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Abstract 
 
The measurement of similarity between trajectories of vessels is one of the kernel problems that must be addressed to 
promote the development of maritime intelligent traffic system (ITS). In this study, a new model of trajectory similarity 
measurement was established to improve the data processing efficiency in dynamic application and to reflect actual 
sailing behaviors of vessels. In this model, a feature point detection algorithm was proposed to extract feature points, 
reduce data storage space and save computational resources. A new synthesized distance algorithm was also created to 
measure the similarity between trajectories by using the extracted feature points. An experiment was conducted to 
measure the similarity between the real trajectories of vessels. The growth of these trajectories required measurements to 
be conducted under different voyages. The results show that the similarity measurement between the vessel trajectories 
is efficient and correct. Comparison of the synthesized distance with the sailing behaviors of vessels proves that results 
are consistent with actual situations. The experiment results demonstrate the promising application of the proposed 
model in studying vessel traffic and in supplying reliable data for the development of maritime ITS. 
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1. Introduction 
 
Trajectory, which is the route of the movement of an object, 
contains significant spatial information that is necessary in 
studying the behaviors of vessels. With the development of 
information techniques, a growing amount of vessel 
movement information can be monitored, and voluminous 
records of historical trajectories can be stored [1]. Several 
new and efficient methods have been proposed to utilize big 
data in promoting the development of maritime intelligent 
traffic systems (ITS) [2–4]. Notably, similarity measurement 
between the trajectories of vessels is a fundamental issue 
that needs to be solved in these methods [5–7]. The raw 
trajectories of vessels usually include many redundant points, 
outliers, and other elements [8–9]. When the volume of 
trajectory data is large, similarity measurement requires the 
feature points to be extracted from trajectories [10–13]. 
Moreover, to study the traffic characteristics of vessels, the 
similarity measurement result must be consistent with the 
actual motion of vessels [14–17]. The trajectory spatial 
distance describes the motion position information, and the 
trajectory shape shows the changes in the motion direction. 
Therefore, an efficient model is necessary to consider both 
factors to solve the aforementioned problem. 
 
 
2. State of the Art 
 
A trajectory can be mathematically expressed as a vector 
curve [18–23]. To detect feature points, one can use the 
characteristic point detection algorithms from the image 

compression and matching research fields. Several 
characteristic point detection algorithms have been proposed 
and widely used in computer vision [24–28], pattern 
recognition, intelligent identification [29], and retrieval [30]. 
Awrangjeb et al. [31] identified five main detection steps 
from these algorithms, namely, edge extraction and selection 
[32–34], smoothing [35–39], estimation, characteristic point 
detection, and coarse-to-fine characteristic point tracking. 
However, these algorithms cannot directly detect the feature 
points of trajectories because the calculated results must 
meet the requirements of the similarity measurement model 
that is proposed in this paper. Therefore, improvements are 
required. 
 Fu et al. [40] classified the algorithms for measuring 
vector curve similarity into two categories. First, global 
similarity measurement algorithms, such as Fourier 
descriptor algorithm [41], moment invariant algorithm [42], 
curvature scale space algorithm [43], shape context 
algorithm [44], curvature tree algorithm [45], normalized 
parametric polar transform algorithm [46], neural-network-
based algorithm, and symbolic representation algorithm, can 
perform effectively in cases where the trajectories are 
complete. Second, part-to-part similarity measurement 
algorithms are applicable in cases where the trajectories 
have been transformed via rotation, translation, or scaling. 
These algorithms, which include Euclidean transform 
algorithms, similarity-invariant algorithms based on polyline 
approximation, energy function algorithm, and state-of-the-
art algorithm [47], adopt the local curve features by 
identifying the corresponding sub-curves of the two curves. 
These algorithms can also be divided into 3D trajectory 
similarity measurement algorithm [48] and 2D trajectory 
similarity measurement algorithm depending on the objects 
under study. 
 However, the aforementioned methods do not 
simultaneously consider shape difference and spatial 
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distance, thereby preventing their measurement results from 
reflecting actual vessel sailing behaviors. However, some 
studies have synthesized these two factors. Trajectory data 
are generally enormous and dynamic in practical 
applications; thus, the static algorithm cannot solve such 
problems efficiently because a large amount of 
computational resources and huge storage space are 
required. Therefore, the feature-point detection algorithm 
was proposed to reduce the consumption of computational 
resources and storage space. 
 The rest of this paper is organized as follows. Section 3 
describes the methodology of the similarity measurement 
model. Section 4 presents the experiments in which the 
performance of the model was tested, including their results, 
analysis, and discussion. Section 5 concludes the paper. 
 
