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Abstract 
 

In this work a new image sharpening technique based on multiscale analysis and wavelet fusion is presented. The 
proposed technique is suitable for visibility optimization of biomedical images obtained from MRI sensors. The proposed 
approach combines, with a wavelet based fusion algorithm, the sharpening results accrued from a number of independent 
image sharpening techniques. Initially, the input image is preprocessed by a denoising filter based on a complex Two 
Dimensional Dual-Tree Discrete Wavelet Transform. Then, the denoised image is passed through a cluster of five 
sharpening filters and subsequently, the final image is obtained with the help of a wavelet fusion technique. The main 
novelty of the proposed technique lies on using only one input image for sharpening and that the fusion is performed on 
images extracted in different frequency bands. This technique could be used as a preprocessing step in many applications. 
In this paper we focus on the application of the proposed technique in brain MR images. Specific image sharpening and 
quality indices are employed for the quantitative assessment of the proposed technique. 
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1. Introduction 
In general, image sharpening belongs to a category of image 
processing techniques called spatial filtering and it deals 
with enhancing details information in images. The details 
information is typically contained in the high frequency 
components of an image and corresponds to spatial regions 
that include edges and other small image features. Thus, 
most of the image sharpening techniques tries to enrich the 
high frequency contents of the image by using a high pass 
filtering. Specifically, according to this approach, we add to 
the original image a signal that is proportional to a high-pass 
filtered version of the original image. This enhancement of 
the high-frequency components of an image leads to an 
improvement in the visual quality.  
 The incentive of this work comes from multiscaling 
techniques and multiresolution analysis used in image 
fusion. As an important application, it can be used for 
suitably sharpening of medical images by using multiscale 
analysis and multimodal fusion. It should be noted that 
image sharpening using fusion is usually performed when 
we have more than one version of the same image scene. 
However, this is not always possible because in most of the 
cases, we want to emphasize the image details while only 
one image is available. In the proposed technique the 
sharpening is performed by using only one image, e.g. one 
frame from magnetic resonance imaging (MRI) sensors. 
This particular kind of images was selected due to its special 

features i.e. large homogenous areas with high contrast. 
These features give poor sharpening results when classic 
sharpening filters like unsharp masking or other linear filters 
are applied to these images. The final image is obtained by a 
fusion procedure applied on different frequency bands of the 
image. Specifically, the key idea is to apply five different, 
sharpening filters (concerning different frequency bands) to 
the initial image and then combine the resulting images to 
one image through fusion. This approach highlights the 
numerous subtle details in different frequency bands and 
produces a suitable sharpened image. The two dimensional 
Discrete Wavelet Transform (2D DWT) and the two 
dimensional Stationary Wavelet Transform (2D SWT) 
approaches are used for this fusion scheme. 
 Wavelet transform plays an important role in image 
processing [1-2]. DWT [2-3] is one of the recent wavelet 
transforms used in image processing. 2D DWT decomposes 
an image into different subband images [4-5], namely low-
low (LL), low-high (LH), high-low (HL), and high-high 
(HH). SWT is another recent wavelet transform used in 
several image processing applications. In short, SWT is 
similar to DWT but it does not use down-sampling, hence 
the subbands will have the same size as the input image. 
Input and subband images obtained by DWT are interpolated 
[6] with a factor of α/2, where α denotes the number of 
decompositions [7-8]. 
 Image fusion can be broadly defined as the process of 
combining multiple input images of the same scene or some 
of their features into a single image without the introduction 
of distortion or loss of information [9-10]. The aim of image 
fusion is to integrate complementary as well as redundant 
information from multiple images to create a fused image 
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output. The result of image fusion is a new image which is 
more suitable for human visual and machine perception or 
further image processing and analysis tasks such as 
segmentation, feature extraction and object recognition [10-
11]. The successful fusion of images acquired from different 
modalities or instruments is of great importance in many 
applications, such as medical imaging, remote sensing, 
computer vision, robotics, defense surveillance, non-
destructive evaluation and microscopic imaging [12-14]. 
 According to the stage at which the combination 
mechanism takes place, the image fusion methods can be 
generally grouped into three categories, namely, pixel level, 
feature level and symbol level or decision level [10], [12-
13]. Image fusion at pixel level means fusion at the lowest 
processing level referring to the merging of measured 
physical parameters [13]. It generates a fused image in 
which each pixel is determined from a set of pixels in the 
various sources. Feature level fusion deals with the fusion of 
features such as edges, size, and shape and texture. Fusion at 
symbol level allows the information to be effectively 
combined at the highest level of abstraction. Since the pixel 
level fusion has the advantage that the images used contain 
the original measured quantities, and the algorithms are 
computationally efficient and easy to implement, the most 
image fusion applications employ pixel level based methods 
[10], [13]. There are various methods that have been 
developed to perform image fusion. Some well-known 
image fusion methods are referred analytically in [4]. The 
selection of the appropriate one depends on the type of 
application. In particular, some commonly used techniques 
in pixel level fusion are: weight combination, optimization 
approach [8], [15-16], principal component analysis (PCA) 
[4], multiresolution (MR) decompositions [13-14] and neural 
networks [17-18]. Some generic requirements can be 
imposed on the fusion result [13-14]: (a) the fused image 
should preserve as closely as possible all relevant 
information contained in the input images; (b) the fusion 
process should not introduce any artifacts or inconsistencies, 
which can distract or mislead the human observer, or any 
subsequent image processing steps; and (c) in the fused 
image, irrelevant features and noise should be suppressed to 
a maximum extent. 
 Medical image fusion is based on information fusion and 
image fusion. The fusion in medical images can often lead to 
additional clinical information not apparent in the separate 
images [10-19]. Multimodal medical image fusion has 
emerged as a promising new research area in recent years. 
Using medical images from multiple modalities, such as X-
ray, computed tomography (CT), magnetic resonance 
imaging (MRI), and positron emission tomography (PET) 
images, increases robustness and enhances accuracy in 
biomedical research and clinical diagnosis [20-21]. Another 
advantage is that the fusion of medical images can reduce 
the storage cost by storing just the single fused image 
instead of multisource images [10]. 
 Image sharpening is directly related with the image 
quality. In most of the cases the application of image 
sharpening suitably increases and improves the image 
quality. Measurement of image quality is a challenging 
problem in many image processing fields from image 
sharpening to image fusion [22]. In the literature, the image 
quality evaluation methods can be classified into subjective 
(or qualitative analysis) and objective methods (or 
quantitative analysis) [22], [27]. Subjective methods are 
based on human judgment and operate without reference to 
explicit criteria [22]. The subjective quality evaluation 

