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Abstract 
 

Spectral similarity measure is the basis of spectral information extraction. The description of spectral features is the key 
to spectral similarity measure. To express the spectral shape and amplitude features reasonably, this paper presents the 
definition of shape and amplitude feature vector, constructs the shape feature distance vector and amplitude feature 
distance vector, proposes the spectral similarity measure by fusing shape and amplitude features (SAF), and discloses the 
relationship of fusing SAF with Euclidean distance and spectral information divergence. Different measures were tested 
on the basis of United States Geological Survey (USGS) mineral_beckman_430. Generally, measures by integrating SAF 
achieve the highest accuracy, followed by measures based on shape features and measures based on amplitude features. 
In measures by integrating SAF, fusing SAF shows the highest accuracy. Fusing SAF expresses the measured results with 
the inner product of shape and amplitude feature distance vectors, which integrate spectral shape and amplitude features 
well. Fusing SAF is superior to other similarity measures that integrate SAF, such as spectral similarity scale, spectral 
pan-similarity measure, and normalized spectral similarity score(NS3). 

 
 Keywords: Spectral similarity measure, Shape features, Amplitude features, Shape features distance vector, Amplitude features distance 
vector 
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1. Introduction 
 
A hyperspectrum can describe imaging targets accurately 
because of its approximately continuous spectral curve, wide 
wavebands range from dozens to thousands, and high 
resolution (10 nm). Surface features contain the specific 
reflection and radiation characteristics of electromagnetic 
waves. A hyperspectrum is the representation of the 
reflection or radiation characteristics of the electromagnetic 
waves of surfaces. Spectral similarity measure is the 
foundation of hyperspectral information acquisition and can 
be used to detect and recognize surface features effectively. 
Thus, spectral similarity measure should be extensively 
studied. 
 A spectral curve has shape and amplitude features (SAF). 
Spectral similarity measure methods based on shape features 
mainly include spectral angle mapper (SAM) (Kruse et al., 
[1]), spectral information divergence (SID) (Chang et al., 
[2]), spectral correlation coefficient (SCC) (Van de meer et 
al., [3]), SID-SAM (Du et al., [4]), a hybrid measure using 
the spectral correlation angle (SCA) and SID, i.e., SID-SCA 
(Kumar et al.), and a hyperspectral matching by integrating 
the Jeffries-Matusita distance (JMD) and SAM, i.e., JMD-
SAM (Padma et al., [6]). Similarity measures based on 
spectral shape features cannot reflect the spectral amplitude 
difference caused by spectral gain and are insensitive to the 

spectral amplitude difference caused by offset. Furthermore, 
this type of similarity measure cannot comprehensively 
reflect the effect of spectral amplitude features on spectral 
similarity measure. Euclidean distance (ED) is the main 
spectral similarity measure method based on amplitude 
features. A similarity measure based on spectral amplitude 
features is over-sensitive to the spectral amplitude difference 
caused by gain and offset; thus, this measure is inadequate 
for comprehensively reflecting the effect of spectral shape 
features on spectral similarity. Research results demonstrate 
[7–9] that single spectral shape or amplitude features are 
inadequate in accurately measuring spectral similarity. 
Spectral similarity measures should consider both spectral 
shape and amplitude features. 

Some scholars have studied spectral similarity measures 
that integrate shape and amplitude features. Granahan and 
Sweet [10] proposed a spectral similarity scale (SSS) by 
combining ED and SCC. Kong et al. [11] presented a 
spectral pan-similarity measure (SPM) by combining ED, 
SCC, and SID. Nidamanuri and Zbell [12] proposed an 
normalized spectral similarity score (NS3) method by 
combining normalized ED and SAM. The expressions of 
SSS, SPM, and NS3 involve the sum of amplitude features 
and shape features. When these two features differ 
significantly, the smaller numerical value will be drowned 
out by the larger one. The features of large numerical values 
occupy significantly high proportions in the comprehensive 
measure, whereas the features of smaller numerical values 
will be neglected. This phenomenon influences the accuracy 
of spectral identification. By combining SCC and ED and by 
endowing and dynamically adjusting the weights of the 
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shape index and amplitude index, Fang et al. [13] presented 
a spectral similarity measure method called dynamic weight 
adjustment method (DWAM). On the basis of the 
combination of SAM and ED, Zhang et al. [7] proposed a 
spectral similarity measure method called spectral changing-
weight similarity measure (SCWSM) by endowing and 
dynamically adjusting the weights of the shape index and 
amplitude index. The weight adjustment criteria of DWAM 
and SCWSM are difficult to determine. 
 This paper provides the definitions of shape and 
amplitude features vectors, constructs the shape and 
amplitude features distance vectors, expresses spectral 
similarity measure with the inner product of shape and 
amplitude features distance vectors, and overcomes the 
shortages of existing measure methods that integrate the 
shape and amplitude features. Test data use United States 
Geological Survey (USGS) mineral_beckman_430. Results 
show that the proposed spectral similarity measure has 
significantly higher spectral identification accuracy than 
existing similarity measures. 
  