 
3. Methodology 
 
The model includes two main steps. In the first step, the 
feature points are detected to denoise the trajectories of the 
raw vessels and extract the feature points. In the second step, 
the synthesized distance, shape difference, and spatial 
distance between trajectories are calculated. The similarity 
between trajectories is then determined by synthesizing the 
two calculated results. 
 The proposed model can significantly reduce the 
computing cost in dynamic applications by calculating only 
the increasing segment in each execution because the feature 
points and synthesized distance from the last execution are 
still valid. 
 
3.1 Feature-point Detection 
A trajectory comprises feature points and the lines that 
connect them. Feature points are not only very important 
parts of trajectories but are also vital factors in examining 
vessel sailing behaviors. By extracting feature points from a 
trajectory, the main feature information on the trajectory can 
be obtained and the data volume can be compressed.  
 The proposed feature-point detection algorithm utilizes 
the detection technology from the fields of image 
compression and matching. This algorithm removes the 
noise and local variation of a trajectory by filtering, 
smoothing, and judging the steering action via course 
alteration as well as by determining the corresponding 
feature point of each steering action. This algorithm is also 
relevant in dynamic applications because the extracted 
feature points can be reused when the trajectories are 
increased. 
 A in Fig. 1 denotes the raw trajectory of a vessel. To alter 
a course macroscopically, curve smoothing must be 
performed to remove the local variation and noise that result 
from equipment failures and environmental influences. The 
course changing of the vessel, ΔθA, can then be achieved. To 
reflect vessel sailing behaviors, ΔθA must be partitioned into 
several segments, with each segment being a candidate for 
course changing. ΔθA′ denotes the sum of altered courses in 
each segment. A threshold of ΔθA′ must be defined to obtain 
the strong and significant feature points of trajectory A, as 
well as to remove the weak and insignificant segments from 
the candidates. Δθthreshold_A, which represents the threshold, is 
obtained from empirical results or calculated via the interval 
estimation method as follows:  
 

_ (| |) (| |)threshold A A Amean stdθ θ θ′ ′Δ = Δ + Δ                   (1) 

 
where mean(|ΔθA′|) denotes the mean of all elements in set ΔθA′ 
and std(|ΔθA′|) denotes the standard deviation of all elements in 
set ΔθA′. Fig. 2 shows the curves of ΔθA, ΔθA′, and ±Δθthreshold_A.  
The vessel has altered its course five times, and the five points 
of trajectory A can be determined. Using the origin and 
destination points, all feature points of trajectory A are extracted 
as shown in Fig. 3. 

 

 
Fig. 1. Trajectory A. 
 
 

 
Fig. 2. Curves of ΔθA, ΔθA′, and ±Δθthreshold_A. 
 
 

 
Fig. 3. Feature points of trajectory A. 
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3.2 Synthesized Distance Calculation 

 
Fig. 4. Trajectories A and B. 
 
 
 First, the shape difference must be quantized. In Fig. 4, B 
denotes another trajectory that differs from trajectory A. Θ 
denotes the course when a vessel sails from one feature point 
to the next. (XA, YA) denotes the feature points of trajectory A 
and can be computed as follows: 
 
( ) ( ) ( )( ){ }, , 0,1, , 1|A A A Ai iY iX X Y p= = … + ,                 (2) 

 
where p+1 denotes the number of feature points of trajectory  
A. The courses between the adjacent points in (XA, YA) are 
computed as follows: 
 

( ){ }01A A i |i , , , pΘ Θ= = … ,                              (3) 
 
where ΘA(i) denotes the course from (XA(i), YA(i)) to 
(XA(i+1), YA(i+1)). (XB, YB) denotes the feature points of 
trajectory B and can be computed as follows: 
 

( ) ( ) ( )( ){ }|, , 0,1, , 1B B B BX i piY X Y i= = … ′+ ,               (4) 

 
where p'+1 denotes the number of feature points of 
trajectory B. 
 

( ){ | }0,1, ,B B i i pΘ Θ= = … ′ ,                             (5) 
 
where ΘB(i) denotes the course from (XB(i), YB(i)) to 
(XB(i+1), YB(i+1)). 
Let  
 

( ){ }0,1, , 1|A As pi is= = … + ,                               (6) 
 
where sA(i) denotes the voyage from origin point 
(XA(0), YA(0)) to (XA(i), YA(i)). Let  
 

( ) 0,1{ }, 1| ,B Bs i is p= = … ′+ ,                              (7) 
 
where sB(i) denotes the voyage from origin point 
(XB(0), YB(0)) to point (XB(i), YB(i)). 
 

( );  s( ) ( 1); 0,1,...i f s if i s s i i= ≤ < + =                    (8) 
 

 
Fig. 5. Curves of ΘA and ΘB. 
 
 
Fig. 5 shows the curves of ΘA(f(s)) and ΘB(f(s)). 

 

 
Fig. 6. Shape difference between trajectories A and B. 
 
