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Abstract

Three-dimensional path planning for underwater vehicles is an important problem that focuses on optimizing the route
with consideration of various constraints in a complex underwater environment. In this paper, an improved ant colony
optimization (IACO) algorithm based on pheromone exclusion is proposed to solve the underwater vehicle 3D path
planning problem. The IACO algorithm can balance the tasks of exploration and development in the ant search path, and
enable the ants in the search process to explore initially and develop subsequently. Then, the underwater vehicle can find
the safe path by connecting the chosen nodes of the 3D mesh while avoiding the threat area. This new approach can
overcome common disadvantages of the basic ant colony algorithm, such as falling into local extremum, poor quality,
and low accuracy. Experimental comparative results demonstrate that this proposed IACO method is more effective and
feasible in underwater vehicle 3D path planning than the basic ACO model.
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1. Introduction

Three-dimensional (3D) path-planning problem requires
finding a collision-free and optimal path for an underwater
vehicle from start point to goal point in a complex
underwater environment. Many studies on path-planning
algorithms have been conducted, but most of these methods
are for the 2D space [1], [2], [3], [4]. The algorithm of 3D
path planning is difficult because of its complicated
calculation process, large amount of stored information,
difficulty in directly performing global planning, and other
issues. Numerous algorithms have been used to solve the 3D
path-planning problem, such as artificial potential field [5],
A* [6], genetic [7], and particle swarm optimization [§]
algorithms. Although these algorithms have contributed to
the research on the path-planning problem in the 3D space,
they have limitations. The potential field algorithm cannot
avoid being trapped in local optimal path and cannot be
extended directly when the optimization rule is complicated.
The A* algorithm can be used to solve high-dimensional
problems, but as the dimension increases, the space-time
requirement of this algorithm becomes difficult to meet. The
genetic algorithm can accomplish the planning when the
environment condition is simple, but it has difficulty finding
a feasible path in a complex environment.

Ant colony optimization (ACO) [9] algorithm proposed
by M. Dorigo in 1991 is a new intelligent optimization
algorithm [10], [11]. As a bionic algorithm, ACO has many
characteristics, such as distributed computing, positive
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feedback mechanism, and swarm intelligence [12]. It can be
used in 2D or 3D path planning, but the conventional ACO
easily falls into local extremum, and has poor quality and
low accuracy in the 3D path planning. In this paper, the
path-planning problem of underwater vehicles in 3D space
based on ACO is studied, and an improved ACO (IACO)
search algorithm based on pheromone exclusion and 3D
space environment modeling method is proposed. The IACO
algorithm is based on the behavior of real ants. As ants move,
the pheromones they release in their search path includes not
only an attractive part but also an exclusive part. The IACO
algorithm enables the ants in the search path process to
explore initially and to develop subsequently. This algorithm
has been applied to path planning in 3D space underwater.
The simulation results show that the IACO algorithm has
good robustness and high efficiency, can overcome the
shortcomings of the conventional ACO, and can effectively
improve the quality and precision of the search path.
Moreover, the stability of the output is better than that of the
conventional ACO.

2. 3D space environment mathematical modeling

Environment modeling expresses real 3D space environment
information in an abstract pattern, which is closely related to
the optimization algorithm, and influences the efficiency of
the path planning directly [13]. The environment abstract
modeling method is described as follows: first, the top left
corner of the 3D map vertex is set as the origin of the
coordinates of 3D space 4; in point A, the 3D coordinate
system is established. The x-axis follows the longitude
degree increment direction and passes point 4 in the water
level. The y-axis follows the latitude degree increment
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direction and passes point 4 in the water level. The z-axis is
perpendicular to the water level, which passes point 4 and
moves upward to the water level. In the Cartesian coordinate
system, 4-xyz takes point 4 as a vertex, taking the maximum
length |AB| along the axis x, taking the maximum length
|AD| along the axis y, and taking the maximum length |[AA’|
along the axis z. Then, a cube space ABCD-A’B’C’D’ can
be obtained, which is the 3D planning space [14], as shown
in Figure 1.
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Fig. 1. Three-dimensional model
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Fig. 2. Planar graph partition

