 1s < , where (A)s  is the spectral radius 

of A . 
 
Theorem 2: Following assumptions 1 to 4, when 
* *(t 1) (t) consty y+ = =  and the appropriate λ  is selected, 

the HMFAC algorithms (10) to (12) that are applied to 
system (2) guarantee the following: 
 
(1) *lim (t 1) 0

t
y y

→∞
− + =  and 

 
(2) { }(t)y  and { }(t)u  are bounded sequences. 

The proof is given in the following sections. 
 

3.4.1 Convergence analysis 
ˆ(t) (t) (t)φ φ φΔ = − denotes the estimation error of PPD. 

Subtracting (t)φ  in equation (10) yields the following: 
 

2

2

2

2

2

(t 1)(t) [1 ][ (t 1) (t 1)]
(t 1)

(t 1) (t) (t)
(t 1)

(t 1)[1 ] (t 1) (t 1) (t)
(t 1)

k

k

k

u
u

u y
u

u
u

η
φ φ φ

µ
η

φ
µ

η
φ φ φ

µ

Δ −
Δ = − Δ − + − +

+ Δ −

Δ −
Δ −

+ Δ −

Δ −
= − Δ − + − −

+ Δ −

           (13) 

 
Taking the absolute value of equation (13) yields the 

following: 
 

2

2

(t 1)(t) 1 (t 1) (t 1) (t)
(t 1)

k u
u

η
φ φ φ φ

µ
Δ −

Δ = − Δ − + − −
+ Δ −

       (14) 

 
2 2(t 1) / ( (t 1) )k u uη µΔ − + Δ −  in equation (14) increases 

monotonously by 2(t 1)uΔ −  with a minimum value of 
2 2/ ( )kη ε µ ε+ . Therefore, when 0 2kη< < , 0µ >  and 
(t) bφ ≤ , we obtain the following: 

 
2 2

12 2

(t 1)0 1 1 1
(t 1)

k ku d
u

η η ε
µ µ ε

ΔΔ −
≤ − ≤ − = <

+ Δ − +
 and                (15) 

 

1

2
1 1

1 2 3
1 1 1

1
1 1

1
1

(t) (t 1) 2

(t 2) 2 2

(1) 2 ( 1)

1(1) 2
1

t t t

t
t

d b

d bd b

d b d d

dd b
d

φ φ

φ

φ

φ

− − −

−
−

Δ ≤ Δ − +

≤ Δ − + + ≤

≤ Δ + + + +

−
= Δ +

−

L

L                  (16) 

 
Equation (16) implies the boundedness of (t)φΔ . 

Therefore, ˆ(t)φ  is bounded with the bounded (t)φ . 
The system tracking error can be defined as follows: 

 
*

*

(t 1) (t 1) (t 1)
(t 1) (t) (t) (t)
(t) (t) (t)

e y y
y y u
e u

φ

φ

+ = + − +

= + − − Δ

= − Δ

                                  (17) 

 
where (t)uΔ  can be obtained from control law (12) as 
follows: 
 

1
12 2 2

21 1

1
2 2 2

21 1

ˆ(t)(t) ( (t) (t i 2))ˆ(t)

(t 1)ˆ(t)

y

u

L

i
i
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φ
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λ

λ φ
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+

∑
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                 (18) 

Let  
1 2 1 3 1

2 2 2 2 2 2 2 2 2
1 1 1 1 1 1

0ˆ ˆ ˆ(t) (t) (t)
1 0 0 0(t)
0 1 0 0

0 0 1 0

Lb b bb bb
b a b a b a

A

λ λ λ

λ φ λ φ λ φ
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⎡ ⎤
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L

L
L

M M M M M
L

, 

[ ](t) (t), (t 1), , (t 1) TuU u u u LΔ = Δ Δ − Δ − +L , 

1
12 2 2

21 1

ˆ(t)(t) ( (t) (t i 2))ˆ(t)

yL

i
i

ag a e a e
b a

φ

λ φ =

= + − +
+

∑  and  

[ ]1,0, ,0 T LC R= ∈L . 
Equation (18) can be rewritten as follows: 
 
