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Abstract 
 

In this paper, we aim developing the issue of mobile robot’s localization in a known environment. The robot’s model and 
map parameters are initially analyzed and defined. A generic architecture of the system is then presented. The 
localization algorithm is developed based on the robot’s model and data obtained from exteroceptive sensors. A step of 
optimisation using the Levenberg Marquardt algorithm is then followed. Thereafter, simulation results are described to 
show the performance of the proposed algorithm. We followed step by step obtained results. Several improvements have 
been introduced to the algorithm to correct the location process of the mobile robot. Experimental results show that the 
robot can be tracked with a high accuracy which reflects the efficiency and the reliability of the localization method.  
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1. Introduction 
 
This paper presents a combination of different tools in order 
to create a complete platform to develop robotic 
applications. We start essentially with the modeling, then the 
localization method and finally the experimental validation 
on the wifibot. Described themes are interested in the 
autonomous navigation of mobile robots, handle 
cartography, obstacles detection and obstacles avoidance. 
 Indeed, the autonomous navigation remains the most 
pressing issue in robotic systems. It depends essentially on 
the perception, localization, cognition and motion control. 
All these elements must be well implemented along a 
control architecture. In the literature, we can find several 
types of architectures, but the successful one is the most 
reactive, flexible, robust and efficient. Every architecture 
should integrate extracted data from robot’s sensors, 
mapping characteristics and actuators capabilities in order to 
generate intelligent behaviours. The functional architectures 
are classified into three control categories; the deliberative 
navigation, the reactive navigation and the hybrid 
navigation. They represent the combination of the two first 
types and are known as the cognitive controller [1]. 
 The deliberative control architecture is considered as one 
of first structures in robotic fields. The user himself must 
implement the robot’s sensors data to fix the desired 
trajectory. It uses a global model that should be fully or 
partially known and its static scheme represents navigation 
limitations in unknown or dynamic environments. The 
remedy to this problem came with Brooks in 1985, with a 
reactive navigation control [14]. This is a sub-level structure 
that helps to deal with complex navigation actions and 

characterized by a fast response in unknown and dynamic 
environments. The fact that it doesn’t need to know or store 
the system’s model makes it easy to implement and has less 
computation steps. This ensures robustness and efficiency. 
Nevertheless, this architecture has a disadvantage with the 
planning block. Because of the sub-level hierarchy, higher 
levels are not taken care of while lower levels are being 
executed. Shortcomings of the two first architectures are 
overcame thanks to the hybrid navigation control [8]. It 
integrates a control execution layer placed between a 
deliberative layer and a reactive layer. Its structure makes it 
easy to execute the planing block with the deliberative layer 
and take care of all other blocks in order to avoid failure in 
case of complex tasks [18]. 
 Once the model is fixed and the system’s architecture is 
defined, the control task is presented. Localization and 
tracking the robot during its navigation is primordial in order 
to ensure an autonomous navigation. The purpose of 
localization is to know the exact position of the robot to 
navigate without hitting obstacles and detect the goal 
location to reach [12]. 
 In this paper, the choice of the generic architecture that 
describes the robot’s system among many efficient and 
functional existing architectures is justified. Then, the 
localization approach and the mapping procedure aimed to 
be implemented directly on the Wifibot has been explicited. 
The proposed localization method is a map-based method. 
The onboard sensors of the robot is just needed [11, 14]. 
Finally, we present the simulation results that proves the 
efficiency and the robustness of the presented algorithm 
have been presented. 
 
 
2. Description of the Robot 

 
Wifibot presents a multi-purpose robot. It is a Wifi-enabled, 
low cost and running Linux platform. Wifibot is useful for 

 
JOURNAL OF 
Engineering Science and 
Technology Review 
 

 www.jestr.org 
 

Jestr 

______________ 
   * E-mail address: noura.ayadi85@gmail.com 

ISSN: 1791-2377 © 2016 Eastern Macedonia and Thrace Institute of Technology.  
All rights reserved.  

