

Journal of Engineering Science and Technology Review 9 (3) (2016) 80 – 85

Research Article

Generic Architecture and Localization of a Mobile Robot

Noura Ayadi1,*, Nicolas Morette2, Cyril Novales2, Gérard Poisson2 and Nabil Derbel1

1Electrical Engineering Department, National School of Engineers of Sfax B.P:w.3038, Sfax, Tunisia

2PRISME, 63, av. Lattre de Tassigny, F-18020 Bourges cedex, France

Received 24 November 2016; Accepted 24 June 2016

Abstract

In this paper, we aim developing the issue of mobile robot’s localization in a known environment. The robot’s model and
map parameters are initially analyzed and defined. A generic architecture of the system is then presented. The
localization algorithm is developed based on the robot’s model and data obtained from exteroceptive sensors. A step of
optimisation using the Levenberg Marquardt algorithm is then followed. Thereafter, simulation results are described to
show the performance of the proposed algorithm. We followed step by step obtained results. Several improvements have
been introduced to the algorithm to correct the location process of the mobile robot. Experimental results show that the
robot can be tracked with a high accuracy which reflects the efficiency and the reliability of the localization method.

Keywords: Mobile Robot, Generic architecture, Localization, Mapping, Levenberg Marquardt, Simulation.

1. Introduction

This paper presents a combination of different tools in order
to create a complete platform to develop robotic
applications. We start essentially with the modeling, then the
localization method and finally the experimental validation
on the wifibot. Described themes are interested in the
autonomous navigation of mobile robots, handle
cartography, obstacles detection and obstacles avoidance.
 Indeed, the autonomous navigation remains the most
pressing issue in robotic systems. It depends essentially on
the perception, localization, cognition and motion control.
All these elements must be well implemented along a
control architecture. In the literature, we can find several
types of architectures, but the successful one is the most
reactive, flexible, robust and efficient. Every architecture
should integrate extracted data from robot’s sensors,
mapping characteristics and actuators capabilities in order to
generate intelligent behaviours. The functional architectures
are classified into three control categories; the deliberative
navigation, the reactive navigation and the hybrid
navigation. They represent the combination of the two first
types and are known as the cognitive controller [1].
 The deliberative control architecture is considered as one
of first structures in robotic fields. The user himself must
implement the robot’s sensors data to fix the desired
trajectory. It uses a global model that should be fully or
partially known and its static scheme represents navigation
limitations in unknown or dynamic environments. The
remedy to this problem came with Brooks in 1985, with a
reactive navigation control [14]. This is a sub-level structure
that helps to deal with complex navigation actions and

characterized by a fast response in unknown and dynamic
environments. The fact that it doesn’t need to know or store
the system’s model makes it easy to implement and has less
computation steps. This ensures robustness and efficiency.
Nevertheless, this architecture has a disadvantage with the
planning block. Because of the sub-level hierarchy, higher
levels are not taken care of while lower levels are being
executed. Shortcomings of the two first architectures are
overcame thanks to the hybrid navigation control [8]. It
integrates a control execution layer placed between a
deliberative layer and a reactive layer. Its structure makes it
easy to execute the planing block with the deliberative layer
and take care of all other blocks in order to avoid failure in
case of complex tasks [18].
 Once the model is fixed and the system’s architecture is
defined, the control task is presented. Localization and
tracking the robot during its navigation is primordial in order
to ensure an autonomous navigation. The purpose of
localization is to know the exact position of the robot to
navigate without hitting obstacles and detect the goal
location to reach [12].
 In this paper, the choice of the generic architecture that
describes the robot’s system among many efficient and
functional existing architectures is justified. Then, the
localization approach and the mapping procedure aimed to
be implemented directly on the Wifibot has been explicited.
The proposed localization method is a map-based method.
The onboard sensors of the robot is just needed [11, 14].
Finally, we present the simulation results that proves the
efficiency and the robustness of the presented algorithm
have been presented.