(t) (t) (t 1) Cg(t)U A UΔ = Δ − +                                            (19) 
 
If (t)φ  and ˆ(t)φ  are bounded, then 0λ > . Therefore, 

the following inequality holds when 1 0.5b ≥ : 
 

1 1

1 1
1 1

2 2 2 2 2 2
2 21 1 1 1

1

1
1 1

12 2 2
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ˆ ˆ(t) (t)
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u
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i
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b b
M
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− Δ

=
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−
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+
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⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞
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⎝ ⎠

∑ ∑
           (20) 

 
From equation (20) and the Lemma, there exists 1 0ε >  

such that 
 

1 1 1 2(t) ( (t)) 1
v

A s A M dε ε
Δ

≤ + ≤ + = <                               (21) 

 
where (t)

v
A  is the consistent matrix norm of (t)A . 

Using (0) 0
v

UΔ = , the norm on both sides of equation 
(19) yields the following: 

 

2

2
2 2

1
2

1

(t) (t) (t 1) g(t)

(t 1) g(t)

(t 2) g(t 1) g(t)

g(t 1)

v v v

v

v
t

i

i

U A U

d U

d U d
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                  (22) 

Substituting equation (19) into equation (17) yields the 
following: 
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1
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 Equation (23) can be rewritten as follows: 
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From equation (26) and the Lemma, there exists 1 0ε >  

such that 
 

1 2 1 3(t) ( (t)) 1
v

B s B M dε ε
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where (t)

v
B  is the consistent matrix norm of (t)B . 

The norm on both sides of (24) yields the following: 
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            (29) 

 
If 0 (t) bφ< ≤ , 1 2 0.5a a+ ≥  and 1 0.5b ≥ , then 

2 2
min 1/ 4b bλ λ> = . Therefore, the following inequality holds 

when u yL L L= = : 
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       (30) 

 
In this case, 
 

4 4

4 3

lim (t 2) lim (t 1) lim (2)

lim (1) 0

t

t t t
t

vt

h d h d h

d d E
→∞ →∞ →∞
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= =

L
                      (31) 

 
Equations (28) and (31) validate the conclusion (1) of 

Theorem 2. 
 
3.4.2 Stability analysis 
Given that *(t) consty = , the convergence of (t)e  implies 
the boundedness of (t)y . 

Subject to control input (t)u , 
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which implies the boundedness of control input (t)u  and 
validates conclusion (2) of Theorem 2. 
 
 
4. Result analysis and discussion  
 
The PMSM simulation results illustrate the asymptotic 
convergence and tracking performance of the proposed 
higher-order adaptive control approach. 
 
4.1 Data generator of a practical PMSM system  
A practical PMSM served as an I/O data generator to 
implement the proposed approach. No explicit model and 
structural information of the PMSM were included in the 
controller design. 

The nonlinear model of PMSM is described as follows 
[20]: 
 

   

!θm =ωm

mr 2 !ωm = Te −TL −Tfriction −Tripple  

⎧
⎨
⎪

⎩⎪

                                    (33) 

 
where mw  and mθ  denote the mechanical angular velocity 
and mechanical angle, respectively. eT , LT , frictionT  and 

rippleT  denote the electromagnetic torque, load torque, 
friction torque and ripple torque, respectively. m  denotes 
the slide weight and load, and r  denotes the outer diameter 
of the rotor. 

The assumed friction and ripple torque were modelled as 
follows: 

 
( / )

0

( ( ) )sgn( )

sin( )

m md
friction c s c v m m

ripple m

T T T T e T
T F

δω ω ω ω

ω θ

−⎧ = + − +⎪
⎨

=⎪⎩
            (34) 

 
where cT  is the minimum coulomb friction torque, sT  is the 
static friction torque, vT  is the viscous friction torque, mdω  

is the desired angular velocity, 0ω  is the angular velocity of 
the ripple torque, F  is the swing of the ripple torque and δ  
is an additional empirical parameter. 