After establishing the planning space, we have to further
divide the space and extract the 3D path planning of grid
points to obtain the abstract environment model. First, we
plot the planning space ABCD-A’B’C’D’ into n parts along
line AB to obtain n+/ planes [],(i=0,1,2,---,n). Then, we
plot arbitrary plane I, along AD into m parts and along
AA’ into / parts, and we have to solve the intersection
between planes for path planning of the grid points. The
plane is divided, as shown in Figure 2.

Through the aforementioned steps, the planning space
ABCD-A’B’C’D’ is dispersed into several 3D points. With
P* as the aggregate of these points in this paper, any point a
in the aggregate corresponds to two coordinates, namely,
sequence number coordinate al(z‘, J,k)(i=012,---,n,j=0,,
2,--+,m,k=0,1,2,---,]) and position coordinate a*(x;,y;,z,)-

The sequence number coordinate a'(i, j,k) is the sequence

number of a along the three directions in the process of
plotting the planning space. As shown in Figure 1, i, j, and k£
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are the sequence numbers of point a along lines AB, AD,
and AA’. The position coordinate a*(x;,y,,z,)of point a is
longitude excursion distance, latitude excursion distance,
and depth excursion distance of the position corresponding
to point 4. The IACO based on pheromone exclusion
principle is used in this 3D path point planning to establish
an optimal path between the starting point and the target
point according to certain criteria.

3. Improved ant colony algorithm with pheromone
exclusion for underwater vehicle 3D path planning

3.1 Representation of pheromones

The pheromone is a carrier of information from the past; it
directly affects the global convergence and computational
efficiency of the ant colony algorithm. In the path planning
problem, we usually take the path between the adjacent
nodes as the pheromone carrier, but this method applies only
to small-scale problems [15]. An environment model
structure map of the 3D path-planning problem has more
nodes. If we take the path between the adjacent discrete
nodes as the pheromone carrier, then the space complexity
of the algorithm becomes unbearable. Position setting and
updated method of pheromone are crucial for the ant colony
algorithm to search 3D paths. The mathematical model of
the 3D environment has divided the entire search space into
a series of discrete points; the discrete points are the nodes
that the ant colony algorithm needs to search for. In this
study, the pheromone released by the ant in the search path
includes not only the attractive part but also the exclusive
part. It makes the ants in the search path process tend to
explore initially, and tend to develop in the later search. The
pheromone is stored in the discrete points in the 3D
environment mathematical model. Each discrete point is
stored with the pheromone value. The pheromone value
represents the ant’s attraction or repulsion level, as each ant
maintains its own pheromone. The pheromone value of the
discrete node has to be updated locally after each ant passes
by. When all the ants have set up the path, the pheromone is
updated globally [16].

3.2 Design of heuristic function

Heuristic function is an important component of the path
planning algorithm in 3D space. This function calculates the
3D path selection probability of each point within the visible
area for the ants searching from the current point to the next
point. The heuristic function is not only the carrier of
characterization of future information but is also an
important part of the 3D route planning algorithm.
Experimental results show that the heuristic function must
ensure that the ant colony algorithm searches the global
optimal solution within a reasonable period of time. The
present study adopts the following heuristic function:

H(l,],k) = D(i’j:vk)w1 : S(i’j’k)wz ) Q(i7j’k)W3 (1)

where the factor D(i, j,k) is the path length from the current
node to the next node to allow the planning path to be as
short as possible. We use the function value of S(i, j,k) to

represent the safety grade of the feasible point (i, j,k). The

value is 0 if the points cannot choose, and it makes the ant
select a safe point. The factor Q(i, j,k) is the path length of

the next node to the target node. It makes the ants choose a
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distance closer to the target; wy,w,,w; are the coefficients

that represent the relative important grades of the mentioned
factors.
The factor D(i,j,k)is computed as follows:

DG, j,k) = sqril(x, = %,)* + (v, = 7,)* +(2, = 2,)’] )
where a is the current node and b is the next node.