 
 Let d represent the shape difference between trajectories. 
The shape difference between trajectories A and B can be 
calculated as follows [23]: 
 

( ) ( )
0

( ) ( ) ( )
s

AB A Bd s f s f s dsΘ Θ ′′ ′ ′= −∫ .                   (9) 

 
 Fig. 6 shows the curve of dAB(s), which is not affected by 
the distance between the two trajectories. Thus, the 
translation movement of the trajectories does not affect the 
results of (9). The spatial distance between a couple of 
points of the two trajectories describes the translation 
distance. 
 Second, the distance between the representative points of 
trajectories A and B must be calculated. A couple of points 
must be chosen from trajectories A and B. The latest point of 
a trajectory is selected as the representative point because of 
its importance and easy calculation. Let d' denote the 
distance between representative points. Suppose that 
trajectories B and A are historical and new trajectories, 
respectively. The voyage of trajectory A is growing. The 
latest point of a trajectory A for a specific moment is 
(XA' (s), YA' (s)), where s denotes the voyage from the origin 
point to (XA' (s), YA' (s)). The total voyage of vessel B must 
not be shorter than s to calculate the distance. Thereafter, the 
point (XB' (s), YB' (s)) of trajectory B must be obtained, and 
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the voyage from the origin point to this point is denoted by 
s. (XA' (s), YA' (s)) and (XB' (s), YB' (s)) are the representative 
points at the moment. The distance between the 
representative points of trajectories A and B is d'AB(s), which 
also denotes the spatial distance between trajectories A and 
B. 
 Third, the shape difference and spatial distance must be 
synthesized. Suppose that n voyages have been recorded 
during the growth of trajectory A, which is expressed as 
{Si | i=1, 2, …, n}. Si<Si+1, i=1, 2, …, n. Therefore, the shape 
differences between trajectories A and B are expressed as 
follows: 
 

( ){ }1,2, ,|iAB id S n= … .                           (10) 
 
 The spatial distances between trajectories A and B are 
denoted as follows: 
 

( ){ }1,2 ,| ,AB i id S n′ = … .                           (11) 
 
 Let DAB denote the synthesized distances, which can be 
calculated as follows: 

 

( ) ( ) ( ) ( )1 ; 1,2, , ;0 1
Max Max
AB Ai i

i
B

dAB d d

d S d S
D S K K i

D
K

D
n⋅

′
′

= + − = ≤ ≤ ,(12) 

 
where MaxD is the largest spatial distance, MaxD′ is the 
largest shape difference, and Kd is the adjusting coefficient 
of shape difference and spatial distance. A larger Kd results 
in greater influence of shape difference on synthesized 
distance and smaller influence of spatial distance on 
synthesized distance. When Kd = 1, the synthesized distance 
describes the shape difference. When Kd = 0, the synthesized 
distance is the spatial distance. A smaller DAB leads to 
greater similarities between trajectories A and B. 

 

( ) ( )
1

1( ) ( ) ( ) ( ) , 1,2, , 1
i

i

S

AB i AB i A B
S

d S d S f s f s ds i nΘ Θ
+

+
′′ ′ ′= + − = −∫ .(13) 

 
 Derived from (9) and (10), formula (13) indicates that if 
the last calculated result of shape difference is known, only 
the increased segment must be calculated to obtain the latest 
shape difference. The same characteristics are observed in 
calculating synthesized distance as shown in (12). Therefore, 
this algorithm can be used in dynamic applications. 
 
4. Analysis and Discussion 
 

 
Fig. 7. Trajectories A, a, b, c, and d. 

 The data for trajectory A are collected from a vessel with 
a growing voyage. Four historical trajectories, namely, a, b, 
c, and d, are known. The similarities between A and the four 
trajectories must be measured following the aforementioned 
steps. The average data compression ratio of the five 
trajectories is 39.23. Fig. 7 shows the feature points of 
trajectories a, b, c, d, and A. a is the most similar trajectory 
to A, d is the most dissimilar trajectory to A, and b is more 
similar to trajectory A than to c. 
 dAa(S), dAb(S), dAc(S), and dAd(S) denote the shape 
differences of trajectory A from trajectories a, b, c, and d. S 
denotes the voyage. Fig. 8 shows that if S ≤ 15 km, the shape 
difference between trajectories A and the four trajectories are 
resemblant. By contrast, if S > 15 km and S continues to 
grow, the shape difference between trajectories A and the 
four trajectories become inconsistent. The results in Fig. 8 
are consistent with the shape features of trajectories in 
Fig. 7. 
 Let d'Aa(S), d'Ab(S), d'Ac(S), and d'Ad(S) denote the spatial 
distances of trajectory A from the other four trajectories. 
Fig. 9 shows that the spatial distances of A from c and d 
increase along with the growth of S. d'Ad(S) has a higher 
growth speed than d'Ac(S), but the spatial distances of A from 
a and b have not changed significantly. The results presented 
in Fig. 9 are also consistent with the features of trajectories 
shown in Fig. 7. 
 