Using a practical PMSM system (which parameters are 
listed in Table 1) and discretizing equation (33) yield the 
following: 

 

2(z(t) / z (t))

(t 1) (t) (t)                                  
1z(t 1) (t) ( (t) 8 (1.6 1.6

1.152
1.6 (t))sgn(z(t)) 1.6sin(900y(t)))

d

y y z

z u e

z

−

+ = +⎧
⎪⎪

+ = + − − +⎨
⎪
⎪ + −⎩

       (35) 

 
 

where (t)y  and (t)z  are the system outputs denoting mθ  
and mw , respectively, and (t)u  is the system control input 

eT . 
The output desired trajectory in the simulations was set 

as follows: 

*

100,        0 t 100
(t 1) 600,      100 t 300

450,         t 300
z

≤ <⎧
⎪

+ = ≤ <⎨
⎪ ≥⎩

                                      (36) 

 
Table 1. PMSM system parameters 

Parameters Symbols Values Units 

Rated torque NT  400 Nm  

Rated velocity n  6000 rpm  

Slide weight m  45 kg   

Outer diameter of rotor r   161.9 mm   

Minimum coulomb friction torque cT   1.6 Nm  

Static friction torque sT  3.2 Nm  

Viscous friction torque vT   1.6 Nm  

Additional parameter δ   2 −   

Swing of the ripple torque F   1.6 Nm  

Angular velocity of the ripple torque 0ω   900 /rad s  

 
4.2 Simulation analysis  
Based on algorithms (10) to (12) and discretization model 
(35), a simulation was performed under the following 
conditions. 
 
4.2.1 Influence of weight factor λ    
The first order of the control law was employed for 
simplicity. Figure 2 shows the results, whilst Table 2 lists 
the parameters. 
 
Table 2. Simulation parameters 

λ  System initial values Controller parameters 

0.1λ =  
or  
2λ =  

or 
10λ =  

(1) 1y = − , (2) 1y = , 
(1) 0u = , (1) 0uΔ = , 

ˆ(1) 2φ =  

0.6kη = , 1µ = , 510ε −= , 

1u yL L= = , 

(1,0, ,0)Ti ja b= = L  



Feng Qiao, Zhizhen Liu and Jiangyun Wang./Journal of Engineering Science and Technology Review 9 (4) (2016) 111 - 119 

 117 

0 50 100 150 200 250 300 350 400
0

500

1000

1500

Time(s)

V
el

oc
ity

 T
ra

ck
in

g 
Pe

rf
or

m
an

ce
(r

ad
/s

)

 

 

y*(t)
y(t) λ=0.1
y(t) λ=2
y(t) λ=10

100 105 110 115 120
800

1000
1200
1400

0 50 100 150 200 250 300 350 400
0

10

20

30

Time(s)

Ps
eu

do
 

Pa
rti

al
 D

er
iv

at
iv

es

 

 
λ=0.1
λ=2
λ=10

Fig. 2. Velocity responses of HMFAC with different λ  values Times 
 

The values of weight factor λ  strongly influenced the 
system dynamic properties. The velocity overshoot 
decreased with increasing λ , which indicated an improved 
relative stability and a reduced rapidity. Stability and 
rapidity must be balanced when selecting the value of λ  in 
practical applications. Figure 2 illustrates PPD as a slow 
time-varying bounded parameter relating to the system 
action point or system dynamics. 

 
4.2.2 Influence of the input and output orders uL  and yL  
Figure 3 shows that exploiting additional historical 
information can enhance the accuracy of the adaptive control. 
Table 3 lists the parameters. 

The simulation results in Figure 3 show that the system 
response is highly precise, has a small overshoot, and is 
highly stable when the introduction of additional historical 
input and output data increases the amount of orders. 
However, using excessive historical information will 
generate oscillations at the mutation instant of the desired 
output. 