The calculation formula of the factor S(i,j,k) is as
follows:

Num —UNum

$G.j.B= Num

©)

where Num is the number of feasible points in the visual
domain space of point (i, j,k), and UNum is the number of
unfeasible points in the visual domain space.

The factor Q(, j,k) is computed as follows:

OG, j,k) = sqrt{(x, = x;)* + (¥, = v4)* +(2, = 2,)°] 4)

where b is the next node and d is the target node.

3.3 Design of ant colony search strategy

3.3.1 Visual domain space

In this study, we choose the x-axis as the main direction of
the 3D path planning. An underwater vehicle moves along
the x-direction. To reduce the complexity of path planning,

we simplify the vehicle movements through three operations:

forward, transverse, and longitudinal movement. When the
vehicle moves ahead one unit L we allow it to take the

x,max °

maximum lateral movement Ly ma and take the maximum

longitudinal movement range L Thus, when the ant lies

z,max *

at H(i, j,k) point on plane [I;, a visual domain space of
point H (i, j,k) exists.
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Fig. 3. Visual domain space
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First, we provide the definition of the ant’s visual
domain space.

Definition 1 Visual domain space Given
Lx,max (L)c,max € {172" ' 7n}) ’ Ly,max (Ly,max € {1927' . 7m}) ’ and
L, o (L € 11,2,,1}), as shown in Figure 3, we suppose

that T" is the selection domain in the rectangular plane
[1, that contains the ant’s current path node, and H(i, j,k) is

the arbitrary feasible point in the space I' .Thus, the

rectangular point
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sets (x,y,z|xe {i+Li+2,---,min(n,i+L, . )},
S {maX(j_Ly,max/zao)a' ! 'aj)' ' n’lll’l(_] +Ly,max/2’m)} ’
ze {max(k—L, g /2,0, -k, -min(k + L, . /2,0)}) can be
51 71.

Therefore, when the ant moves from the cul(re}lt node to
the next node, the search area of the ant is limited to the
visual domain space, which can simplify the search space
and improve the search efficiency of the ant colony
algorithm.

called the visual domain space of point H (i, j, k)

3.3.2 Design of path search strategy

In the ant colony algorithm, the path search is conducted
according to the probability, and the ants us g. different
decision rule, which is called pseudo-random proportional
rule. This rule can use the distance heuristic information
between the nodes as well as pheromone prior knowledge
that is already stored, and can have a propensity to explore.
The following process shows how ants in the present node
P.in plane [], choose the next path node P, in plane[],,, .

(1) The feasible path nodes in the selection spg&' of plane
I1,,, are chosen according to the abstract environment model.

(2) The heuristic information value H,

i+1.4,0f an arbitrary

point (i+1,u,v) in the selection space of plane [I,,, is
calculated.

(3) A new method of transfer probability calculation is
proposed in this paper. The pheromone of ants in the path
searching process contains both the attractive part and the
exclusive part. The ant is attracted by its own released
pheromones and is excluded by pheromones released by the
other ants. We defined that a representation attracts weight

A

il ®F  for a feasible next

and a rejection of the weight @y
node P, of the ant k. A%, is designed according to this

standard, as shown in the following equation:

k
T ()

> )

JjeNf @

Al;i+l(t) = (%)

k

The equation t;;,,(¢)represents the value of pheromones

released by the ant & in the next path node P, in plane

I, . A%, is calculated through the amount of attracted

pheromones of all subsequent feasible nodes corresponding
to the node P, of ant £, and is standardized.

®F, is designed according to this standard and is shown in
the following equation:

30
D, (1) = —H— (6)
> T10
jeNF@) i
where
k
Hl(’): _IZT:;’H(t) (7)
i+ znm;qk“)"nk

Equation (7) represents the value of pheromones released
by all other ants, except k in the next path node P, in
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plane[l,,, . ®%,, is calculated by the amount of excluded
pheromones of all subsequent feasible nodes corresponding
to the node P, of ant £, and is standardized.

