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Abstract

The accurate and real-time performance of trajectory estimation directly affects projectile observation and correction.
However, estimation performance may suffer from poor real-time and weak anti-jamming capabilities when sensors, such
as optics/acoustics, global positioning system, or radar are used to estimate trajectory. This study proposed a novel
trajectory estimation algorithm based on the ultra-wideband (UWB) positioning technique to improve real-time
estimation accuracy. The state equation was established based on UWB positioning technology, which combined time
difference of arrival (TDOA) and angle of arrival, and then compared with single TDOA location technology. Square
root cubature Kalman filter (SRCKF) was used to estimate the trajectory. However, the filtering accuracy decreased when
the measured value was abnormal. The adaptive square root cubature Kalman filter (ASRCKF) method was proposed to
deal with this problem. Judgment as to whether the ASRCKF method should be used was presented. Results show that
the joint positioning method is superior to the single positioning method, and that the ASRCKF method can remove bad
measured values. Hence, the method effectively solved the error that occurred in the measurement process and obtained

accurate estimation results.
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1. Introduction

The accuracy and real-time performance of trajectory
estimation directly affects artillery observation and
correction. The positioning technology of the sensors based
on optics/acoustics [1], global positioning system (GPS) [2],
and the radar [3] are often used to make trajectory estimation
and improve the accuracy and real-time performance of such
estimation. However, these positioning technologies have
problems, such as the weak interference immunity of the
sensors and the low real-time performance of the GPS.
Moreover, the radar cannot overcome the influence of the
low-altitude clutter waves, although it can effectively record
with distinctness while playing a volley. These reasons,
along with the great error in the measurement result, lead to
an inaccurate ballistic estimation. Therefore, determining a
strong anti-interference and real-time measurement method
is important in solving the abovementioned problems.

2. State of the art

The ultra-wideband (UWB) positioning technology is a
novel wireless positioning technology with high definition
[4-6]. The principle of UWB is that it sends and receives
significantly narrow pulses with a nanosecond or sub
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nanosecond scale to realize positioning. With a bandwidth of
the GHz orders of magnitude, UWB positioning technology
can provide accurate positioning that is precise at the
decimetre level. Compared with the traditional positioning
technology, UWB positioning technology has many merits,
such as stability against environmental factors, strong
interference immunity, short start time, small volume, easy
installation, and simultaneous multi-data recording.

The positioning algorithm adopted in this paper
combines the time difference of arrival (TDOA) with the
angle of arrival (AOA), which are typically used in UWB
positioning technology [7-9]. This algorithm can effectively
improve the accuracy and coverage of the positioning and
intensify the anti-destroying ability of the positioning
system. However, the positioning accuracy in the process of
TDOA and AOA joint positioning is still influenced by
errors, such as noise. This algorithm is a nonlinear problem.
Thus, nonlinear Kalman filtering method is often used to
eliminate the error. The frequently-used nonlinear Kalman
filter includes extended Kalman filter (EKF), unscented
Kalman filter (UKF) [10], cubature Kalman filter (CKF),
[11-12] and their improved algorithms.

Several filtering methods of the trajectory estimation
have been analyzed and compared [13-15]. Jia B et al.
adopted the high degree iteration CKF algorithm [13] and
obtained high-precision positioning estimation data by
comparing with EKF, UKF, and three-order CKF. However,
the complexity of the result is multiplied compared with that
of the three-order CKF because of the high degree of
freedom. Smidl V et al. adopted the square root cubature
Kalman filter (SRCKF) algorithm [14]. This algorithm
avoided the non-positive definiteness problem of the
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covariance and effectively improved system stability and
complexity. Zhao et al. proposed the reduced twice-
augmented SRCKF algorithm [15]. The algorithm
augmented the noise twice in the time update and
measurement update link of the cubature Kalman filter, thus
effectively reducing the number of sampling points and
algorithm complexity. However, in the process of UWB
experiment, the result of measurement is actually not stable
given a variety of unexpected reasons in the system. These
bad results often bring vast errors to the system, which
includes a filter fault. Thus, the current study proposed the
introduction of the error covariance square root adapting
factor to improve the robustness of the measurement.