method depends on the expert’s experience and some 
uncertainty is involved because this measure has no rigorous 
mathematical models and is mainly visual. Objective 
methods are based on comparisons using explicit numerical 
criteria and several references are possible such as the 
ground truth or prior knowledge expressed in terms of 
statistical parameters and tests. The objective image quality 
measures are mathematically defined measures such as peak 
signal to noise ratio (PSNR), root mean squared error 
(RMSE) and image entropy [28-31]. Comparative analysis 
of image fusion methods demonstrates that different metrics 
support different user needs, sensitive to different image 
fusion methods, and need to be tailored to the application 
[25]. Categories of image fusion metrics are based on 
information theory, features, structural similarity, or human 
perception [32]. Spatial frequency [23] that measures the 
activity level of an image is a suitable index for evaluating 
the quality of fused images. Finally, Piella and Heijmans 
[26] proposed a quality index for image fusion based upon 
the Wang – Bovik (2002) Universal Quality Index (UQI) 
[24].  
 In this paper, a novel sharpening method is proposed 
based on multiscale analysis and wavelet fusion. The 
approach is implemented as a three-stage procedure. The 
first is a preprocessing stage where we perform image 
denoising based on a complex 2D DWT [33-34]. This 
procedure removes high frequency noise without affecting 
the important image details. In the second stage, in order to 
exploit important image details, the image is passed through 
a cluster of sharpening filters. Most of these filters embed 
Gaussian filtering that allows us to exploit image 
information at different scales. Accordingly, the stage can be 
considered as a multiscale approach that emphasizes image 
information at different frequency subbands of the image. 
Specifically, in the second stage we use five different image 
sharpening techniques, namely unsharp masking, local 
contrast enhancement, various mask sharpening filters, max-
min linear sharpening filter and contrast-limited adaptive 
histogram equalization (CLAHE) [43]. Each sharpening 
method has several parameters which were tuned for best 
results, according to two indexes that are associated with the 
amount of image sharpening, i.e. spatial frequency and 
entropy. Next, in the third stage, the images obtained from 
the previous stage are fused with the use of 2D DWT and 2D 
SWT resulting in a final, sharpened image. It should be 
noted that the main novelty of the proposed technique is 
focused on the use of only one input image and that the 
fusion is performed only on images extracted in different 
frequency bands. The method was tested for MR brain 
images and was evaluated with the two aforementioned 
sharpening measures and with the Piella metric for fusion. 
Finally, it was compared with two new sharpening 
techniques proposed by Deng [35] and Ying [36] 
respectively. 
 The remaining of the paper is organized as follows. 
Section 2 describes the method and its aspects. In section 3 
the experimental results are presented along with the 
performance evaluation. Finally, section 4 concludes the 
present work. 
 
 
2. Description of the Sharpening Technique 
 
The proposed technique for image sharpening is depicted in 
Fig.1. Initially, a denoising filter that uses Discrete Wavelet 
Transform (DWT) is applied to an input image as a 
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preprocessing step. Then, five different spatial filters for 
image sharpening are applied, in parallel, to the denoised 
image. These filters are based on the known sharpening 
techniques unsharp masking [29], Local Contrast 
enhancement [37], various Mask Sharpening Filters [29], 
Max-Min Linear sharpening filter [38], and Contrast-limited 
Adaptive Histogram Equalization (CLAHE) [39]. 
 

 
   Fig.1. Block diagram of proposed sharpening technique 
 
 
 The mentioned techniques were tested for various values 
of their parameters when applied to a specific image. As it is 
mentioned above, the performance evaluation of the resulted 
sharpened images was based on two sharpening metrics: 
spatial frequency and entropy. The optimal image, according 
to the two metrics employed, for each technique, was 
selected to proceed in the next step of the process which 
attains image sharpening through image fusion. The fusion 
was achieved with the use of 2D DWT [40]. DWT filter with 
specific wavelet function and multiresolutional analysis 
level was applied to each image that resulted from the 
application of the sharpening filters mentioned above. 
Subsequently, fusion of coefficients with various coefficient 
selection methods (specifically, 3 different methods were 
tested) was applied. The final fused image resulted by 
applying the 2D Inverse Wavelet Transform in the 
concluded array with the fused coefficients. The quality of 
the fused image was evaluated with the two aforementioned 
metrics as well as by comparing between the input and the 
fused images according to Piella and Heijmans image fusion 
quality measure [26]. A detailed description of the proposed 
method’s steps is provided in the following paragraphs. 
 
