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Abstract	
	
Plagiarism in students’ source codes constitutes an important drawback for the educational process. In addition, 
plagiarism detection in source codes is time consuming and tiresome task. Therefore, many approaches for plagiarism 
detection have been proposed. Most of the aforementioned approaches receive as input a set of source files and calculate 
a similarity between each pair of the input set. However, the tutor often needs to detect the clusters of plagiarism, i.e. 
clusters of students’ assignments such as all assignments in a cluster derive from a common original. In this paper, we 
propose a novel plagiarism detection algorithm that receives as input a set of source codes and calculates the clusters of 
plagiarism. Experimental results show the efficiency of our approach and encourage us to further research. 
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1. Introduction 
 
It is well known that plagiarism in students’ assignments is 
quite widespread [1]. Programming assignments do not 
constitute an exception. Taking into consideration that the 
teaching of programming languages is typically project 
based, we can see that plagiarism in students’ programming 
assignments is a major menace to the educational procedure 
[2]. Therefore, plagiarism detection is necessary for the 
benefit of the educational process. However, detecting 
plagiarism manually is a time consuming and tedious task, 
as it requires the comparison of submitted source codes in 
pairs. Moreover, detecting plagiarism manually becomes 
even more difficult as students tend to modify the 
plagiarized code in order to avoid detection. Thus, software 
systems oriented towards plagiarism detection in source 
codes appeared in mid-70s. These early systems, known as 
attribute counting systems [3, 4, 5, 6, 7], adopt various 
software metrics, e.g. the number of code lines, the number 
of declared variables, the number of control or loop 
structures, etc., to calculate the similarity between two 
source codes. In the mid-90s, structure-metric systems show 
up. They calculate a similarity between sources based on 
structure comparison [8, 9, 10]. Systems that are not 
considered attribute counting nor structure metric are also 
available [1, 11, 12, 13, 14, 15, 16]. We remark that JPlag 
[10], which is a structure-metric system, is probably the 
most famous one.  
 All of the aforementioned plagiarism detection systems 
receive as input a set of source codes and produce a set of 
pairwise similarities. However, the result of plagiarism 

detection formed in terms of pairwise similarities is not 
always convenient. From tutor’s perspective, what is 
actually required is the clusters of plagiarism, i.e. clusters of 
students’ assignments where all assignments in the same 
cluster derive from a common original. The detection of 
clusters of plagiarism allows the tutor to confront plagiarism 
much more efficiently. For example, a tutor may decide to 
invite all members of such a cluster in order to admonish 
them. Besides, plagiarism detection becomes clearer when 
the whole cluster is detected, and students tend to accept 
easier their fault. Finally, clusters of plagiarism may be used 
by the tutor in order to set learning groups and promote 
cooperation between students.  
 In this paper, we propose a plagiarism detection 
algorithm for source codes, which accepts as input a set of 
programming assignments and outputs the clusters of 
plagiarism. Our approach supports every keyword-based 
language. Experimentally, we apply our approach on a set of 
real data and we show that it is efficient and compares 
favourably to existing plagiarism detection systems. 
 The rest of the paper is structured as follows. Section 2 
presents types of typical modifications of the plagiarized 
code that students tend to do in order to avoid detection. In 
section 3, we discuss the representation of source codes that 
we propose. An algorithm for the detection of clusters of 
plagiarism that may exist within an input set of source codes 
is proposed in section 4. Experimentation with a real data set 
is presented in section 5. Finally, in section 6, conclusions 
are reported and further research topics are highlighted. 
 
 
2. Types of attacks 
 
Plagiarism detection in students’ source codes becomes too 
difficult task because students tend to modify the plagiarized 
code in order to avoid detection. Several types of such 

Jestr 
	
JOURNAL	OF	
Engineering	 Science	 and	
Technology	Review	
	

	www.jestr.org	

______________ 
     *  E-mail address: lmous@teiemt.gr 
ISSN: 1791-2377 © 2016 Eastern Macedonia and Thrace Institute of Technology. 
 All rights reserved.  

	



L. Moussiades/ Journal of Engineering Science and Technology Review 9 (1) (2016) 8-12 

	
	

9 

modifications, known as types of attacks, have been 
highlighted by [10]. Below, we present the types of attacks 
classified into five categories depending on whether and 
how our approach confronts them.  
 

A. Modification of code formatting; insertion, 
modification, or deletion of comments; change of 
identifiers names, modifications of the text in I/O 
statements, modification of program output or of its 
formatting, modification of constant values, reordering 
within blocks of variable declarations, Modifications 
of scope, e.g. extension of temporary variables scope 
by declaring them in surrounding blocks; statement 
reordering in absence of data dependences; insertion, 
modification, or deletion of modifiers, modification of 
control structures, e.g. a “for loop” is replaced by a 
“while loop”, and replacement of mathematical 
operators without affecting the surrounding expression, 
e.g. the expression ++i is replaced by expression i+=1.  