The remainder of this paper is organized as follows.
Section 2 expounds on the current research status of UWB
positioning technology and nonlinear filtering. Section 3
presents the system model and adaptive SRCKF algorithm.
Section 4 describes and analyzes the results of the
simulation. Section 5 summarizes the conclusions.

3. Methodology

3.1 System modeling

This paper employed the particle trajectory model to
simplify the calculation process and improve the real-time
performance of the system. Figure 1 shows the constructed
three-dimensional (3D) rectangular coordinate system, in
which the Y axis is vertical to the ground. The coordinate of
the projectile particle is (Xk, Yk, zx), and the coordinates of
the positioning base station are (x;, yi, Z1), (X2, Y2, Z2)-.. (X;,
yis zi). The target pitching angle and azimuthal angle
measured by the positioning base station are represented by
a; and f3;, respectively.

YA

(%02,

Fig. 1. TDOA/AOA Joint positioning system model diagram

3.1.1 State equation

Particle trajectory is the basis of the study of actual ballistics.
Here, the projectile is a particle with the components of the
location coordinate, and velocity is [x, V.z,V, Y, Vz}r.

Considering the wind speed, the particle trajectory equation
[16] is given by

dx
Zay
dt
dy _

d ° (1

Ve et \v. -w.)

where C is the ballistic coefficient, H (y) is the air density

function, G(Vr) is the air resistance function,

v, = \/ (Vx -W, )2 + Vy2 + (VZ -Ww, )2 is the relative
velocity of target, W is the vertical wind, and W, is the
cross wind.

If y <10000 m, the air density function can be obtained
according to the empirical formula [17] given by

20000 —
H(y)=—""2 @)
20000+ y
The air resistance function [17] is given by
1
G(r,)= EPONVrSCXON (Ma) )

In Formula (3), poy =1.206 kg/m3is the surface air
density of the surface air density; Cy, is the standard

projectile resistance coefficient, which is the function in
connection with the Mach number Ma , expressed

vV . L
as Ma=—/; and C, = /KR|7 is the sound velocity in
s
which R, is gas constant. Substituting constants p,,), and

7z into Formula (3) results in

G(V)=4.737x10"*VC yon [CL] (4)

N

The ballistic coefficient and air density, in general, are
regarded as constants in state equation. However, they both
change in the process of the real projectile motion. Thus,
they should be regarded as state variable to improve
estimation precision.

The rate of the air density change is expressed as

dp
£ 14 5
ar Pon&Vy ®)

The ballistic coefficient C is defined as

C= (6)

where m is the mass of the projectile, Cp is the air
resistance coefficient of the projectile, and 4 is the effective
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area of the projectile. However, these three parameters
cannot be used in the state equation to model the trajectory
coefficient. Thus, the trajectory coefficient exponential
model proposed in reference [18] was employed. The
parameter f is introduced, and the resulting model of

trajectory coefficient is expressed as
C=CoexplB(r)]

where C,, is the initial value of the trajectory coefficient

(N

(experience value). The rate of £ change is ﬂ(t) and is
denoted as @ 8> which is the Gaussian white noise with zero

mean.

Meanwhile, projectile location, velocity, trajectory
parameters coefficient, and air density
(x, »zV,, Vy, 0, p) were chosen as the state variables.
The discrete state equation is given by

_ v -
v,
Vf (®)
= +we =X+ +w
k+1 k k k *CH(}/)G( ) -g k
- CH ()G, Y - 7.)
B
= PongVy

L ) dx=x,

where AT is the sampling interval. Such factors as the
curvature of the earth’s surface, the change of the
acceleration of gravity, and Coriolis force acceleration, were
not considered in the particle trajectory equation. Some
errors could not be avoided. Therefore, error compensation
was needed. Here, the mean of w, is zero, and the

covariance matrix is the process noise of Q; .

3.1.2 Measurement equations
The TDOA/AOA positioning algorithm was adopted in this

study, and base station 1 was set as the reference base station.