2.1 Pre-processing (Denoising Method) 
As a pre-processing step, a denoising method based on 
wavelet analysis was used. Specifically, the denoising 
technique used is wavelet thresholding (or "shrinkage") [33-
34]. When we decompose data using the wavelet transform, 
we use filters that act as averaging filters, and others that 
produce details. Some of the resulting wavelet coefficients 
correspond to details in the data set (high frequency sub-
bands). If the details are insignificant, they might be omitted 
without substantially affecting the main features of the data 
set. The idea of thresholding is to set all high frequency sub-
band coefficients that are less than a particular threshold to 
zero. These coefficients are used in an inverse wavelet 
transformation to reconstruct the data set. Using complex 2D 
dual-tree DWT implemented on the original (“noisy”) image 
and a threshold value of about 0.015, (in normalized values 
of grayscale images) gave the best results. In this instance 
and in experimental results presented in Section 3, subjective 
image quality analysis was performed by one reader blinded 
to image parameters. Image quality assessment employed a 

3-point grading system (good, moderate and poor quality) 
based on image sharpness, clarity of grey-white matter 
interface and presence/absence of artifacts. An example of 
application of this denoising method on a T1-weighted MR 
image of the brain is presented in Fig. 2. 
 

𝑃𝑆𝑁𝑅
𝐷𝑒𝑛𝑜𝑖𝑠𝑒𝑑 𝐼𝑚𝑎𝑔𝑒
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 = 51.035 

 
h as possible the noise of input image. This can be 
accomplished with the use of, i.e. a Gauss filter. 
Step 2. Image  Is  is subtracted from input image  I and the 

resulting image is  Imask  
 

 Imask = I − IS                                                                     (2.1) 
 

  
a) 

 
b) 
Fig. 2. (a) Original MRI brain Image  and (b) Denoised MR brain Image 
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2.2 Sharpening filters used 
2.2.1Unsharp masking 
The first sharpening filter used is Unsharp masking. The 
technique is based in the subtraction of a blurred (un-sharp) 
version of the image from the original one. It allows the 
mixture of low and high frequencies of an image. Depending 
on a factor that controls this mixture it can either result in a 
blurred image or a sharpened image. The main steps of the 
method are: 
 
Step 1. A smoothed version  IS  of input image  I  is derived. 
This process must preserve most of details of the image 
while reducing as muc 
 
Image  Imask  is characterized as mask that is substantially a 
version of the initial image with high frequency content. 
Thus, image  Imask can be calculated also with the use of a 
high pass filter. 
 
Step 3. The output image is calculated using a formula as 
below: 
 

  
Iunsharp = I + kImask = IS + (k +1)Imask                                 (2.2) 

 
with   k > 0 . The reasonable value for  k varies from 0.2 to 
1.0 with the larger values providing increasing amount of 
sharpening. If   k >1 then we have the case of a high boost 
filtering. 
 Fig. 3 depicts an example of the application of unsharp 
masking in an MR image. 
 
2.2.2 Local Contrast Enhancement 
The second sharpening technique is Local Contrast 
Enhancement. The contrast increases in specific areas and 
not in the entire image. Using this technique makes it 
possible to preserve the intensity in homogeneous areas of 
the image and also in areas with high contrast. The rest of 
the pixels change their intensity value according to a specific 
transformation in order to increase contrast. This adaptive 
way of contrast enhancement can be described in the 
following steps [41]: 
 

 

a)

 
b) 
Fig. 3. (a) Original MR brain Image and (b) Unsharped MR brain Image 
 
 
2.2.2 Local Contrast Enhancement 
The second sharpening technique is Local Contrast 
Enhancement. The contrast increases in specific areas and 
not in the entire image. Using this technique makes it 
possible to preserve the intensity in homogeneous areas of 
the image and also in areas with high contrast. The rest of 
the pixels change their intensity value according to a specific 
transformation in order to increase contrast. This adaptive 
way of contrast enhancement can be described in the 
following steps [41]: 
 
Step1: If  N  is a neighbourhood of pixels (the usual case is a 
 3× 3window), then the mean contrast of the central pixel in 
place with coordinates   (n,m)  can be calculated as in eq. 
(2.3) 
 

  

C(n,m) = 1
8

I (n,m)− I (n+ i,m+ j)
I (n,m)+ I (n+ i,m+ j)j=−1

1

∑
i=−1

( i. j )≠(0,0)

1

∑
              

(2.3) 

 
Step 2: If   T1  and   T2  are two threshold values in the interval 
[0,1], then the contrast or, consequently the brightness of 
pixel   (n,m)  will change its value if only  T1 ≤ C(n,m) ≤ T2 . 
Specifically, a pixel will change its value according to the 
next rule: 
 

  
I (n,m) =

T (I (n,m)), if T1 ≤ C(n,m) ≤ T2

I (n,m), else
⎧
⎨
⎪

⎩⎪
                      (2.4) 

 
where   T (g) , denotes a histogram transformation function 
that can be chosen in relation with the histogram form of an 
image. The function used in this case is  
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T (g) =

0, if g ≤ x1

round( y1 +
( y2 − y1)(g − x1)

x2 − x1

), if x1 < g < x2

1, if g ≥ x2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

     (2.5) 

 
where   (x1, y1) = (0.3,0)  and   (x2 , y2 ) = (0.7,1)  are two points 
in the (normalized) histogram that define the straight line of 
the transformation function. The threshold values used are 

  T1 = 0  and   T2  that varies from 0.1 to 0.9 with step 0.05. An 
example of this sharpening technique is presented in Fig. 4. 

 
a 

 
b) 
Fig. 4. (a) Original MR brain Image (b) Local Contrast Enhancement 
MR brain Image 
 
2.2.3 High-pass filtering 
The third sharpening technique involves high-pass filtering 
with sharpening masks. The masks are  nxn  matrices with 
specific matrix elements. In order to preserve the low 
frequencies of an image, the central element of the matrix 
obtains a value that results in one, when all matrix elements 

are summed. Specifically, if  S  is the sum of all elements 
except the central, and the value of the central is  S + K , 
then, dividing all elements with   K  results in the desired 
matrix. Convolution of an image with this kind of matrix 
results in an image with sharpened features. In this process 
there were tested five masks, as shown below. 
 