 



Noura Ayadi, Nicolas Morette, Cyril Novales, Gérard Poisson and Nabil Derbe/ 
 Journal of Engineering Science and Technology Review 9 (3) (2016) 93 - 98 

94 94 

several applications in the fields of education, research, 
surveillance and entertainment. It is a differential robot with 
4 driving wheels. It is characterized by an open and modular 
architecture controlled by a serial communication link and 
by Wifi. It integrates a computing board unit running on 
Linux, Ubuntu. This platform stands by its simplicity and 
efficiency. 
The Wifibot is composed by an anodized aluminum frame, 
an USB motorized camera, 4 infrared sensors, central inertia 
Vn−100 and a laser sheet Hokuyo UTM −30LX. The robot 
chassis is controlled using a RS232 port. The Wifi board 
ensures a wireless connection of the system with the 
configured access point which is provided freely. The 
structure of the Wifibot platform presents an advantage to 
the user to develop and manipulate different applications in 
an easy way. The Wifibot robot is presented in Fig 1. 
 

 
Fig. 1. The Wifibot robot 
 
 
3. The Proposed Architecture 

 
The application in this work includes several algorithms 
running in different speeds. Each program is characterized 
by a specific speed in term of the demanded task. To 
determine the most suitable systems’s architecture, all these 
programs must be settled in the right way. Capacities 
constitute term that describes the group of elements that 
form an architecture. We note as an example: action, 
adjustment, anticipation, apprenticeship, autonomy, 
perception, reactivity. 
 We find in the literature, techniques that ensure best 
performances of each capacity. However, the problem 
remains in gathering all these capacities in the functional 
architecture in a coherent and a wise way. An efficient 
architecture must be a modular one. It integrates different 
capacities in particular information about the robot’s 
external environment. It also must integrate deliberative 
functions allowing to take best decisions. 
 First architectures are characterized by a downward-way 
to treat necessary functions in order to develop an action and 
especially a movement. They are in fact a set of modules 
joined in series. Interconnection between different modules 
can not be clearly identified. The structure is presented in 
Fig 2.  

 
Fig. 2 Traditional structure of control architectures 

 
 
 Since 1986, architectures have evolved into the structure 
of layers describing necessary functions to control the 
autonomous navigation of the mobile robot. The most 
known architectures are subsumption architecture of Brooks 
[14], the DAMN architecture known as Distributed 
Architecture for Mobile Navigation of Rosenblatt [10], The 
ATLANTIS architecture of Gat [5] and the Generic 
architecture developed in [15]. Layers that form each 
architecture are interconnected and associated to manage 
robot’s actions. Each one of defined architectures is 
characterized by a degree of complexity. The defined 
architecture suitable for robotic applications is the Generic 
structure which operates effectively in real time comparing 
the distributed and centralized architectures. In this paper, 
we propose the use of the generic architecture proposed in 
[1]. It is composed of three levels. The first one is the fastest 
characterized by a settling time smaller than 20ms. It sends 
servo information effecting directly motors. The feedback 
consists only on the information of sensors that pass by a 
modelling phase before being sent the other levels. The main 
objective is to define the purpose, the path, the trajectory or 
system’s inputs. The next level is the pilot. It handles the 
trajectory defined by the navigation phase, it is also capable 
of managing the reflexed actions and the unforseen events. 
This loop is fast with a settling time smaller than 1s [1, 9]. 
The higher level is defined by the navigator. It receives the 
path from the planner and creates the trajectory that the 
robot should follow. In this level, all kinematic and dynamic 
restraints are put into consideration. The delivered path from 
the planner depends on the mission generator which 
represents a human machine interface, localisation and 
cartography. Detailed presentation of the chosen structure is 
described in Fig.3.  