According to the preceding definition, the pheromone
weight of the arbitrary feasible point in plane [],,, is defined

as
P G RIGh ) q
M= E(Alﬁm(t)/‘bﬁ'ﬂ(t))a &
ii+le NE (1)

Where the ratio of attraction and exclusion balances the
relationship between exploration and development. Thus, the
ants in the search path process tend to explore initially and
to develop subsequently.

The next path node P, , which has a position coordinate

of P(x
the following pseudorandom proportional rule:

++1>Vis1»Zis1) » Was chosen in plane [I;,, according to

r’iljﬂ (t)H(le ’yi+1’Zi+l
X Maa(DH(%, Y070

ii+leNf (1)

0

feasible point

pz‘]zc'+l (t) = (9)

else

where nf, ()is the pheromone amount weight saved in
node P, inplanell,,,.

4) Roulette algorithm is selected to choose the next path
node in plane[],,,, according to the probability of each

point.

3.4 Pheromone update rule

Pheromone update consists of two parts, namely, local
pheromone trail update and global pheromone trail update
[18]. The local pheromone trail is updated after the ant
passes the point. The pheromone of the point decreases. The
pheromone update can increase the probability of the point
that the ant has not searched and achieve the goal of global
search. The update method is expressed as follows:

Ty =(1- C)Tg/k

where Tk is the pheromone value of the feasible point

(i, j,k) and  is the attenuation coefficient of pheromones.

Unlike the conventional ACO algorithm, the TACO
algorithm allows each ant to maintain its own pheromone.
Thus, the pheromone of each ant also volatilized
independently. The local update method of the IACO
algorithm is shown as follows:

k k K
Tyt +1) =15 () + O
where QF is the fixed size amount of the pheromone and is a

positive constant. After a complete path was established, the
pheromone was volatilized as follows:

Tﬁ;k =01- P)T;,C'k(t)

where p(0 < p <1) is a parameter.

The global pheromone trail is updated after the ant has
constructed its path. We choose the shortest path based on
the path length from the set of paths as standard, and we
increase the pheromone value of each node. The global
pheromone update method of the conventional ACO
algorithm is shown as follows:

27

Tik =(1—p)ryk +pAr,jk (13)
K

= r 14

Ty min(length(m)) (14

where length (m) is the length of the No. m ant’s path,
p(0 < p<1)is a parameter, and X is the coefficient.

The global pheromone trail of the IACO algorithm is
updated after all ants have constructed their path. The update
method of the TACO algorithm is shown as follows:

Qk
JEH0)

k k
T+ =15+

(15)

where f(x*(¢))is the best fitness value in this study, which

indicates the cost of the No. k ant to construct its path. The
global pheromone trail is updated only for the iterative
optimal or global optimal path in the IACO algorithm.

3.5 Process design of algorithm
In this paper, the algorithm of the 3D path planning process
for an underwater vehicle is described as follows:

Step 1. After the model of the abstract 3D environment
has been built, and the starting point and target position in
abstract environment model has been determined, the main
direction of the ant movement is also determined. Then, all
the ants are placed in the starting point. The parameters
needed to be set in the algorithm begin to be initialized.

Step 2. On the basis of heuristic information and
pheromone weight value, the next point of the ant searching
is determined according to formulas (1), (8), and (9).

Step 3. The local pheromone trail is updated according
to formulas (11) and (12).

Step 4. We determine whether all the ants completed
building a path. If they did not, then we return to Step 2.

Step 5. The global pheromone trail is updated according
to formula (15) to determine whether the algorithm satisfies
the stop condition and the optimal result output meets the
conditions. Otherwise, we return to Step 2.

Figure 4 shows the flowchart of the improved ACO
algorithm for underwater vehicle 3D path planning.