 

0 −1 1
−1 5 −1
0 −1 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,

1 −2 1
−2 5 −2
1 −2 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,

1
7

−1 −2 −1
−2 19 −2
−1 −2 −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,

1
14

0 −1 −1 −1 0
−1 − 2 − 4 − 2 −1
−1 − 4 50 − 4 −1
−1 − 2 − 4 − 2 −1
0 −1 −1 −1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

,

1
10

−1 −1 −1 −1 −1
−1 − 2 − 2 − 2 −1
−1 − 2 42 − 2 −1
−1 − 2 − 2 − 2 −1
−1 −1 −1 −1 −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

                          (2.6) 

              
 Figure 5 presents the result of the convolution of an 
image with a sharpening mask.    
 
2.2.4 Max-Min filter 
The fourth sharpening technique that was used is Max-Min 
filter. It is considered as a recursive, non-linear sharpening 
filter that can emphasize fuzzy contours or objects [42]. It is 
based in the pixel intensity comparison between maximum 
and minimum intensities in a neighborhood. The value of the 
central pixel is replaced by the nearest extreme pixel value 
of the neighboring pixels. Specifically, according to Kramer 
and Bruchner [38],  if I is the image,   N (i, j)  the 
neighborhood of pixel   (i, j)  and if 
 

  pmax = max(N (i, j))                                                    (2.7) 
 

  pmin = min(N (i, j))                                    (2.8) 
 
then the sharpening transformation is applied according to 
the following formula: 
 

  
I n+1(i, j) =

pmax , if pmax − I n(i, j) ≤ I n(i, j)− pmin

pmin , elsewhere

⎧
⎨
⎪

⎩⎪
        (2.9) 
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a

 
b 

Fig. 5. (a) Original MR brain Image   (b) MR brain Image after 
sharpening 
 
  
where   n = 1,2,…  denotes the number of times that the 
transformation is applied to the image. This iterative 
application stops when the result, as observed by a user, is 
satisfying or until there is not significant change in the 
result. An example of the application of the Max-Min 
Transformation is shown in Fig. 6. 
 
2.2.5 Contrast Limited Adaptive Histogram Equalization  
The last sharpening technique that was used is Contrast 
Limited Adaptive Histogram Equalization (CLAHE) [43]. 
CLAHE was developed as an improved version of the well-
known Adaptive Histogram Equalization (AHE). This 
technique has proven to be successful for medical images 
contrast enhancement. In classical AHE the image can be 
considered as a whole but also is divided in a grid of 
rectangular contextual regions in which the optimal contrast 
must be found by calculating the histogram of the contained 
pixels. Calculation of the corresponding cumulative 

histograms results in a gray-level assignment table that 
optimizes contrast in each of the contextual regions. The 
drawback of AHE method is that it enhances also the 
background noise of an image. This problem can be reduced 
by limiting the contrast enhancement specifically in 
homogeneous areas. These areas can be characterized by a 
high peak in the histogram associated with the contextual 
regions since many pixels fall inside the same gray range. 
 

a

 
b 

  Fig. 6. (a) Original MR brain Image (b) Max-Min sharpening of an 
MR brain Image 
 
The contrast amplification in the vicinity of a given pixel is 
obtained by the slope of the transformation function. This is 
proportional to the slope of the neighborhood cumulative 
distribution function (CDF). Therefore, CLAHE limits the 
contrast amplification by clipping the histogram at 
predefined limits before computing the CDF. This limits the 
slope of the CDF and therefore of the transformation 
function. The value at which the histogram is clipped, the 
so-called clip limit, depends on the normalization of the 
histogram and thereby on the size of the neighborhood 
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region. It is advantageous not to discard the part of the 
histogram that exceeds the clip limit but to redistribute it 
equally among all histogram bins, as depicted in Fig. 7. 
 

 
Fig 7. Clip Limitation in Advanced Histogram Equalization 

 
The redistribution will push some bins over the clip limit 
again (region shaded green in the figure), resulting in an 
effective clip limit that is larger than the prescribed limit and 
the exact value of which depends on the image. If this is 
undesirable, the redistribution procedure can be repeated 
recursively until the excess is negligible. 
 The neighboring regions (also called tiles) are then 
combined using bilinear interpolation to eliminate artificially 
induced boundaries. The typical size of tiles is 8X8. This tile 
size was used in this technique. The Rayleigh Distribution 
was used for the CDF. The parameters that were tested as 
variables are the Clip limit, a real number ranging in [0, 1], 
with higher numbers resulting in more contrast and the 
Alpha parameter, a nonnegative real number that affects the 
shape of the CDF. An example of the application of this 
transformation in a gray scale medical image is presented in 
Fig. 8. 
2.3 Image Fusion Based on Wavelets 
In general, the problem that image fusion tries to solve is to 
combine multiple input images of the same scene or some of 
their features into a single image without the introduction of 
distortion or loss of information [8-9]. As a result, the fused 
image has better quality than any of the original images and 
it combines information from different modalities, as long as 
it concerns medical images. 
 Wavelet transforms have been successfully used in many 
fusion schemes. A common wavelet transform technique 
used for fusion is the 2D DWT [14], [44-45]. It is a spatial-
frequency decomposition that provides flexible multi-
resolution analysis of an image. The one-dimensional (1D) 
DWT involves successive filtering and down sampling of 
the signal. Provided that the filters used are bi-orthogonal, 
they will have a set of related synthesis filters that can be 
used to perfectly reconstruct the signal. For images the 1D 
DWT is used in two dimensions by separately filtering and 
downsampling in the horizontal and vertical directions. This 
gives four sub-bands at each scale of the transformation with 
sensitivity to vertical, horizontal and diagonal frequencies. 
 As it is depicted in Fig. 9, image fusion can be 
performed by using images of identical or even different 
resolutions. In our technique, we follow the first approach 
shown in Fig. 9(a). 
 The key step in image fusion based on wavelets is that of 
coefficient combination, namely, the process of merging the 
coefficients in an appropriate way in order to obtain the best 
quality in the fused image. This can be achieved by a set of 
strategies. The simplest is to take the average of the 
coefficients to be merged, but there are other merging 
strategies with better performances, such as the selection of 
the Maximum Absolute Value, the general or adaptive 
weighted average, region-based fusion schemes and other 
coefficient combining methods presented in [11]. 