The value of the system being measured included the TDOA
measured value Af;; of all the base stations, except the

reference base station, and the AOA measured values ¢;

and f3;.
(1) Measurement equation based on TDOA
r,—n
Aty =t; -t =——L="1L ©)
c c
7 —\/x _xk J’k) +(Zi_zk)2 (10)
2
= x - X +\z;—z
Tin \/ k J/k) ( i k) (1

_\/(xl _xk)2 +( _Yk)z +(z _Zk)2

In the above formulas, 7; is the distance from the

positioning base station i to the projectile, 7; is the
difference between the distance from the positioning base
station i to the projectile and that from the reference base
station to the projectile, and ¢ is the propagation velocity of

radio wave. The measurement value was set as7; . The
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measurement equation was obtained based on the TDOA
algorithm from Formulas (9), (10), and (11). The resulting
equation is expressed as

o :J(»—xk)z T

_\/xl xk

where v,_rpoy 1S the measurement noise based on the
TDOA algorithm.

(12)

yk) +(21 —Zk )2 +Vik-1p04

(2) Measurement equation based on AOA
When ¢; and J; are set as the measurement value,

«; =arctan

(13)

z
f; = arctan

X —X;

From Formula (13), the measurement equation below
can be obtained based on the AOA algorithm.

arctan Yk — Vi
2 2
X —x; ) +lzp —z;
Zitod = (k IZ) _Z(k z) Ve 04 (14)
arctan —%——1
X —Xi

where v,_ 04 is the measurement noise based on the
TDOA algorithm.

(3) Measurement equation based on the combination of
TDOA and AOA

The value of the measurement equation based on the

combination of TDOA and AOA is calculated using

z= [r[.l ,Q, ﬁ]T . The measurement equation is given by

|

where Vk:[Vk—TDOAaVk—AOA]T and v, _;n, satisfy the

Zy_1p0o4

Zk:h(Xk)+Vk:|: (15)

k—A0A4

distribution characteristics of N(anTDO Az), and v;_ 404

2 ) They
are independent of each other, and have no relevance to
Thus, the covariance of

satisfies the distribution characteristics of N (O, €404

Xk and Wk Vi

isR, = diag(eﬂ)o,q2 Leaod” 1)-

3.2 Adaptive square root cubature Kalman filter
algorithm

3.2.1 Square root cubature Kalman filter

SRCKF is an improvement of the CKF ideology first
proposed by Arasaratnam in 2009 [11-12], [18]. Compared
with CKF, SRCKF has two advantages. First, in the process
of using CKF, the non-positive definite covariance may be
produced. However, SRCKF can avoid this problem
effectively and improve the stability of the filter. Second,
SRCKF directly uses the covariance square root matrix
without further calculating the covariance. Thus, the
complexity of the algorithm and filtering efficiency can be
effectively reduced.
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Here, the nonlinear state equation and measurement
equation, such as Formula (16), were first established.
SRCKEF calculation was then carried out in accordance with
the two steps of the SRCKF algorithm, namely, time update
and measurement update.

{Xm:f(Xk)"'Wk (16)

Zy =h(Xk)+Vk

(1) Time update
The cubature points must be structured according to the state
variable dimension.

If the dimension is n, the cubature pointis 4, = JnE.

If 1<i<n, then E is a positive unit matrix with i
dimensions.

If n+1<i<2n, E is a negative unit matrix with ;
dimensions.

If the variance estimation is S Kk when the time is k , the

error covariance Pk\ « at this time is

T
B = Sk Sk a7

The cubature point X ik at the time of & can be

calculated by using

Xk =S + Xgw (18)

The cubature point X ;. at the time of & +1that was

deduced from the cubature point X; Kl 18

Xl jop =1 (X iU k) (19)

The predictive value of state X ki at the time of
k +1is given by

2n

1 /
n 2 Xi sl

i+l

X kHlk = (20)

The predictive value of error covariance square root
Sk 1s stated as

Sk =Tr ia(lX el SQ,kJ) (2]
where S, is the square root of Oy, and

O = SQ,kSé,k-
The weighted center matrix X +ik is given by
, 1| Xl — e fetll > X2 ek