 
Table 3. Simulation parameters 
Orders System initial values Controller parameters 

1u yL L= =  
(1) 1y = − , (2) 1y = , 
(1) 0u = , (1) 0uΔ = , 

ˆ(1) 2φ =  

0.6kη = , 1µ = , 
510ε −= , 2λ = , 

(1,0, ,0)Ti ja b= = L  

3u yL L= =  

(1) y(2) y(4) 1y = = = =L , 
(1) u(2) (3) 0u u= = = , 
(1) (2) (3) 0u u uΔ =Δ =Δ = , 
ˆ ˆ ˆ(1) (2) (3) 2φ φ φ= = =  

0.6kη = , 1µ = , 
510ε −= 2λ = , 

(0.6,0.2,0.2,0, ,0)

(0.6,0.2,0.2,0, ,0)

T
i
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j
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b
=

=

L
L

 

5u yL L= =  

(1) y(2) y(6) 1y = = = =L , 
(1) (2) (5) 0u u u= = = =L , 
(1) (2) (5) 0u u uΔ =Δ = =Δ =L  
ˆ ˆ ˆ(1) (2) (5) 2φ φ φ= = = =L  

0.6kη = , 1µ = , 
510ε −= , 2λ = , 

(0.4,0.3,0.1,0.1,0.1,0, ,0)

(0.4,0.3,0.1,0.1,0.1,0, ,0)
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Fig. 3. Velocity responses with different uL  and yL  values 
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4.2.3 Comparison with traditional PID 
A second-order control law was used to compare the 
proposed control algorithm with the traditional PID 
algorithm. Table 4 lists the parameters of this law. The PID 
parameters were fine-tuned off line to balance stability and 
rapidity. Figure 4 illustrates the superiority of the proposed 
method. 
 
Table 4. Simulation parameters 

Control scheme System initial values and parameters 

HMFAC 

(1) 1y = − , (2) y(3) 1y = = , 
(1) u(2) 0u = = , (1) (2) 0u uΔ = Δ = , 
ˆ ˆ(1) (2) 2φ φ= = , 0.6kη = , 1µ = , 

510ε −= , 10λ = , 2u yL L= = , 

(0.6,0.4,0, ,0)Ti ja b= = L  

PID 0.01pK = , 0.5iT = , 1dT =  
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Fig. 4. Comparison between HMFAC and PID 
 

Simulations above indicate the following: 
(1) The nonlinear PMSM system demonstrates satisfactory 
adaptability and stability under the proposed control scheme.  
(2) The stability and rapidity of the closed loop PMSM 
system can be balanced by selecting the appropriate weight 
factors and orders. Higher values of λ , uL  and yL  indicate 
higher stability for the controlled plant, whilst lower values 
indicate favorable rapidity. 
(3) PPD is a slow time-varying bounded parameter that 
relates to the system action point, the control inputs or the 
dynamics of the system. This parameter can reflect all 
possible complex behaviors of a nonlinear system to a 
certain extent. 

 
5. Conclusions  
 
Using the dynamic linearization technique, a new 
higher-order model-free adaptive control approach was 
proposed to promote the use of historical input and output 
information for the PMSM control system. The proposed 
controller efficiently controlled the velocity and achieved 
zero-speed tracking. The order increased along with 
accuracy, especially when the desired output mutation was 
reached. The following conclusions were obtained: 

(1) Favorable asymptotic convergence and improved 
tracking performance could be achieved through proper 
parameter coordination. The design did not use an explicit 
model or the structural information of the plant, which 
would have simplified the controller design as demonstrated 
in the simulation. 
(2) The weight factor in the controller strongly influenced 
the dynamic properties. A higher weight would lower the 
velocity overshoot and negatively affect the rapidity of the 
controlled system. Stability and rapidity must be balanced 
when implementing the proposed approach according to 
different control targets.  
(3) The proposed approach demonstrated higher precision, 
smaller overshoot, better stability and strong fault tolerance 
along with increasing orders. However, oscillations were 
observed at the mutation instant of the desired output when 
the amount of orders exceeded a certain threshold. 
(4) The proposed method only had a scalar parameter PPD 
and demonstrated similar or better performance, involved 
lesser calculation efforts and could be implemented much 
easier than the traditional PID. 

The proposed approach can meet the demands of many 
nonlinear motor systems that are difficult to model and 
control. However, this paper did not consider the accurate 
measurement approaches of the I/O data, thereby presenting 
an opportunity for future research. 

 
______________________________ 
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