 Figure 10 depicts the procedure of image fusion of many 
images, of the same resolution. Specifically, in our 
approach, the input images to be fused were the five images 
obtained from the sharpening filters presented in Section 2.2. 
Each of these images was decomposed in various 
decomposition levels, from level one to five. Two different 
wavelet functions are selected after testing with the majority 
of the available various wavelet functions. Finally, two 
different wavelet transforms were tested: the 2D DWT and 
the 2D SWT which is also known as “algorithm a trous”, 
algorithm with holes. The SWT [46] is an inherently 
redundant scheme as the output of each decomposition level 
contains the same number of samples as the input – so for a 
decomposition of N levels there is a redundancy of N in the 
wavelet coefficients. This way SWT overcomes the lack of 
translation-invariance of DWT. The same fusion scheme 
depicted in Fig. 10 is applied both for 2D DWT and 2D 
SWT. 

 

 

 
 Fig. 8. (a) Original MR brain Image (b) CLAHE sharpened 
MR brain Image 
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Fig. 9. Block diagrams of generic fusion schemes where the 
input images have (a) identical, and (b) different resolutions. 

 

 
Fig. 10. Image Fusion with the use of 2D-DWT 

 
 

 As far as it concerns the fusion rule or the coefficient 
selection method, there were tested three different methods, 
the maximum selection method, the minimum selection 
method and the mean selection method. 
 
2.4 Sharpening criteria 
The quality assessment of images can be possible with the 
use of certain quality measures or criteria. In many cases 
image sharpening is directly related with the image quality. 
It is obvious that image details are associated with high 
frequency components. This means that a high quality image 

must also have a suitable sharpening level. The criteria used 
in this work to measure the sharpening level are spatial 
frequency, entropy, and the Piella and Heijmans metric in 
cases of image fusion quality evaluation. 
Spatial frequency: Spatial frequency of an image   F(i, j)  
with  MxN  size is defined of the following equations: 

 

  SF = (RF )2 + (CF )2                                             (2.10) 
 
with                               
 

  
RF = 1

MN
F(m,n)− F(m,n−1)⎡⎣ ⎤⎦

2

n=1

N−1

∑
m=0

M−1

∑
                

  (2.11) 

 
and                                 
 

  
CF = 1

MN
F(m,n)− F(m−1,n)⎡⎣ ⎤⎦

2

m=1

M−1

∑
n=0

N−1

∑                   (2.12) 

 
being the spatial frequencies of rows and columns of an 
image, respectively. This metric, proposed from Li et al., 
[23], measures the total ‘activity level’ of an image. Thus, it 
is related with the amount of details contained in an image. 
Substantially, when the value of spatial frequency grows 
higher this corresponds to greater image clearness. 
Consequently, spatial frequency can be used as an evaluation 
metric of the quality of an image. 
Image entropy: Image entropy is given by the following 
formula: 
                                        

  
H = − p(n) log2 p(n) bits / pixel

n=0

255

∑                               (2.13) 

 
where   p(n)  is the probability of gray-scale  n , and it is 
proportionally related with the amount of information of 
the image. An image of high sharpening will have a high 
entropy value. 

Piella quality metric: The Piella quality metric was proposed 
from Piella and Heijmans [27] for the evaluation of quality 
of image fusion. It derives from the relative metric of Wang 
and Bovik [25] that also measures the quality of an image. 
The Wang and Bovik quality index is as follows: assuming 

  x = (x1,x2 ,...,xn ), y = ( y1, y2 ,..., yn )  are two set of values with 
the following attributes: 
 

•  x  is the mean value of set  x , 
•  y  is the mean value of set  y , 

•   σ x
2  is the variance of set  x , 

• 
  
σ y

2  is the variance of set  y , 

• 
 
σ xy is the covariance of the values from the two 

sets 
The quality index can be expressed as 
 

  
Q0 =

4σ xyx y

(x 2 + y 2 )+ (σ x
2 +σ y

2 )
                              (2.14) 

 
 The above equation can also be written as 
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Q0 =

σ xy

σ xσ y

2x y
x 2 + y 2

2σ xσ y

σ x
2 +σ y

2                                            (2.15) 

 
 The first fraction of   Q0 constitutes a correlation 
coefficient between  x  and  y . In general, index 