2. Description of the Robot

Wifibot presents a multi-purpose robot. It is a Wifi-enabled,
low cost and running Linux platform. Wifibot is useful for

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

Jestr

 * E-mail address: noura.ayadi85@gmail.com

ISSN: 1791-2377 © 2016 Eastern Macedonia and Thrace Institute of Technology.
All rights reserved.

Noura Ayadi, Nicolas Morette, Cyril Novales, Gérard Poisson and Nabil Derbe/
 Journal of Engineering Science and Technology Review 9 (3) (2016) 93 - 98

94 94

several applications in the fields of education, research,
surveillance and entertainment. It is a differential robot with
4 driving wheels. It is characterized by an open and modular
architecture controlled by a serial communication link and
by Wifi. It integrates a computing board unit running on
Linux, Ubuntu. This platform stands by its simplicity and
efficiency.
The Wifibot is composed by an anodized aluminum frame,
an USB motorized camera, 4 infrared sensors, central inertia
Vn−100 and a laser sheet Hokuyo UTM −30LX. The robot
chassis is controlled using a RS232 port. The Wifi board
ensures a wireless connection of the system with the
configured access point which is provided freely. The
structure of the Wifibot platform presents an advantage to
the user to develop and manipulate different applications in
an easy way. The Wifibot robot is presented in Fig 1.

Fig. 1. The Wifibot robot

3. The Proposed Architecture

The application in this work includes several algorithms
running in different speeds. Each program is characterized
by a specific speed in term of the demanded task. To
determine the most suitable systems’s architecture, all these
programs must be settled in the right way. Capacities
constitute term that describes the group of elements that
form an architecture. We note as an example: action,
adjustment, anticipation, apprenticeship, autonomy,
perception, reactivity.
 We find in the literature, techniques that ensure best
performances of each capacity. However, the problem
remains in gathering all these capacities in the functional
architecture in a coherent and a wise way. An efficient
architecture must be a modular one. It integrates different
capacities in particular information about the robot’s
external environment. It also must integrate deliberative
functions allowing to take best decisions.
 First architectures are characterized by a downward-way
to treat necessary functions in order to develop an action and
especially a movement. They are in fact a set of modules
joined in series. Interconnection between different modules
can not be clearly identified. The structure is presented in
Fig 2.

Fig. 2 Traditional structure of control architectures

 Since 1986, architectures have evolved into the structure
of layers describing necessary functions to control the
autonomous navigation of the mobile robot. The most
known architectures are subsumption architecture of Brooks
[14], the DAMN architecture known as Distributed
Architecture for Mobile Navigation of Rosenblatt [10], The
ATLANTIS architecture of Gat [5] and the Generic
architecture developed in [15]. Layers that form each
architecture are interconnected and associated to manage
robot’s actions. Each one of defined architectures is
characterized by a degree of complexity. The defined
architecture suitable for robotic applications is the Generic
structure which operates effectively in real time comparing
the distributed and centralized architectures. In this paper,
we propose the use of the generic architecture proposed in
[1]. It is composed of three levels. The first one is the fastest
characterized by a settling time smaller than 20ms. It sends
servo information effecting directly motors. The feedback
consists only on the information of sensors that pass by a
modelling phase before being sent the other levels. The main
objective is to define the purpose, the path, the trajectory or
system’s inputs. The next level is the pilot. It handles the
trajectory defined by the navigation phase, it is also capable
of managing the reflexed actions and the unforseen events.
This loop is fast with a settling time smaller than 1s [1, 9].
The higher level is defined by the navigator. It receives the
path from the planner and creates the trajectory that the
robot should follow. In this level, all kinematic and dynamic
restraints are put into consideration. The delivered path from
the planner depends on the mission generator which
represents a human machine interface, localisation and
cartography. Detailed presentation of the chosen structure is
described in Fig.3.

Fig. 3. Generic Arhitecture

 The generic architecture has been synthesised at the
basis of an omnidirectional robot. In fact, it has proved its
effectiveness for other types of robots as classic mobile
robots, manipulators and even the remotely operated ones [1,
7, 18].