Xiewie == (22)

_ , -
20| = X X — X st

(2) Measurement update
An equation is used to calculate the updated cubature

point X i ek - The equation is given by
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X = Skaedi + X (23)

The predictive value of measurement cubature point
Ziy 11k at the time of, which is calculated via measurement

equation, is given by

Zijife = h(Z ifeliea1> Uk ) (24)
The measurement estimate Z +lk is expressed as

N 2n

Ly = g™ Z; ik (25)

i+l

The value of innovation covariance square root S, ;.

is given by

Szz g =Tria (lZ el > S R el J) (26)

where Sp ., is the square root of R, , and

T
Ris1 = SR 1SR jes -

The weighted center matrix Z ,,, is calculated using

1| Ziksk = Zrstpe> Lo vk

o 27

Lk = ~ -
~Ziiiko > Longrik — Lk
The values of innovation covariance P, , Hk and

measurement auto-covariance PZ etk are

T
Pz e =S zz jsik Pz e 28)

Py vk = Pzz ke — Rt

The cross-covariance of the predictive value of state and
measurement estimation Py, , 41k 1s given by

T
Pxz vk = X e Zisipe (29)
where X is
1| X — )?kﬂ\k 5 X2 kel
X =75 (30)

20— X X ot = X kst

The filter gain K, ik » state estimation X k41 > and

estimation error covariance square root S +lk+1 are

expressed as

)/SZZ,k+1\k
Xths1 = XkJr(fk T K i L ktfert = Zgsi
Skt =Tra\[ X e — K XZ e » K S e D

K = (PZZ,kH\k /ng,/ﬁ—lk
X X ( (31

3.2.2 Adaptive square root cubature Kalman filter
(1) Adaptive principle
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The SRCKEF algorithm is quite sensitive to the change of
measurement conditions. Given a variety of unexpected
problems in using UWB technology, the result of
measurement is not stable and may produce some
undesirable values (Figure 2). These values would easily
lead to filter instability and even filter divergence. Thus, the

matching of the real and estimated values of the innovation
covariance square roots is used to determine the accuracy of
the measurement, eliminate the undesirable values, and
implement the adaptability of system. In turn, these can
improve the system robustness in the measurement process.
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Fig. 2. The measurement trajectory of the UWB dynamic detection target hovering at 300 m

(2) Adaptive application in the SRCKF
The filter innovation is given by

M1 =Ly = Zii (32)

The adaptive factor p;, is introduced.
If there is no undesirable value, S, ;.1 and Sy i

are shown in Formulas (26) and (31), respectively.
Otherwise, Formulas (26) and (31) need to introduce the

adaptive factor p, | expressed as

Szz ke = Tr ia([zi,k+l|kapk+1SR,k+l]) (33)
Skrk+1 = Tria\[ X e — Ky XZk+1\k>Kk+l\kpk+ISR,k+1])

Formula (33) can effectively avoid the undesirable value
obtained in the iterative process during the measurement and
ensure the stability of the filter.

The adaptive factor g, is calculated as

T
Mt = Prz s je

2
Pz sksik = Pzokik —Pk]quﬂ (34)

r _ T
MM = trluk+1ﬂk+l

The following is obtained with Equation (35):

r |/1k+1ﬂkT+1 J= tr lP skt —Pin Renn J 35)

Consequently, the adaptive factor p;,; could be
obtained by using

Myl = tr[Pz ’k+l|k]
iRy ]

Pis1 =5qrt (36)

(3) Application of the adaptive algorithm
The measurement results are tested using the statistical
function expressed as

Crat = My [Pzz ) ]>1 Hi (37

where {,,, obeys the y? distribution with the freedom

of n (vector dimensions). If the precision of the
measurement result must be controlled within the range
ofe (0<&<1), then

P(;(z >;(§,M ):g (3%)

Formula (38) shows that Zg u is the measurement

threshold. If {, > ;(éM , the adaptive factor must be

calculated to correct the value of innovation covariance
square root that participated in the measurement update
process.