4. Simulations

In this section, we show the performance of the IACO
algorithm as it is applied to the 3D path planning problems,
and we compare the performance of this algorithm with that
of the conventional ACO algorithm. We use MATLAB for
the simulation. The simulation is based on real underwater
terrain data. We divide the 21 km * 21 km * 2 km
underwater region by means of uniform mesh method, and
we use the IACO algorithm to search the collision-free path
from the starting point to the target point of this region. To
facilitate problem solving, we set the deepest point in this
area to zero. The height of the other point according to the
height difference of the deepest point is obtained in turn.
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The 3D simulation diagram for the water area of the model
is shown in Figure 5.

Abstract 3D environment modeling
initialization parameters
v
Determine the planning start point and
end pointputs the ants starting location

hether meet the

stop condition
v
The optimal
result output
l To determine the next path points
according to the formula (1), (8) and (9). v
1 End

Local pheromone update according to
the formula (11), (12).

hether all the ants
build a path

Global pheromone update
according to the formula (15).

Fig. 4. Flowchart of improved ACO algorithm

Table 2. Comparison of path length (unit: km)

Fig. 5. 3D simulation diagrams

4.1 Simulation 1

Simulation 1 is performed on a relatively flat plane of the
environment with the set start point (1,10,800) and goal
point (21, 4, 1000). We first use the conventional ant colony
algorithm for path planning in the water, and then we use the
IACO algorithm based on the pheromone exclusion
principle for path optimization between the initial point and
the target point. The parameter setting is shown in Table 1.

Table 1. Parameters of the algorithm

- Y axis Z axis
X axis grid . . ant
grid grid T ¢
number number
number number
21 21 10 10 1 0.2
iteration K
o .
number K 2 fx() P
100 100 5 100 optimal , 5
fitness

The experiment is conducted eight times. The planning
path length of the conventional ACO and the IACO is shown
in Table 2.

In Experiment 1, the optimal path length of ACO
planning is 28.3183 km, and the optimal path length of
IACO planning is 25.1251 km. The simulation comparison
charts is as follows.

1 time 2 times 3 times 4 times 5 times 6 times 7 times 8 times average
ACO 31.1514 32.2239 30.9962 34.4189 31.8780 31.7936 28.3183 31.9156 31.5869
IACO 27.5471 28.7836 25.1251 27.9500 25.8855 27.1325 25.1399 25.8855 26.6811

28
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Fig. 6. Perspective diagram of the optimal path with ACO and IACO

planning
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3D path planning space
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Fig. 7. Top view of the optimal path with ACO and IACO planning
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Fig. 8. Fitness variation diagram of ACO and IACO planning

In Experiment 1, the average path length of the ACO

Table 3. Optimal path time comparison table

algorithm planning is 31.5869 km, and the average path
length of the IACO algorithm planning is 26.6811 km. The
optimal path time comparison table of the ACO and IACO
algorithms is presented in Table 3.

E_time(s)
ACO 1.805105
IACO 2.825599
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In Experiment 1, the simulation results of ACO planning 4.2 Simulation 2

show that the path can fluctuate easily in the local depth, Simulation 2 was performed on a relatively steep plane of
whereas IACO performs better. The 3D average path length  the environment, with the set start point (1, 18,800) and the
of the IACO planning is significantly shorter than that of the  goal point (21, 16, 1200). The values in Table 1 were used in
ACO. However, because of increased calculation of the  the parameter setting of the algorithm simulation process.
weight of pheromone attraction and exclusion in IACO, this =~ The experiment was conducted eight times. The planning
algorithm is slightly slower than ACO. path lengths of the ACO and IACO algorithms are shown in

Table 4.

Table 4. Comparison of path length (unit: km)

1 time 2 times 3 times 4 times 5 times 6 times 7 times 8 times average
ACO 27.5298 28.2408 41.5395 29.4466 43.0707 30.2734 27.8154 27.7280 31.9555
IACO 23.5443 24.3555 25.1605 23.9353 23.5047 24.7242 24.7299 23.9015 24.2319

In Experiment 2, the optimal path length of ACO
planning is 27.5298 km, and the optimal path length of
IACO planning is 23.5047 km. The simulation comparison
charts are shown in Figure 9, Figure 10 and Figure 11.