Noura Ayadi, Nicolas Morette, Cyril Novales, Gérard Poisson and Nabil Derbe/
 Journal of Engineering Science and Technology Review 9 (3) (2016) 93 - 98

95 95

4. Localization and Robotic Mapping

4.1. Previous work
In recent years, researchers have focused on the localization
as it has been considered an important process to know the
exact position of the robot during its navigation. They have
been based on probabilistic methods that major ones are the
Kalman Filter localization, the Markov localization and the
particle filtering algorithm also known as the Monte Carlo
algorithm.
 On the one hand, the Extended Kalman Filter combines
results from dead reckoning with extracted data from the
exteroceptive sensors [2]. It also assumes that the probability
distribution of both the robot configuration and the sensors
model is continuous and Gaussian. Subsequently, only the
mean value and variance of the Gaussian function are
needed to be updated, therefore, the computational cost is
very low [17].
 On the other hand, the Markov method divides the
configuration space into cells. For a mobile robot moving on
a plane, the configuration space is 3D dimensional (x, y, θ)
and each cell contains the probability of the robot to be in
that cell. The probability distribution of the sensors model is
also discrete and during action and perception, all the cells
are updated [17, 19].
 The Monte Carlo Localization (MCL) is derived from
the Markov method. Comparing to these previous
algorithms, the MCL is easier to implement and ensures
higher accuracy. In practice, it shows empirical results by an
order of magnitude of memory and computation
requirements [4].

4.2. Proposed Method
In this paper, we are addressed to propose an efficient
approach in order to locate the robot during its navigation
with accuracy. We assume that the robot’s initial position is
approximatively known. The Inertial Measurement Unit,
odometer and laser telemeter are sensors involved in the
process. Starting from a fixed orientation, it is due to the
inertial unit that we are able to obtain the relative robot’s
orientation while moving. As to odometric feedback, the
robot position can be easily but not precisely calculated.
Some errors are caused by interaction of the robot with
inevitable features of the environnement as wheel slippage,
brutal or fast mouvements.
 Realised tests proved that the laser telemeter is the most
reliable sensor to obtain an exact position of the robot. It will
be considered as the main sensor for the proposed method.
The presented method to locate the robot is inspired from the
Kalman Filter method where we combine between dead
reckoning and extracted data from robot’s sensors.
Considering the differential structure of the robot and the
reliability of the Wifibot’s sensors, we are able to obtain the
robot’s position with a high accuracy. Despite the fact that
the robot navigates in a known environment, several
constraints may appear especially when the robot must
follow a certain trajectory or avoid different obstacles. That
is why we need to optimize the localization algorithm. The
Levenberg-Marquardt Method (LMM) is the most suitable
technique to use.
 Regarding nonlinear least square problems, the LMM
tries to fit a parameterized function to a set of measured data
points by minimizing the sum of the squares of the errors
between the data points and the function. This technique is
in fact a combination between the gradient descent method
and the Gauss-Newton method considered as standard

minimization methods. Using the gradient descent method,
the sum of squared errors is reduced by assuming the least
squares function which is locally quadratic and finding the
minimum of the quadratic. The LMM acts like a gradient
descent method when parameters are far from their optimum
values and acts like the Gauss-Newton method when
parameters are close to their optimum values.
 However, the algorithm effectiveness depends on local
minima which can not be necessarily global ones. This fact,
mislead to an incorrect information especially in presence of
symmetric effects in the navigation environnement. To avoid
this problem, we rely on the approximation of the robot
position provided by odometric sensors. Consequently,
every time the robot moves, the algorithm initializes its
actual position comparing to its previous one. This way and
despite the deterministic nature of the LMM algorithm, it
presents best convergence properties and ensures more
precise and quicker solutions.
 We define Δi the convergence step of the Levenberg-

Marquardt algorithm by:

iii GIH 1)(−+=Δ λ

where H is the Hessian and Gi is the gradient of the cost

function for parameters (x, y) and λ is a setting parameter
which increases when the cost function diverges [13].