  Q0 = Q0(x, y)  is a similarity measure between the two 
vectors,  x  and  y  and it varies from -1 to 1. If the two 
vectors are replaced from grayscale images then it can 
become a similarity index of two images. For value   Q0 = 1  
the two images will be identical, while approaching -1 
stands for high unsimilarity of the two images. The second 
fraction, in the case of images, reflects the distortion of 
intensity and varies in the interval [0,1]. Finally, the third 
fraction expresses distortion in image contrast between the 
two images and it also takes values in [0,1]. 
 Piella and Heijmans evolved this measure [26] to use it 
in image fusion quality assessment. The new measure has 
the form of   Q(a,b, f ) , with  a  and  b  being the two input 
images and  f  the fused image. This measure reflects the 
local coherence of an input image that may depends on local 
variance in intensity, contrast, clearness or entropy. 
Considering intensity variance of two input images  a  and  b
, a local weight λ  that indicates the relative significance of 
image  a  in comparison with image  b  is determined. High 
values of λ  imply greater importance for image  a . A 
typical choice for calculating λ  is given by the next 
formula: 
 

  
λ =

S(Ia )
S(Ia )+ S(Ib )

                                                         (2.16) 

 
where   S(Ia) ,   S(Ib)  is a measure of salience (i.e. intensity 
variance) for the two images.  
Considering  the above, the Piella and  Heijmans is formed 
as: 
 
 

  
Q(a,b, f ) = λQ0(Ia , I f )+ (1− λ)Q0(Ib , I f )                    (2.17) 

 
 Piella and Heijmans proposed that the metric should be 
calculated locally, using a shifting window. In this case, eq. 
(2.14) and (2.15) will be transformed as: 
                                                

  
λ(w) =

S(Ia / w)
S(Ia / w)+ S(Ib / w)

                                          (2.18) 

and 
              

  

Q(a,b, f ) = 1
W

(λ(w)Q0
w∈W
∑ (Ia , I f / w)+

+(1− λ(w))Q0(Ib , I f (w)))
                      (2.19) 

 
 Thus, in regions where image  a  is of higher importance 
compared to image  b , the value of  index   Q(a,b, f )  is 
mainly determined from  a . Contrariwise, in regions that 
image  b  has greater significance to image   a will determine 
index   Q(a,b, f )  according to image   b.  
 
 

3. Experimental Results and Performance Assessment 
 
There are two main difficulties concerning the proposed 
method. First, there is not a single quality measure that can 
strictly define the sharpening result and second, there are too 
many parameters that have to be considered during the 
process.  
 
Experiment 1 
The above mentioned image fusion method has been applied 
to MR images of human brain acquired with a pulse 
sequence providing T1-weighted contrast. Processed images 
were in DICOM format and had a 256x256 spatial 
resolution. Initially, a denoising filter that uses the complex 
2D dual-tree DWT was applied to an input image as a 
preprocessing step [33-34]. The performance results based 
on two sharpening measures, namely Entropy and Spatial 
Frequency as well as PSNR value, are listed in Table 1. It 
can be observed that Entropy is improved (increased). 
Spatial frequency is not affected considerably, whilst 
contrast is reduced (decreased). The PSNR value is equal to 
51.035. 
 
Table 1. Sharpening metrics from the original MR image 
and the corresponding image after denoising with complex 
2D dual-tree DWT 
 Entropy Spatial 

Frequency 
PSNR 

Input Image 4.633 17.235  
Denoised 
Image 

4.7255 17.213 51.035 

 
 Subsequently, five sharpening techniques were 
independently applied to the denoised image. Afterwards, 
we applied the above mentioned three metrics to sharpened 
images and the performance results are illustrated in Table 2. 
 
Table 2. Sharpening measure values of 5 various sharpening 
techniques for an MR image 

Unshar
p 

LCE Mask 
Filt. 

Max-
Min 

CLAH
E 

Entropy 4.626 4.757 4.988 4.944 6.691 
Spatial 

Frequenc
y 

 
16.578 

 
22.69

0 

 
17.14

5 

 
28.06

5 

 
31.455 

 
 For all five sharpening methods employed, the 
involved parameters were selected according to sharpening 
measure values and subjective analysis of image quality 
discussed above. In the sequel, the aforementioned 
sharpened images were fused using wavelets to achieve 
better sharpening results. There are various factors which 
can influence the wavelet-based image fusion results. The 
core factor in wavelet-based image fusion is the wavelet 
coefficients combination (i.e. the fusion rule) because it 
determines how to merge the coefficients in an appropriate 
way so that a high-quality fused image can be obtained. In 
this study, three wavelet coefficients combining methods 
have been used:  maximum coefficient rule, minimum 
coefficient rule and mean value coefficient rule. On a 
subjective basis, the maximum coefficient rule gave the 
better fusion results and therefore was chosen to be 
employed in our experiments. Another critical factor in 
wavelet-based image fusion is that of the application of a 
suitable wavelet transform algorithm. We have used three 
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different wavelet transforms: the 2D DWT with a 
decomposition level of 1, the 2D SWT with a decomposition 
level of 3 and the 2D MDWT, with a decomposition level of 
3. The decomposition level of 3 was selected according to 
the visual result and the quality performance according to 
spatial frequency and entropy. Table 3 presents the quality 
results for a test image in decomposition levels 2 to 7. A 
final factor is the selection between the various wavelet 
functions (e.g. Daubechies's wavelets, Haar wavelets, etc). 
The sharpened image fusion results associated with the 
maximum coefficient fusion rule, the Daubechies's 4 (db4) 
function, along with decomposition level of 1, 3 and 3, as 
the wavelet-basis for DWT, SWT, and MDWT 
correspondingly, are presented in Figure 11. 