3D path planning space
3D path planning space

3D path planning space

3D path plannin,

Fig. 9. Perspective diagram of optimal path with ACO and IACO Fig. 10. Top view of optimal path with ACO and TACO planning
planning

30

20 18 16 14 12 10 8 6 4 2 0
km
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The changing trend of the best fitness

165
In this simulation, the optimal path time comparison of
160 ] the ACO and TACO algorithms is shown in Table 5.
S
S 155 ] Table S. Optimal path time comparison table
7] E_time(s)
2 ACO 2.699045
i 1501 7 IACO 4.097759
145} -
In Experiment 2, the simulation results show that the 3D
140 . ‘ . ‘ . average path length of the IACO planning is significantly
0 20 40 = 60 80 100 120 shorter than that of ACO in a relatively steep plane of the
Iteration number . . . . . .
environment. Moreover, a certain distance is maintained
The changing trend of the best fitness ‘petween the obst.acles. The optimal pgth is more stable, ?nd
130 : : . . . it meets the requirements of the algorithm for path planning.
However, the path slightly increases the simulation time of
128) ] the algorithm.
% el i 4.3 Simulation 3
2 124l | Simulation 3 chooses diagonal points in the environment as
£ the starting point and the target point, with the set start point
= 1221 | (1, 18,800) and the goal point (21, 5, 1500). The parameter
setting of the algorithm simulation process still uses the
120 L _ values in Table 1. The experiment is conducted eight times.
\ The planning path length of the conventional ACO and the
1185 50 40 20 20 00 120 IACO is shown in Table 6.
Iteration number
Fig. 11. Fitness variation diagram of ACO and IACO planning
Table 6. Comparison of path length (unit: km)
1 time 2 times 3 times 4 times 5 times 6 times 7 times 8 times average
ACO 33.3286 35.6225 36.0060 33.0330 33.1249 37.3286 35.2400 32.2071 34.4863
IACO 29.7300 29.7248 29.7407 29.7300 29.7401 29.7191 29.7032 29.7243 29.7265
In Experiment 3, the optimal path length of ACO
planning is 32.2071 km, and the optimal path length of
IACO planning is 29.7032 km. The simulation comparison
charts are shown in Figure 12,Figure 13 and Figure 14.

3D path planning space

31

3D path planning space

Fig. 12. Perspective diagram of optimal path with ACO and IACO
planning
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3D path planning space
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In this simulation, the optimal path time comparison

table of the ACO and IACO algorithm is shown in Table 7.

Table 7. Optimal path time comparison table

E_time(s)
ACO 4.945559
IACO 1.953487

32

In Experiment 3, the simulation results show that the 3D
average path length of IACO planning is much shorter than
that of ACO in a relatively complex plane of the
environment. In addition, the optimal path is more stable;
the running time of the IACO algorithm to obtain the
optimal path is shorter than that of the ACO.

The simulations also show that the optimization ability
in a complex environment of the IACO algorithm is stronger
than those of others.

5 Conclusion and Future Work

In this paper, the IACO algorithm with pheromone exclusion
was proposed, and it was used to study the 3D path planning
problem in complex underwater environments. To optimize
the 3D path, we established the model of the 3D space in the
underwater environment. The ant colony algorithm based on
pheromone exclusion was proposed and applied to this
algorithm for path planning in 3D space underwater. The
objective was to find the optimal path between the start and
goal points under three different environments. We
presented the detailed process of the algorithm and
compared the conventional ant colony algorithm and its
improved version. The simulation results show that the
algorithm proposed in this paper can improve search quality
and accuracy. The output stability is good, especially in the
complex plane environment. Several problems were also
observed. For example, the searching time of the algorithm
is extremely long and the planning path is not the global
optimal path. Our future work aims to focus on how to speed
up the convergence of the algorithm and how to improve the
global optimization ability of the algorithm.
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