4.3. Application on the Wifibot
We developed a tracking algorithm depending on the robot’s
position defined by (xR, yR) and the orientation θR. Initially,
we are considering this position while the optimal real one is
thereafter given by the LMM algorithm. The localization
technique is based on the following steps:

• Acquisition of the telemeter measurements
• Computation of the distance between the obstacle

and the robot based on its actual position
• Defining the convenient cost function Z for the

system
• Minimizing Z using the gradient method

 The mapping step requires a known environment where
the wifibot navigates in presence of obstacles that it should
avoid. Map’s dimensions are given as (430×460) cm and an
obstacle of (45×30) cm placed in the map at the position
(138×286) cm.

4.3.1. Acquisition of the laser rangefinder data
In the localization process, we depend essentially on the
laser rangefinder of the Wifibot. Subsequently, we divide the
environment into n areas. We note those measurements (mt1,
…, mtn).

4.3.2. Distance calculation
Based on the robot’s position, we are able to determine n
distance values which represent in fact theoretical measures
noted (m1, …, mn).. We create a loop that increments the
variable d until an obstacle occurs. As a result, the obstacle
position is defined by this form:

x=)cos(CRR dx θθ ++

y=)sin(CRR dy θθ ++

Noura Ayadi, Nicolas Morette, Cyril Novales, Gérard Poisson and Nabil Derbe/
 Journal of Engineering Science and Technology Review 9 (3) (2016) 93 - 98

96 96

where

• (x, y) is the calculated obstacle’s position depending
on the actual position of the robot (xR, yR).

• θR is the orientation angle given by the IMU of the
Wifibot.

• θC is a vector containing n values.
The distance d is fixed initially at 0 and incremented in

each iteration. In presence of an obstacle, we deduce the
measure that we note:

m = d

4.3.3. Experimental result
As the Laser sensor supplies 1081 measures sweeping from

−135∘ to +135∘ , we restrained the test to a limited

number of samples n. Considering a step of 27∘ , we obtain
n = 11 measurements.
 Figure 4 illustrates calculated distances in the map in
presence of an obstacle and the robot. The robot is situated
in the center of the map at the position defined by:

 x0 = 215cm

 y0 = 230cm

Fig. 4. Calculated distances between the robot and the obstacle

4.3.4 Cost function
We define the cost function as:

Z = ∑
=

−
n

i
iti mm

1

2)(

 The main objective is to use the minimal cost function Z
in order to locate the robot. We consider the gradient method
in this part. To refine the calculation, we integrate in the
algorithm a comparison between calculated position
coordinates and odometry data that the robot’s sensors
provide. As a result, coordinates (xR, yR) corresponding to

the lowest cost function is the most probable real position of
the robot.

5. Localization, Simulation Results

I
n order to obtain simulation results of the localization
algorithm, we program the navigation environment of the
mobile robot. In C++, the map is transformed into an array
containing values of {1} to indicate the presence of an

obstacle and {0} to show an empty space. The created array

is formed of pixels with 1 pixel =4cm2. Figure 5 describes
the designed environment.

Fig. 5. Designed environment of the Wifibot

5.1. Simulation results
We choose to test the developed algorithm’s performance
using the simulation calculator MATLAB. The robot is
dedicated to reach a target point in the position:

x=50cm
y=50cm

 Figure 6 represents the robot’s trajectory to reach the
target point. In spite of the robot’s random initial position,
we see that it finds its way to go to its desired destination.

Fig. 6. Trajectory to reach a fixed target

 In Fig.7, Fig.8 and Fig.9, we present the position curves (x,y) and
the criteria Z that demonstrates clearly that it converges to its minimal
value.