Selection process:
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‘ Calculate quality detection function ‘

‘ Calculate the detection threshold ‘

Determine test results
Y

‘ Using ;&SRCK ‘

[

Fig. 3. The selection process of the adaptive algorithm

N—J
Using SRCK
[

The processes described in Formulas (16) to (38)
show the state equation and measurement equation of
the trajectory. Adaptive square root cubature Kalman
trajectory estimation can be implemented based on the
combination of AOA and TDOA.

4 Results and discussion

A UWB tag was installed in the bullet (Figure 4), and the
base station was set in the range. The exeperiment was
completed by computer simulation when experimental
conditions cannot be simulated.

Fig. 4. The experiment projectile with the UWB tag

4.1 Performance comparison of TDOA/AOA and TDOA
The effectiveness analysis of the TDOA/AOA joint
positioning algorithm mentioned above was carried out by
computer simulation. The initial value of state

X = [x, .z V., Vy N ]T was set

as X, =[10000,0,80,—879,190,-12]" . Using TDOA/AOA
joint measurement requires at least three base stations. Three
base stations were adopted to simplify the calculation. The
three base stations were the two positioning base stations of

AOA with the coordinates of BS, (S0,0,0)and BS,(-50,0,0)
and the positioning base station measuring AOA with the
coordinate of BS, (0,0,0), respectively. At least three base

stations were needed in wusing TDOA/AOA joint
measurement, whereas using TDOA measurement required
at least four base stations. This paper adopted four base
stations to simplify the calculation, and the coordinates

were  BS(0,00) , BS,(50,00) , BS;(-5000) |,
and BS4(0,0,—50), respectively, with BS| serving as the

reference base station. The measurement standard deviation
was 100 m, the sampling interval was 0.25 s and both the

variable

vertical wind W and cross wind W, were 10 m/s. The

measurement trajectory before the measurement results are
treated is shown in Figure 5.

|

600 e
— measure-trajectory
- TDOA/AOA-trajectory
400 - TDOA-trajectory

\

10000 12000

6000 8000

50 000 4000 o
X

Fig. 5. Ballistic-trajectory and measurement-trajectory

SRCKF was used to conduct the filter estimation of the
two kinds of measurement results. The measurement noise
standard deviations of TDOA and the combination of

TDOA/AOA  were 0,=100 m and o,=100 m,

respectively. The impact of the measurement accuracy of
AOA on the measurement results of TDOA/AOA was
analyzed by changing the value of the measurement noise
standard deviation of AOA into 1°, 2° 3°, and 4°. The
results were then compared with the measurement results of
TDOA to analyze the performances of both approaches.

The root mean square error (RMSE) was taken as the
standard by which to measure the estimation accuracy. This
is calculated using

R, ()= | L3 (o 6) 5 07 o

where N is the number of simulation time, and x; (k)

and fcl. (k) are the real value and the estimated value of the

state vector, respectively, which helped obtain the value of
N (i) and time (k).

About 200 Monte-Carlo simulations were implemented
based on the initial conditions and parameters. The curves of
the position RMSE of the TDOA and TDOA/AOA are
shown in Figure 6.

250 . . . v v . : .
TDOA
————— TDOA/AOA
200 i
£
2 150
Z i
4
=1
g
G
g 100 i
2 60 60.5
~
50 i
0 I3 T

0 10 20 30 40 50 60 70 80 90
The number of sampling
(a) The standard deviation of AOA is 1°
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50 4
0 r r : r r r r r
0 10 20 30 40 50 60 70 80 920

The number of sampling

(d) The standard deviation of AOA is 4°
Fig. 6. The position RMSEs of TDOA and TDOA/AOA under different
standard deviation values of AOA

The mean values of the results are shown in Table 1.

Table 1. Comparison of the position RMSE mean values of
TDOA and TDOA/AOA under different standard deviation

As shown in Table 1, if the standard deviation of AOA
was controlled in a certain range, the performance of the
measurement method based on the combination of
TDOA/AOA would be better than that based on TDOA only.
Moreover, the measurement method based on the
combination of TDOA/AOA  gradually lost its
majority along with the increase of the standard deviation of
AOA. The standard deviation of AOA fell out of that range.
Moreover, the performance of the measurement method
based on TDOA was improved compared with that based on
the combination of TDOA/AOA.