 
Fig.  3. Generic Arhitecture 
 
 
 The generic architecture has been synthesised at the 
basis of an omnidirectional robot. In fact, it has proved its 
effectiveness for other types of robots as classic mobile 
robots, manipulators and even the remotely operated ones [1, 
7, 18]. 
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4. Localization and Robotic Mapping 
 
4.1. Previous work 
In recent years, researchers have focused on the localization 
as it has been considered an important process to know the 
exact position of the robot during its navigation. They have 
been based on probabilistic methods that major ones are the 
Kalman Filter localization, the Markov localization and the 
particle filtering algorithm also known as the Monte Carlo 
algorithm. 
 On the one hand, the Extended Kalman Filter combines 
results from dead reckoning with extracted data from the 
exteroceptive sensors [2]. It also assumes that the probability 
distribution of both the robot configuration and the sensors 
model is continuous and Gaussian. Subsequently, only the 
mean value and variance of the Gaussian function are 
needed to be updated, therefore, the computational cost is 
very low [17]. 
 On the other hand, the Markov method divides the 
configuration space into cells. For a mobile robot moving on 
a plane, the configuration space is 3D dimensional (x, y, θ) 
and each cell contains the probability of the robot to be in 
that cell. The probability distribution of the sensors model is 
also discrete and during action and perception, all the cells 
are updated [17, 19].  
 The Monte Carlo Localization (MCL) is derived from 
the Markov method. Comparing to these previous 
algorithms, the MCL is easier to implement and ensures 
higher accuracy. In practice, it shows empirical results by an 
order of magnitude of memory and computation 
requirements [4].  
 
4.2. Proposed Method 
In this paper, we are addressed to propose an efficient 
approach in order to locate the robot during its navigation 
with accuracy. We assume that the robot’s initial position is 
approximatively known. The Inertial Measurement Unit, 
odometer and laser telemeter are sensors involved in the 
process. Starting from a fixed orientation, it is due to the 
inertial unit that we are able to obtain the relative robot’s 
orientation while moving. As to odometric feedback, the 
robot position can be easily but not precisely calculated. 
Some errors are caused by interaction of the robot with 
inevitable features of the environnement as wheel slippage, 
brutal or fast mouvements. 
 Realised tests proved that the laser telemeter is the most 
reliable sensor to obtain an exact position of the robot. It will 
be considered as the main sensor for the proposed method. 
The presented method to locate the robot is inspired from the 
Kalman Filter method where we combine between dead 
reckoning and extracted data from robot’s sensors. 
Considering the differential structure of the robot and the 
reliability of the Wifibot’s sensors, we are able to obtain the 
robot’s position with a high accuracy. Despite the fact that 
the robot navigates in a known environment, several 
constraints may appear especially when the robot must 
follow a certain trajectory or avoid different obstacles. That 
is why we need to optimize the localization algorithm. The 
Levenberg-Marquardt Method (LMM) is the most suitable 
technique to use. 
 Regarding nonlinear least square problems, the LMM 
tries to fit a parameterized function to a set of measured data 
points by minimizing the sum of the squares of the errors 
between the data points and the function. This technique is 
in fact a combination between the gradient descent method 
and the Gauss-Newton method considered as standard 

minimization methods. Using the gradient descent method, 
the sum of squared errors is reduced by assuming the least 
squares function which is locally quadratic and finding the 
minimum of the quadratic. The LMM acts like a gradient 
descent method when parameters are far from their optimum 
values and acts like the Gauss-Newton method when 
parameters are close to their optimum values. 
 However, the algorithm effectiveness depends on local 
minima which can not be necessarily global ones. This fact, 
mislead to an incorrect information especially in presence of 
symmetric effects in the navigation environnement. To avoid 
this problem, we rely on the approximation of the robot 
position provided by odometric sensors. Consequently, 
every time the robot moves, the algorithm initializes its 
actual position comparing to its previous one. This way and 
despite the deterministic nature of the LMM algorithm, it 
presents best convergence properties and ensures more 
precise and quicker solutions. 
 We define Δi the convergence step of the Levenberg-

Marquardt algorithm by:  
 

iii GIH 1)( −+=Δ λ  
 
where H is the Hessian and Gi is the gradient of the cost 

function for parameters (x, y) and λ is a setting parameter 
which increases when the cost function diverges [13].  
 