 
 

Table 3. Quality measure values for fusion with DWT and 
SWT  in various decomposition levels (for db4 wavelet 
function) 

Decom
position 
level 

Entrop
y_A 
trous 

Spatial 
Freque
ncy_A 
trous 

Entr
opy 
DW
T 

Spatial 
Frequen
cy_DWT 

2 4.57 16.12 4.86 17.06 
3 5.03 15.58 5.41 17.42 
4 5.24 15.21 5.62 17.18 
5 5.36 15.23 5.90 17.14 
6 5.62 15.07 6.18 17.30 
7 6.09 14.72 6.61 17.03 

 
To quantitatively evaluate the image quality of the 

fused images obtained with the three different wavelet 
algorithms (DWT, SWT and MDWT), three different 
metrics were employed and the relevant results are 
displayed in Table 4. As can be observed, the entropy 
values are improved compared to that of the input image, 
giving the best performance for fused image obtained by 
the DWT. The spatial frequency metric is also improved 
giving the best performance when the DWT is used. The 
Piella’s fusion quality index gives an indication of how 
much of the salient information contained in each one of 
the input images has been transferred into the fused image 
without introducing distortions (i.e. the measure of 
similarity between fused and input images). The range of 
its values is [0, 1], where the best value of 1 is achieved 
for the absolutely successful image fusion. We have found 
that DWT provides the most accurate representation of the 
original image according to the Piella’s fusion quality 
index.  

 
Table 4. Sharpening index values for the DWT, SWT and 
MDWT transform algorithms (Db4 wavelet function and 
maximum coefficient selection were implemented in all 
cases). 

 Entropy Spatial 
Frequency 

Piella 
Metric 

Input Image 4.633 17.235 - 
DWT 6.327 21.967 0.791 
SWT 6.052 20.179 0.753 

MDWT 5.998 20.217 0.656 
 

 
 

 

 
(a) Original Image Fused Image with DWT (max) 
(b)  
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(c) u
sed Image with SWT (max) n)Fused Image with MDWT (max) 
Fig 11. The original MR image (a) and fused images resulting with 
the use of maximum coefficient rule, the db4 wavelet function, and 
three different transform algorithms. 
 

Experiment 2 
In this experiment, we have carried out some comparisons 
on different wavelet functions of DWT with a 
decomposition level 1 and by using the maximum 
coefficient fusion rule. The obtained sharpening measure 
values of fused image are listed in Table 5. It can be 
inspected that all wavelet functions gave small fluctuations 
as regards quality metric values. Thereby, the selection of 
wavelet function is not considered to be substantial for 
wavelet-based image fusion. In addition, independent of the 
wavelet function used, the spatial frequency and entropy are 
improved to the same extent. Overall, Haar wavelet function 
seems to perform slightly better than the other functions 
tested and, therefore, it was adopted for the benchmarking of 
the proposed approach against other methods (Experiment 
4). 
 
Table 5. Sharpening index values for the fused image 
acquired with various wavelet functions (DWT with 
decomposition level 1 and the maximum coefficient 
selection rule were implemented in all cases). 

 Entropy Spatial 
Frequency 

Input Image 4.633 17.235 
Haar 5.728 23.628 

Daubechies 4 5.827 21.967 
Biorthogonal 1.3 5.813 23.379 

Rev. Biorthogonal 1.3 5.837 23.819 
Symlets 2 5.841 23.167 
Coiflets 2 5.897 23.254 

Biorthogonal 6.8 5.873 23.039 
Rev. Biortogonal 6.8 5.882 23.312 

 
 
Experiment 3 
In order to show the effectiveness of the proposed method, 
tests were realized on 60 brain MR images. In this 
experiment, the db4 function was applied as the wavelet-

basis for DWT with a decomposition level of 1, along with 
the maximum coefficient selection rule. In Figures 12(a) and 
12(b) percentage variations of Entropy and Spatial 
Frequency, respectively, are plotted for the 60 MR images 
studied. As clearly seen, for a single independent fused 
image, a greater increase in entropy is accompanied by a 
greater increase in spatial frequency. In addition, for 
comparison reasons, average percentage variations of fused 
image sharpening measures by using db4 and Biorthogonal 
1.3 (bior 1.3) wavelet functions are listed in Table 6. 
 

 

Fig. 12(a. Entropy percentage variation for 60 MR 
images 

 
 

 

Fig. 12(b): Spatial frequency percentage variation for 60 
MR images 

 
 
Table 6: Average percentage variation of fused image 
sharpening measures for the db4 and bior1.3 wavelet 
functions. 

 
 

Average % Entropy 
variation 

Average % 
Spatial Frequency 

variation 
DB4 28.5101 54.2035 

BIOR 1.3 25.5801 49.2344 
 
 

From Table 6, we can inspect that the  db4 wavelet 
function demonstrates a slightly better performance than bior 
1.3 for both Entropy and Spatial frequency measures. 
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Experiment 4 
The proposed method was also tested in comparison to two 
new methods of image sharpening. These methods are 
described in [35] and [36] respectively. The first technique is 
a generalised modification of unsharpmasking. The 
implemetation acquires the regulation of some variables that 
affect the sharpening result. The variables are: a contrast 
factor that is a parameter of the adaptive histogram 
equalization function and the value used is 0.005, a 
parameter for enhancing details with the value of 3 used as 
gain, a binary mask for the filtering process that used the [0 
1 0; 1 1 1; 0 1 0] values, a choice for adaptive gain control, a 
rank of filter that corresponds to median filter and a value of 
5 for the iterations of the median filtering.  
 