4.2 ASRCKF performance simulation

ASRCKF performance simulation was carried out based on
the TDOA/AOA measurement process. The initial state,
base station layout, sampling interval, states noise, and wind
conditions were the same as those in Section 3.1. Moreover,

0, =100 mando, =0z =1".

4.2.1 Effect of the undesirable measurement value on the
filter performance

The main function of ASRCKF was to eliminate the
undesirable values obtained during the measurement process.
A forward mutation x=500 m was added into the simulation
test when k=40 to compare the performances of ASRCKF
and SRCKF. The filtering curve on the x direction is shown
in Figure 7.

7000 - - - - - - - T

6000 -

5000 -

4000 -

3000

x/m

2000 -

1000 -

truth-value
- SRCKF-estimation | -

0

ASRCKF-estimation

-

80

-1000 r r r r r r

0 30 40 50 60

The number of sampling

Fig. 7. The estimated curves of SRCKF and ASRCKF accompanied by
undesirable values

70 920

As shown in Figure 7, SRCKF estimation diverged when
the undesirable values emerged. The error remained
significantly large even though there was a trend of
convergence. The ASRCKF estimation curve fluctuated
slightly and had rapid convergence speed. Thus, its stability
was significantly higher than that of SRCKF. The RMSEs of
SRCKF and ASRCKEF in the x direction are shown in Table
2.

Table 2. The RMSEs of SRCKF and ASRCKF in the x

values of AOA

Standard deviation of | 1° 2° 3° 4°
AOA /°

Measurement point | 44.13 50.03 54.31 54.82
error of TDOA /m

Measurement point | 31.83 44.37 50.69 58.64
error of TDOA/AOA/m

Precision variation 127.82% | 111.31% | 16.67% | 16.97%

direction
Filter method SRCKF ASRCKF
RMSE/m 383.86 74.43

146

4.2.2 Effect of the noise mutation on filter performance
The statistical characteristic of noise was uncertain in the
filtering process. In order to examine the effect of the noise

mutation on the ASRCKF algorithm, o, =100m was
changed to o, =900m when k=40 during simulation. The
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RMSE curves of SRCKF and ASRCKEF are shown in Figure
8.

250 - - - - - - - -
SRCKF
. - ASRCKF
200 || |
\\
\
g 150¢ \\ f
% \
p>
-4
% 100 i
™~
NG
w
501 ‘ ~__ i
| - T
I T~
— | B
0 . . P . . . L
0 10 20 30 40 50 60 70 80 90

The number of sampling

Fig. 8. The RMSE curves of SRCKF and ASRCKF under measurement
noise mutation

Based on the comparison of SRCKF and ASRCKF in
Figure 8, once the noise statistics changed in the process of
filtering, the RMSE of SRCKF increased tremendously and
did not converge rapidly again. Meanwhile, under the
measurement noise mutation, the RMSE of ASRCKF with
its own adaptive ability was less affected and can quickly
converge to the real value of the system state.

5. Conclusions

In view of the bad anti-interference performance of the
current ballistic measurement method, this study used UWB
as the ballistic measurement method. ASRCKF was
proposed to eliminate the bad values in the measurement
process. ASRCKF was also used in matching the real and
estimate values of the innovation covariance square roots to
determine the accuracy of the measurement. The following
conclusions can be drawn from the system simulation.

(1) If the standard deviation of AOA was controlled in a
certain range, the performance of the measurement method
based on the combination of TDOA/AOA proved to be
better than that based on TDOA only.

(2) When undesirable values occurred or when the noise
statistical characteristics became inaccurate, the RMSE of
ASRCKEF with its own adaptive ability was less affected and
quickly converged to the real value of the system state
compared with SRCKF.

The findings of this study can help improve the accuracy
of trajectory estimation and provide more accurate bases for
ballistic correction. However, the algorithm is limited by
some problems, such as long sampling time and device
synchronization. Thus, further studies are needed to solve
the aforementioned problems.
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