B. Global reordering of variables and blocks. It applies to 
global identifiers only.  

C. Insertion of dead blocks or dead identifiers, i.e. blocks 
of code or identifiers, which have been declared but 
not used. 

D. Split or merge of variables declarations, temporary 
variables and/or sub expressions addition or removal. 

E. Modification of data structures and/or structural 
redesign of code.  

 
 Our approach confronts attacks of type A based on the 
representation of source codes that we employ. Attacks of 
type B are confronted based on the similarity measure that 
we use. Attacks of type C may be easily confronted by 
checking if a declared identifier is also invoked or not. 
Attacks of type D are confronted partially by our approach. 
Finally, modifications of type E are not considered attacks as 
modifications of data structures and structural redesign of 
code implies deep understanding of the code. We remark 
that our approach or any other plagiarism detection software 
does not confront modifications of type E. More details 
about the confrontation of attacks are given below in this 
paper.  
 
 
3. Representation of source code 
The Plagiarism Detection Algorithm that we propose, or 
PDA for short is based on the representation of source code 
as sets of indexed keywords. We remark that these sets are 
quite similar but not identical to indexed sets of weighted 
substitute and user-defined keywords defined in [2].  
 For a keyword based programming language L, let R(L) 
represents the set of reserved words of L. Assume that user 
additions and/or deletions of suitable elements in R(L) 
produce a set named U(L). An example of such an operation 
is the addition of the keyword String, which although is part 
of a programming language, typically, it is not a reserved 
word, e.g. C++ and Java. Finally, assume that for each 
element in U(L), a substitute value may be defined resulting 
in a set of extended keywords E(L). An example of such a 
substitution would be the substitution of reserved words 
“for” and “while” with the keyword “loop”.  
 
Definition 1: If b represents a block of source code in 
programming language L, then its set of indexed keywords, 
symbolically K(b), contains an indexed reference for each 
word in b that is also included in E(L).  

 For example, if b is a C++ block of code and it contains 
3 integer declarations (language keyword is “int”) and 
reserved word “int” has not been deleted from E(L) then 
{int1, int2, int3} ⊆ K(b). Additional example: If the word 
“String” is included in E(L) and b contains 2 String 
declarations then {String1, String2} ⊆ K(b). Finally, if 
“loop” is the substitute value for reserved words “for” and 
“while” and b contains 2 “for” and 2 “while” then 
loop1, loop2, loop3, loop4 ⊆ K	(b). 

 The representation of source code as sets of indexed 
keywords facilitates the confrontation of all attacks of type 
A. In Fig. 1, function f2 has been produced by applying 
attacks of type A to function f1. 
 More precisely, the following types of attacks have been 
applied to function f1: Change of identifiers names, 
reordering of variables declarations, statement reordering, 
modification of control structure, replacement of 
mathematical operators, and split of variable declarations. 
However, these types of attacks can be confronted by the 
representation we propose and the adoption of a suitable set 
of extended keywords. For example, if set  
 
E	(C++)= {bool, string, int, [, ], {, loop, <,  

++, =, false, if, >, true, &&, }, -, return}   
 
is used with word “loop” to substitute both “for” and 
“while”, then both functions are represented by same set of 
indexed keywords:  
 
k f1 = k f2 =
{bool1, string1, int1, 1, 1, int2, bool2, 1, loop1, int3, <
1, + + 1, 3, 4, = 1, bool3, false1, if1, > 1, =
2, true1, if2, &&1, 2, −1, = 3, = 4, false2, 1,
return1, 2	}.  
 
 Therefore, f1 is 100% similar to f2 independently of the 
similarity measure used. Actually, the proposed 
representation facilitates the confrontation of all attacks of 
category A. 
 