4.3. Application on the Wifibot 
We developed a tracking algorithm depending on the robot’s 
position defined by (xR, yR) and the orientation θR. Initially, 
we are considering this position while the optimal real one is 
thereafter given by the LMM algorithm. The localization 
technique is based on the following steps:  
 

• Acquisition of the telemeter measurements  
• Computation of the distance between the obstacle 

and the robot based on its actual position  
• Defining the convenient cost function Z for the 

system  
• Minimizing Z using the gradient method  

 
 The mapping step requires a known environment where 
the wifibot navigates in presence of obstacles that it should 
avoid. Map’s dimensions are given as (430×460) cm and an 
obstacle of (45×30) cm placed in the map at the position 
(138×286) cm.  
 
4.3.1. Acquisition of the laser rangefinder data 
In the localization process, we depend essentially on the 
laser rangefinder of the Wifibot. Subsequently, we divide the 
environment into n areas. We note those measurements (mt1, 
…, mtn).  
 
4.3.2. Distance calculation 
Based on the robot’s position, we are able to determine n 
distance values which represent in fact theoretical measures 
noted (m1, …, mn).. We create a loop that increments the 
variable d until an obstacle occurs. As a result, the obstacle 
position is defined by this form:  
 
x= )cos( CRR dx θθ ++  
 
y= )sin( CRR dy θθ ++  
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where  

• (x, y) is the calculated obstacle’s position depending 
on the actual position of the robot (xR, yR).  

• θR is the orientation angle given by the IMU of the 
Wifibot.  

• θC is a vector containing n values.  
The distance d is fixed initially at 0 and incremented in 

each iteration. In presence of an obstacle, we deduce the 
measure that we note:  
 
m = d 
 
4.3.3. Experimental result 
As the Laser sensor supplies 1081 measures sweeping from 

−135∘  to +135∘ , we restrained the test to a limited 

number of samples n. Considering a step of 27∘ , we obtain 
n = 11 measurements. 
 Figure 4 illustrates calculated distances in the map in 
presence of an obstacle and the robot. The robot is situated 
in the center of the map at the position defined by:  
 
 x0 = 215cm 

 y0 = 230cm 

 
Fig.  4. Calculated distances between the robot and the obstacle  
 
 
4.3.4  Cost function 
We define the cost function as:  
 

Z = ∑
=

−
n

i
iti mm

1

2)(  

 
 The main objective is to use the minimal cost function Z 
in order to locate the robot. We consider the gradient method 
in this part. To refine the calculation, we integrate in the 
algorithm a comparison between calculated position 
coordinates and odometry data that the robot’s sensors 
provide. As a result, coordinates (xR, yR) corresponding to 

the lowest cost function is the most probable real position of 
the robot.  
 
 
5. Localization, Simulation Results 

I 
n order to obtain simulation results of the localization 
algorithm, we program the navigation environment of the 
mobile robot. In C++, the map is transformed into an array 
containing values of {1} to indicate the presence of an 

obstacle and {0} to show an empty space. The created array 

is formed of pixels with 1 pixel =4cm2. Figure 5 describes 
the designed environment.  

  

 
Fig.  5. Designed environment of the Wifibot  
 
5.1. Simulation results 
We choose to test the developed algorithm’s performance 
using the simulation calculator MATLAB. The robot is 
dedicated to reach a target point in the position:  
 
x=50cm 
y=50cm 
 
 Figure 6 represents the robot’s trajectory to reach the 
target point. In spite of the robot’s random initial position, 
we see that it finds its way to go to its desired destination.  
 

 
Fig.  6. Trajectory to reach a fixed target 
 
 
 In Fig.7, Fig.8 and Fig.9, we present the position curves (x,y) and 
the criteria Z that demonstrates clearly that it converges to its minimal 
value.  