The other sharpening method is based on wavelets and the 
right selection of coefficients to eliminate noisy coefficients 
and keep all the other coefficients of high frequency. There 
is a comparison between the values of a 3 level 
decomposition of a DWT with the corresponding 
coefficients of levels 1 and 2. If their sum is below a 
threshold value, then the coefficients of the third level are 
considered as noise and are set to 0. The application of this 
technique uses a variable that corresponds to the ratio 
between the first level threshold Τ1 and the second level 
threshold T2. The default value that was used is 1. The 
technique also uses another threshold value which functions 
similarly to the  k  parameter of unsharp masking. The value 
used for these tests was equal to 3. Haar wavelet function is 
the DWT function used for this method. Haar wavelet 
function was also used for the proposed method, with one 
level DWT and maximum wavelet coefficient selection. The 
output images for the examined techniques are displayed in 
Figure 13. Table 7 presents the quality measure values 
estimated for the initial image and the images sharpened 
with the three techniques. 
 
 

Table 7. Indices values for the original brain MR image 
and the corresponding sharpened images shown in Figure 
13. 

 Entropy Spatial Frequency 
Original image 4.6334 17.2352 

DWT(max) 5.7279 23.6284 
Deng algorithm 5.8553 40.3971 
Ying algorithm 4.9886 32.7688 

 
 
 By analysing the results listed in Table 7, a consistent 
trend indicates that the two methods proposed by Deng and 
Ying individually are superior to the proposed method, 
mainly regarding the values of spatial frequency, with Deng 
method giving the best results for the sharpening criteria. 
Nevertheless, subjective, visual assessment of the 
corresponding images revealed more artifacts in the images 
based upon the methods proposed by Deng and Ying 
compared to those identified in the final fused image 
resulting from the proposed technique. 

 

 
  
(a) Original Image (b) 
Fused Image with DWT(max,Haar) 

 



P. Zafeiridis, N. Papamarkos, S. Goumas and I. Seimenis/ Journal of Engineering Science and Technology Review 9 (3) (2016) 187 - 200 
	

	 199 

 
(c) Sharpened Image with the Deng method (d) Sharpened Image with 
the Ying method 
Fig 13. A brain MR image sharpened with 3 different methods: the 
proposed method with one level DWT fusion with Haar wavelet 
function and the maximum coefficient selection rule, the Generalized 
Unsharp Masking Algorithm proposed by Deng and a Wavelet based  
image sharpening proposed by Ying.  

 
  

 
 
4. Conclusions 
 
In this paper we introduce a new method for sharpening of 
grayscale medical images derived from MR sensors based 
on multiscale analysis and wavelet fusion. MR images have 
been selected because of their contrast properties that give 
relatively poor results when classic sharpening methods are 
applied to them.  The main novelty of the proposed 
technique lies on that we  perform sharpening using only one 
input image and a multiscale approach that allow as to apply 
a fusion procedure in different frequency bands of the 
image. The proposed technique was tested on brain MR 
images that are usually of low resolution and contrast.  
 The suggested technique consists of three steps. The first 
step is denoising, using 2D dual tree Discreet Wavelet 
Transform in order to remove high frequency noise without 
affecting the important image details. The second step, 
which consists of independent sharpening filters that utilize 
common methods, can be considered as a multiscale 
approach that emphasizes image details at different 
frequency subbands of the image. Parameter selection for 
each of these methods was based on both subjective (i.e., 
visual comparative evaluation assessing the overall image 
quality), and objective (i.e., estimation of entropy and spatial 
frequency in the final image) criteria. The third step 

comprises the fusion of the 5 resulting images using the 2D-
DWT method, to further increase the sharpness of the final 
image. Three different wavelet algorithms were tested: one 
level of decomposition DWT, the stationary (or 
undecimated) wavelet transform with 3 decomposition 
levels, and DWT of 3 decomposition levels. Several wavelet 
functions as well as 3 different wavelet coefficient selection 
methods (maximum, minimum, and average value 
coefficient) were also tested. 
 The numeric results showed small differences between 
the values of the sharpening measures in the intercomparison 
between the various wavelet functions. Furthermore, the 
maximum coefficient selection method was preferred when 
choosing the wavelet coefficients because, despite the 
variations it featured compared to the other two methods 
tested, it generally performed better in terms of image 
quality grading. 
 Moreover, comparison between 1-level DWT, 3-level 
SWT and 3-level DWT showed that 1-level DWT gave 
better images in terms of spatial frequency and entropy 
values. In addition, 1-level DWT exhibits a higher Piella 
value, which provides a similarity assessment between the 
individual images used for fusion and the final fused image. 
Also, 1-level DWT performed better in terms of image 
quality and artefact identification and, therefore, was 
preferred over the other two wavelet transforms. 
 The proposed method was quantitatively applied and 
tested to 60 brain MR images. The1-level DWT was used in 
all of them, selecting maximum coefficients for two wavelet 
functions, namely Daubechies 4 and Biorthogonal 1.3. 
Daubechies 4 resulted in an increase in values of average 
entropy (+28.51%) and spatial frequency (+54.2%). 
Biorthogonal 1.3 showed average entropy and spatial 
frequency increases of 25.58% and 49.23% respectively. 
The proposed method was eventually compared to two 
relatively new image sharpening methods. The first method 
is an improved generalized application of the unsharp 
masking algorithm, while the second one is a sharpening 
technique utilizing DWT and appropriate selection of 
wavelet coefficients to effectively suppress noise and 
enhance high frequencies associated with edges. For the 
proposed method, 1-level DWT with max coefficient 
selection was used, along with the Haar wavelet function, 
whereas optimum parameters were chosen for the other two 
methods. The other two methods outperform the proposed 
method in terms of spatial frequency values. In subjective 
analysis, however, the images resulting from the proposed 
approach present enhanced visual similarity to the initial 
image, while suppressing artifacts or distortions of basic 
characteristics/properties, such as the image edges. In any 
case, the assessment of the efficacy of the proposed 
methodology in medical imaging requires a rigorous multi-
parametric procedure which will also take into account 
diagnostic accuracy.  

 
______________________________ 
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