 
4. Description of PDA 
 
Our first step towards the detection of plagiarism is the 
comparison between assignment units. More precisely, we 
have to calculate a similarity measure for each pair of 
assignment units. Note that each assignment unit consists of 
several global blocks, i.e. a block of code that is not included 
in any other block; thus, all global variables, global 
constants; global functions and global classes are considered 
global blocks. We represent an assignment unit as the set of 
its global blocks where each block is represented by its set of 
indexed keywords. More formally, if Α represents an 
assignment unit and b a global block, then Α is represented 
by set P	(A) = K b 	∀	b ∈ A .  
 Since we represent an assignment unit as a set, a 
similarity measure for sets can be used to signify 
assignments that are suspect for plagiarism. Several such 
measures have been proposed in literature. Most known 
similarity measures for sets include Jaccard Coefficient [17] 
as well as Purity and Entropy [18]. However, Jaccard 
Coefficient has certain disadvantages [19] as well as Purity 
and Entropy have. More precisely, although two sets may 
not be equal, they may appear maximum Purity. Also, 
Entropy between two sets may be minimum although the 
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sets may differ. Therefore, we adapt a similarity measure 
proposed in [21] where it is shown that it overcomes 
disadvantages of Jaccard coefficient and those of Purity and 
Entropy. Given a pair of assignment units, Α, Β, a similarity 
measure µ(A, B) is given by 
 

𝜇 𝛢, 𝛣 =

𝑚𝑎𝑥
S∈T

𝑏 ∩ 𝛽
𝑏 ∪ 𝛽Y∈Z

𝑃 +
𝑚𝑎𝑥
S∈Z

𝑏 ∩ 𝛽
𝑏 ∪ 𝛽Y∈T

𝑅
2

 
 
where b	and	β represent global blocks, P = k b 	∀	b ∈ A  
and R = k b 	∀	b ∈ B . 
 It is trivial to prove that the following conditions hold 
true: 
 
µ A, B = 1 ⇔ A = B 
 
µ Α, Β = µ(Β, Α) 
 
 We remark that the aforementioned conditions (i) and d 
(ii) are essential for every function that should correspond to 
the common sense of similarity. Also note that µ is 
unaffected by the blocks’ order; therefore, reordering of 
global blocks, i.e. attacks of type B, are confronted based on 
the nature of similarity measure that we propose.  
Algorithm PDA is presented below. 
 
Algorithm PDA 
 
Input: A set of assignment units {Ab} in a language L,  

A set of extended keywords E(L), 
A cut-off criterion value c 

 
Output: The clusters of plagiarism in {Ab} 

1. V = S = {} 
2. Create graph G = {V, S} 
3. For each pair A, B in {Ab} 

a. If (A ∉ V}  add A	to	V 
b. If (B ∉ V}  add B	to	V 
c. If µ A, B ≥ c   

add A, B, µ A, B 	to	S 
4. return clustering(G) 

 
 The input of PDA includes sets {Ab} and E(L), which 
have been explained already. The purpose of cut-off 
criterion is to eliminate relations between assignment units 
when the pairwise similarity is less than the cut-off value. 
We remark that a cut-off criterion value is used in most 
plagiarism detection systems. The idea of PDA is first to 
calculate the similarities between pairs of assignments and 
then formulate an appropriate graph and find the clusters of 
plagiarism by clustering the graph. Therefore, in steps 1 and 
2 of PDA we create an empty graph G. Then, in step 3, we 
add vertices and links to graph G, formulating a weighted 
graph G, whose each vertex represents an assignment unit 
and a weighted link connecting two vertices represents the 
similarity value between the corresponding assignment units. 
Finally, in step 4, a graph-clustering algorithm may be used 
to reveal the clusters of plagiarism. A lot of graph clustering 
algorithms have been proposed [22, 23, 24, 25, 26, 27, 28, 
29, 30, 31, 32, 18, 20]. However, most of them require a pre-
specified number of clusters as input. In our problem, such a 
number is not known, i.e. the number of clusters of 
plagiarism cannot be pre-specified. Therefore, we need a 

clustering algorithm that automatically calculates an 
optimum number of clusters based on the structure of the 
input graph. Such algorithms are the well-known modularity 
clustering [28, 29, 25, 26, 27]. We have experimented with 
all four aforementioned clustering algorithms. 
 