  

 
Fig. 7. x trajectory performed through the target 
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Fig.  8. y trajectory performed through the target 

  

 
Fig.  9. Convergence of the criteria Z 
 
 
6. Motion Control of the Wifibot 

 
6.1. Introducing the programming tool 
After validation of the localization’s part of the Wifibot, we 
look for piloting it and activating the autonomous 
navigation. The control has been realized using the 
programming tool RTMaps Studio running on Linux and 
based on C++ language. The software is already installed on 
both Wifibot and the user computer. So, to ensure the 
communication between them, we developed two projects 
on each side using appropriate blocks and modules that we 
call packages to send and receive data. 
 On the robot side, we connect Wifibot.pck package 
which is responsible of sending and receiving information 
about the system during its navigation. We can access the 
left and right speeds as well as the odometric position. The 
laser telemeter and robot’s orientation values are also given 
by two other packages. 
 On the user side, we created three packages according to 
the three functions: localization, piloting and navigation. 
With their input−output connections, the modules 
communicate and permit to localize, control the robot and 
visualize different trajectories.  
 
6.2. Tests and Improvements 
We aim testing the robot’s movement. Starting from an 
initial position, we move it to different points of the map. 
While observing the laser telemeter’s measured values and 
then the calculated values, we discovered an existing gap 
that requires corrections and improvements on the algorithm. 
Every laser beam represents a source of errors when it hits 
the surfaces of the map. To remedy these anomalies, we 
proceeded by several methods. 
 First, we tried to regulate the orientation angle obtained 
by the IMU of the Wifibot with a recalibration of the initial 
position’s angle comparing to nearby angles. The best 
orientation angle of the robot is the one coinciding with the 
minimal value of the criteria. However, even if we 

succeeded to obtain the optimal orientation but errors still 
exist depending in the way the laser hits the surface. The 
error is minimal when the laser line is hitting straight the 
obstacle and more deviation occurs, the error increases. So, 
we can not trust those values especially that we are not able 
to detect when measurement errors happen. 
 Therefore, we created an array called confidence array. It 
corresponds to the number of real laser telemeter’s values. It 
eliminates every measure exceeding 5 cm comparing to all 
the nearby measures. 
 
6.3. Simulation Results 
We present simulation results of proceeded improvements to 
the control algorithm of the Wifibot. Fig.10, Fig.11 and 
Fig.12 are resulted trajectories of the robot in the map in 
presence of the obstacle. With the blue curve is the real 
trajectory and the red is the calculated one.   

 
Fig.10. Initial trajectories before corrections 
 

 
Fig.11. Trajectories after introduction of the confidence array 
 

 
Fig.12. Trajectories after introduction of the confidence array and 
recalibration of the position coordinates and the angle 
 
 
 The objective of this simulation is to show the ability to 
track the robot and calculate its position at any time. In 
addition, it demonstrates the efficiency of the Levenberg 
Marquardt Method to optimize the robot’s trajectory. 
 
 
7. Conclusions 

 
In this paper, we have proposed the generic architecture to 
control the Wifibot. This architecture has proved its 
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efficiency, dynamics and capacity to solve complicated 
tasks. It has proved to be used for different types of mobile 
robots. As it is primordial to know the robot’s position and 
orientation all along its navigation, we proposed a method to 
track the robot and determine the abscissa and ordinate of its 
control point besides its orientation θ. This method was 
based on the Wifibot’s model and the extracted data from its 
exteroceptive sensors. We have proceeded then with an 

optimization using the Levenberg Marquardt algorithm to 
ensure the convergence of the cost function to its minimal 
value. Simulation and direct experimental tests on the robot 
show the robustness of the proposed method and its 
efficiency to locate the robot in the map. The robot was able 
to avoid the obstacle and map fronts with success. The next 
phase is to handle the navigator which tasks are now easier 
thanks to the localization’s robustness. 

 
______________________________ 
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