 
Fig. 8. Shape differences between A and a, b, c, and d. 
 
 

 
Fig. 9. Spatial distances of A from a, b, c, and d. 
 



Table 1. Synthesized distances from trajectory A to trajectories a, b, c, and d. 
S (km) 

Trajectories 
5 10 15 20 25 30 35 40 

a 0.0144 0.0226 0.0217 0.0297 0.0297 0.0303 0.0306 -- 
b 0.0142 0.0396 0.0650 0.0657 0.0603 0.0589 0.0582 -- 
c 0.0225 0.0447 0.0637 0.1700 0.2955 -- -- -- 
d 0.0182 0.0756 0.1482 0.3177 0.4771 0.6110 0.7362 0.8581 

 
 When the shape difference and spatial distance are 
known, the synthesized distance can be calculated according 
to formula (12). Let MaxD = 60 km and MaxD′ = 1000 
°·km. Table 1 shows the calculated synthesized distance. 
When S = 5 km, d becomes the most similar trajectory to A. 
Trajectories a, c, and d are also very similar to trajectory A, 
but when S ≥ 10 km, a becomes the most similar trajectory 
to A, while d remains the most dissimilar trajectory to A. The 
voyages of a, b, and c are shorter than 40 km; thus, some 
synthesized distances from A to these three trajectories 
cannot be calculated. The results in Table 1 are consistent 
with the features of trajectories in Fig. 7, which means that 
the similarity measurement results are consistent with the 
vessel sailing behaviors. 
 The similarities between the trajectories are measured by 
extracting the feature points and synthesizing shape 
difference and spatial distance. The data volume has been 
extremely compressed in the experiment. All feature points 
that are needed in the next step of the model have been 
retained. The proposed algorithm almost represents a 
lossless compression algorithm for measuring the similarity 
between trajectories because the course changing 
information is not deleted. Furthermore, the synthesized 
distances between a trajectory and the other four trajectories 
are calculated. The synthesized distance between the two 
most similar trajectories is 0.0306, and the highest 
dissimilarity of 0.7362 is obtained when the voyage is 35 
km. 
 The calculations of the two abovementioned algorithms 
can be reused in dynamic applications. The proposed model 
is highly suitable for real-time applications, such as traffic 
detection and monitoring, because only the growth part of 
trajectories must be calculated when the voyages of vessels 
are increased.  
 Trajectory denotes the movement record of the vessel 
and is among the most important sources of data for vessel 
traffic research. The spatial distance between trajectories 
denotes the spatial distribution of traffic flow, whereas the 
shape differences between trajectories result from the 
different sailing behaviors of vessels. If the similarity 
between trajectories is measured by spatial distance, the 
individual differences in the maneuvering of vessels are 
ignored. By contrast, if such similarity is measured by shape 
difference, the location information of vessels is ignored. 

Therefore, spatial distance and shape difference must be 
synthesized. The algorithm developed by Ping Xie is used to 
quantize shape difference [23]. The distance between the 
representative points of trajectories is calculated to measure 
the spatial distance between trajectories for two reasons. 
First, such distance can be easily calculated. Second, such 
distance emphasizes the latest distance between vessels in 
real-time application. This distance can also be replaced by 
another type of distance, such as the maximum distance and 
mean distance between trajectories, when needed.  
 Some attribute parameters, such as time, acceleration, 
and speed, are not considered in the model because they do 
not represent the information of a trajectory. The attribute 
information must be quantized according to professional 
knowledge and the specific application situation. The 
quantization results can be added to formula (12) in an 
appropriate form. Some parameters in the model, such as Kd, 
can be changed to extend the applicability of this model.  
 
 
5. Conclusions 
 
This paper proposed a model for measuring the similarity 
between the trajectories of vessels. The detection algorithm 
from the image compression and matching fields was 
imported and improved to extract feature points from raw 
trajectories. A new synthesized distance algorithm was then 
proposed to measure the similarity between trajectories. The 
experiment results show that the data have been compressed 
at a very high compression ratio. However, the important 
information, which is needed in the model, has been 
retained. By considering the shape difference and the spatial 
distance between trajectories, the synthesized distances 
successfully reflect the different motion behaviors of vessels 
and the disparity of the spatial distribution of trajectories. By 
reusing the measurement results, the similarity can be 
measured quickly and correctly when the trajectories are 
growing. The proposed algorithm can compress the data 
efficiently in real time to save storage space and computing 
resources. The measurement results have significant 
potential to support marine traffic research. Further research 
based on this model is necessary, especially for trajectory 
clustering, matching, and prediction. 
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