 
5. Experimentation 
 
Here, we report results of experiments that we have 
conducted on a data set consisting of 124 student 
assignments on a project in C++. An experienced human 
reviewer has evaluated the data set. In Fig. 1, each 
disconnected component represents a cluster of plagiarism 
and each vertex represents an assignment that belongs to a 
cluster of plagiarism. Therefore, according to human 
reviewer, a total of 14 assignments are plagiarism transcripts 
and they form 4 clusters of plagiarism.  
 As we have already mentioned, algorithm PDA sets up a 
graph G such as the set of vertices represent the students’ 
assignments and the set of links represent the similarity 
between two assignments. A prerequisite for the computed 
clusters of plagiarism to be correct is that G has been set up 
based on reliable data. The reliability of G may be expressed 
in terms of Precision and Recall [33]. Precision denotes the 
number of assignments that are actually plagiarized 
transcripts divided by the number of assignments that PDA 
considers as plagiarized transcripts. Recall denotes the 
number of assignments that the algorithm considers as 
plagiarized transcripts divided by the number of the actual 
plagiarized transcripts. In Fig. 3, we present precision and 
recall of PDA for values of cut-off criterion from 1 to 0.4. 
For comparison, in Fig. 4, we present corresponding results 
of the well-known plagiarism software called JPlag. 
 In both Fig. 3 and Fig. 4, the horizontal axis represents 
values of the cut-off criterion. If cut-off value is 1, i.e. if 
only pairs of assignments with a similarity of 1 are 
considered plagiarized pairs, both PDA and JPlag appear 
absolutely precise. However, the recall is quite low, which 
reveals that a lot of plagiarized transcripts could be found for 
lower cut-off values. Indeed as the cut-off value decreases 
the recall increases. As it can be seen in Fig. 4, JPlag best 
performance is attained at cut-off value equal to 0.8, where 
precision equals to 1 and recall equals to 0.6. For higher cut-
off values, precision lowers faster than recall grows. Down 
to cut-off value equal to 0.8 JPlag performs better than PDA 
as a comparison between Fig. 3 and Fig. 4 shows. However, 
for lower cut-off values, PDA performs better. More 
precisely, at cut-off value equal to 0.55, PDA appears 
precision and recall equal to 1, i.e. reveals all of the actual 
plagiarized transcripts. Therefore, we consider that the 
overall performance of PDA is better than the performance 
of JPlag for this dataset. Moreover, PDA produces the 
correct graph G for cut-off value equal to 0.55. 
 Regarding the clustering, as we have already noted, we 
have tested 4 algorithms, namely the ICR, the ILR, the 
modularity clustering and MajorClust. At cut-off value equal 
to 0.55, algorithms ICR, ILR and modularity clustering 
reveals the actual clusters of plagiarism, i.e. the clusters as 
they detected by the human reviewer (Fig. 2). We remark 
that the particular clustering problem is a relatively easy one 
since graph G (the graph to be clustered) is weighted and the 
clusters of plagiarism are not connected components of G. 
MajorClust fails to reveal the clusters of plagiarism because 
as we found the algorithm gets confused when the input 
graph contains not connected components.  
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 Of course, the aforementioned result has been achieved 
for the optimum value of cut-off criterion. However, the 
calculation of the optimum cut-off value requires an 
exhaustive search from the human reviewer. Here, we have 
performed an exhaustive search in order to evaluate PDA. 
However, in a typical scenario we do not want to perform an 
exhaustive search. On the contrary, our purpose is to 
eliminate the human reviewer work. In the experimental data 
set the optimum cut-off value is 0.55. Based on this 
observation, we propose the use of the value 0.5 for the cut-
off criterion. We assume here that there is no plagiarism 
transcript with similarity lower than 0.5. We remark that 
although this assumption is true for the experimental data 
set, it should be checked using sampling for other datasets. 
Therefore, a scenario for the use of PDA is to run it for cut-
off value near to 0.5 and then check the results for 
assignments that have been placed in a cluster of plagiarism 
although they are not connected strongly to the cluster. For 
example, the clusters of plagiarism that have been detected 
by PDA for cut-off value equal to 0.5 are presented in Fig. 5. 
Continues lines in this figure represent similarity between 
assignments in the same cluster, while dotted lines represent 
similarity between assignments belonging to different 
clusters. Moreover, black vertices represent assignments, 
which actually belong to a cluster of plagiarism while white 
vertices represent assignments, which have been placed by 
PDA to a cluster of plagiarism incorrectly.  A human 
reviewer can easily detect the “white” assignments as they 

are connected with only few assignments in their cluster and 
with low similarity, i.e. similarity < 0.55. 
 
 
6. Conclusions and further research 
 
In this paper, we propose algorithm PDA that receives as 
input a set of computer programs and detects possible 
clusters of plagiarism within the input set. PDA consists of 
two parts. The first part calculates similarities between pairs 
of programs. For this part we have proposed a novel 
algorithm, which appears to perform favourably compared to 
the well-known JPlag algorithm. For the second part, i.e. the 
computation of clustering, algorithms ICR, ILR and 
Modularity clustering appears to perform efficiently. PDA 
suites very good the need of the tutor who teaches a keyword 
based programming language and wishes to check the 
students’ assignments for clusters of plagiarism. The 
visualization of the clusters of plagiarism helps the human 
reviewer to examine the correctness of the produced clusters. 
What is missing is a visualization that will reveal the 
similarity between two sources. However, we believe that 
the similarity measure we use is suitable for such 
visualization, thus our further research on the topic is 
oriented toward this direction. In addition, we will 
experiment with more data sets in order to propose more 
accurately a value for the cut-off criterion. 

 
______________________________ 
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