Fig. 7. x trajectory performed through the target

Noura Ayadi, Nicolas Morette, Cyril Novales, Gérard Poisson and Nabil Derbe/
 Journal of Engineering Science and Technology Review 9 (3) (2016) 93 - 98

97 97

Fig. 8. y trajectory performed through the target

Fig. 9. Convergence of the criteria Z

6. Motion Control of the Wifibot

6.1. Introducing the programming tool
After validation of the localization’s part of the Wifibot, we
look for piloting it and activating the autonomous
navigation. The control has been realized using the
programming tool RTMaps Studio running on Linux and
based on C++ language. The software is already installed on
both Wifibot and the user computer. So, to ensure the
communication between them, we developed two projects
on each side using appropriate blocks and modules that we
call packages to send and receive data.
 On the robot side, we connect Wifibot.pck package
which is responsible of sending and receiving information
about the system during its navigation. We can access the
left and right speeds as well as the odometric position. The
laser telemeter and robot’s orientation values are also given
by two other packages.
 On the user side, we created three packages according to
the three functions: localization, piloting and navigation.
With their input−output connections, the modules
communicate and permit to localize, control the robot and
visualize different trajectories.

6.2. Tests and Improvements
We aim testing the robot’s movement. Starting from an
initial position, we move it to different points of the map.
While observing the laser telemeter’s measured values and
then the calculated values, we discovered an existing gap
that requires corrections and improvements on the algorithm.
Every laser beam represents a source of errors when it hits
the surfaces of the map. To remedy these anomalies, we
proceeded by several methods.
 First, we tried to regulate the orientation angle obtained
by the IMU of the Wifibot with a recalibration of the initial
position’s angle comparing to nearby angles. The best
orientation angle of the robot is the one coinciding with the
minimal value of the criteria. However, even if we

succeeded to obtain the optimal orientation but errors still
exist depending in the way the laser hits the surface. The
error is minimal when the laser line is hitting straight the
obstacle and more deviation occurs, the error increases. So,
we can not trust those values especially that we are not able
to detect when measurement errors happen.
 Therefore, we created an array called confidence array. It
corresponds to the number of real laser telemeter’s values. It
eliminates every measure exceeding 5 cm comparing to all
the nearby measures.

6.3. Simulation Results
We present simulation results of proceeded improvements to
the control algorithm of the Wifibot. Fig.10, Fig.11 and
Fig.12 are resulted trajectories of the robot in the map in
presence of the obstacle. With the blue curve is the real
trajectory and the red is the calculated one.

Fig.10. Initial trajectories before corrections

Fig.11. Trajectories after introduction of the confidence array

Fig.12. Trajectories after introduction of the confidence array and
recalibration of the position coordinates and the angle

 The objective of this simulation is to show the ability to
track the robot and calculate its position at any time. In
addition, it demonstrates the efficiency of the Levenberg
Marquardt Method to optimize the robot’s trajectory.

7. Conclusions

In this paper, we have proposed the generic architecture to
control the Wifibot. This architecture has proved its

Noura Ayadi, Nicolas Morette, Cyril Novales, Gérard Poisson and Nabil Derbe/
 Journal of Engineering Science and Technology Review 9 (3) (2016) 93 - 98

98 98

efficiency, dynamics and capacity to solve complicated
tasks. It has proved to be used for different types of mobile
robots. As it is primordial to know the robot’s position and
orientation all along its navigation, we proposed a method to
track the robot and determine the abscissa and ordinate of its
control point besides its orientation θ. This method was
based on the Wifibot’s model and the extracted data from its
exteroceptive sensors. We have proceeded then with an

optimization using the Levenberg Marquardt algorithm to
ensure the convergence of the cost function to its minimal
value. Simulation and direct experimental tests on the robot
show the robustness of the proposed method and its
efficiency to locate the robot in the map. The robot was able
to avoid the obstacle and map fronts with success. The next
phase is to handle the navigator which tasks are now easier
thanks to the localization’s robustness.

References

[1] C. Novales, G. Mourioux and G. Poisson, "Une Architecture

Modulaire de Commande de Robots: de l’Autonomie à la
téléopretaion", Journal Européen des Systèmes Automatisés
(JESA), Vol. 5, pp.1-20 (2008).

[2] C. F. Olson, "Probabilistic Self-Localization for Mobile Robots",
IEEE Transactions on Robotics and Automation, Vol. 16, No. 1
(2000).

[3] D.W. Marquardt, "An algorithm for least-squares estimation of
nonlinear parameters", Journal of the Society for Industrial and
Applied Mathematics, Vol.11, No.2, pp. 431-441 (1963).

[4] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, "Monte Carlo
Localization: Efficient Position Estimation forMobile Robots",
American Association for Artificial Intelligence, pp. 343-349
(1999).

[5] E. Gat, "Integrating planning and reacting in a heterogeneous
asynchronous architecture for controlling real-world mobile
robots", National Conference on Artificial Intelligence (AAAI), pp.
809-815, San Jose, California (1992).

[6] G. Mourioux, Y. Parmantier, C. Novales and G. Poisson, "A
wireless omnidirectional robotic plateform for medical use", JJC-
LVR, Vol.4, pp. 540-545 (2002).

[7] G. Mourioux, C. Novales and G. Poisson, "A hierarchical
architecture to control autonomous robots evolving in an unknown
environment", IEEE International Conference on Industrial
Technology (ICIT), Vol. 1, pp.72-77 (2004).

[8] H. Yavuz, A. Bradshaw, "A New Conceptual Approach to the
Design of Hybrid Control Architecture for Autonomous Mobile
Robots" ,Journal of Intelligent and Robotic Systems, Vol.34, No. 1,
pp. 1-26 (2002).

[9] J. Canou, G. Mouriowr, C. Novales, G. Poisson, "A local map
building process for a reactive navigation of a mobile robot", IEEE
international Conference on Robotics and Automation ICRA, New
Orleans, Vol.5, pp. 4839-4844 (2004).

[10] J.Rosenblatt, "DAMN: A Distributed Architecture for Mobile
Navigation", Spring Symposium on Lessons Learned from
Implemented Software Architectures for Physical Agents, AAAI
Press, Menlo Park (1995).

[11] K. Nagatani, H. Choset, S. Thrun, "Towards Exactlocalization
Without Explicit Localization with the Generalized Voronoi
Graph", IEEE International Conference of Robotics and
Automation, pp. 342-348, Leuven, Belgium (1998).

[12] M. Pfingsthorn and A. Birk, "Simultaneous Localization and
Mapping (SLAM) with Multimodal Probability Distributions", The
International Journal of Robotics Research, pp.1-29 (2012).

[13] N.Morette ,C. Novales ,L. Josserand , and P. Vieyres, "Direct
Model Navigation issue shifted in the continuous domain by a
predictive control approach for mobile robots", International
Conference on Robotics and Automation, pp. 2566-2573 (2011).

[14] R. A. Brooks, "A robust layered control system for a mobile robot",
IEEE Journal of Robotics and Automation, Vol. 2, No. 1, pp. 14-23
(1986).

[15] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, "An
architecture for autonomy", The International Journal of Robotics
Research, Special Issue on Integrated Architectures for Robot
Control and Programming, Vol. 17, No 4, pp. 315-337 (1998).

[16] R. Nadjiasngar and M. Inggs, "Gauss-Newton filtering
incorporating Levenberg-Marquardt methods for tracking", Digital
Signal Processing, Vol.23, pp. 1662-1667 (2013).

[17] R. Siegwart, D. Scaramuzza, "Autonomous Mobile Robots".
Localization and Mapping, Vol. 5, pp.292-338 (2004).

[18] U. A. Sheikh, M. Jamil and Y. Ayaz, "A comparison of various
robotic control architectures for autonomous navigation of mobile
robots", International Conference on Robotics and Emerging Allied

Technologies in Engineering (iCREATE) Islamabad, Pakistan,
pp.239-243, April 22-24 (2014).

[19] W. Burgard, D. Fox and S. Thrun, "Active Mobile Robot
Localization", International Joint Conference on Artificial
Intelligence (IJCAI), pp.1346-1352 (1997).