 
2. Methodology 
 
2.1 Shape and amplitude features vectors 
Spectral amplitude features vector expresses band-wise 
brightness and is defined by spectral vector V, which is 
expressed in Equation (1), where n is the total waveband 
number of the hyperspectrum and vi is the spectral radiance 
or reflectance amplitude of the waveband bi. Spectral shape 
features can be expressive of the relative value of band-wise 
brightness, and a spectral shape feature vector is defined by 
the unit vector E of V. E is expressed as Equation (2). 
Spectral linear transformation, i.e., gain and offset, 
influences vector V and E (Equations (3) and (4)). In 
Equations (3) and (4), k is the gain factor and b is the offset 
factor. Equation (3) shows that spectral gain transformation 
changes the band-wise brightness but does not change E. 
Thus, the shape features vector expresses the direction but 
not the amplitude of the spectral vector V. Equation (4) 
reflects that spectral offset transformation changes both the 
band-wise brightness and E. According to the applied 
spectral features vector, spectral similarity measure methods 
can be divided into shape feature-based measure (SFM), 
amplitude feature-based measure (AFM), and measure by 
integrating SAF. 
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2.2 Spectral similarity measure methods based on shape 
features 
Spectral similarity measure methods based on shape features 
include SAM [1, 14, 15], SID [2, 16], SCC [3], SID-SAM 
[4], SID-SCA [5], and JMD-SAM [6]. The metrics of SAM, 
SID, SID-SAM, and JMD-SAM are not affected by spectral 
gain transformation and are affected by but not sensitive to 

spectral offset transformation. The metrics of SCC are not 
affected by both spectral gain and offset transformation. The 
metrics of SID-SCA, i.e., combined indices of SID and SCC, 
are not affected by spectral gain transformation and are 
affected by but not sensitive to spectral offset 
transformation. Other measure methods such as spectral 
binary coding, spectral absorption features, and spectral 
gradient characteristics, are not influenced by spectral gain 
factor and belong to spectral similarity measures based on 
shape features. 
 
2.2.1 SAM 
SAM is the generalized angle θ between the test spectral 
vector T and the reference spectral vector R. SAM can be 
expressed as follow: 
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where ti is the ith component of T, vi is the ith component of V, 
and n is the dimensions of the vector. Let et be the unit 
vector of T and er the unit vector of V. The generalized angle 
can then be expressed as follow: 
 

)(cos),( 1 rt eeRT ⋅= −θ                                   (5) 
 
 From Equations (2) and (6), SAM can be expressed by 
unit vectors et and er of vectors T and R directly; hence, 
SAM is an SFM. SAM is not affected by spectral gain 
transformation and is affected by but not sensitive to spectral 
offset transformation. 
 
2.2.2 SID 
SID is the application of information theory in the spectral 
classification field and belongs to the spectral information 
measure. It calculates the information entropy contained in 
each waveband amplitude of the spectral vector and 
represents the spectral shape similarity by the sum of 
information entropy. SID is expressed as follows: 
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 From Equations (2), (7), (8), and (9), SID can be 
expressed by unit vectors et and er of vectors T and R 
directly; hence, SID is an SFM. SID is not affected by 
spectral gain transformation and is affected by but not 
sensitive to spectral offset transformation. 
 
2.2.3 SCC 
The spectral correlation coefficient of spectrum, i.e., the 
Pearson’s correlation coefficient, is actually the cosine of the 
generalized angle of vectors after the spectral curves minus 
their means. It can be expressed as follows: 
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where r is the Pearson’s correlation coefficient of T and R, r 
∈  [-1,1]; t is the mean of the test spectral vector 
components;  r  is the mean of the reference spectral vector 
components. When r > 0, T and R are positively correlated. 
When r < 0, T and R are negatively correlated. To represent 
whether the correlation degree is positive or negative, the 
spectral correlation will be expressed with r2, i.e., 
determination coefficient R2, R2∈ [0,1]. With increasing 
shape similarity between T and R, R2 gradually approaches 
one. To ensure the consistency of the SCC result with the 
SID and SAM results, this study used 1-R2 to express the 
measured result of SCC. From Equations (10) and (11), 
although unit vectors et and er of T and R are changed by the 
spectral offset transformation first, SCC is an SFM because 
it can be expressed by unit vectors et’ and er’ directly. 
Equations (12) and (13) reveal that SCC is affected by 
neither reference spectral vector R gain nor offset 
transformation. 
 
2.2.4 SID-SAM 
The SID-SAM method is formed by combining SID and 
SAM. SID-SAM has two expressions: 
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When two curves are similar in shape, Equations (14) and 
(15) can obtain similar results. 
 
2.2.5 SID-SCA 
The SID-SCA method is formed by combining SID and 
SCA. SCA is expressed as follows: 
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where r(T,R) is Pearson’s correlation coefficient of T and R, 
SCA∈  [0,π/2]. When T and R are similar in shape, SCA 
approaches zero. SID-SCA has two expressions: 
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2.2.6 JMD-SAM 
The JMD-SAM method is formed by combing JMD and 
SAM. JMD is the Jeffried–Matusita distance [17, 18]. The 
calculation formula of JMD is expressed as follows: 
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where t

ie  is the ith component of unit vectors of T ; r
ie is the 

ith component of the unit vector of R. SID-SCA has two 
expressions: 
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2.2.7 Calculation example 
 sThis calculation example elaborates that the measure result 
based on spectral shape features is only related to shape 
features and is insensitive to the spectral amplitude 
difference caused by gain or offset. Thus, the effect of 
spectral amplitude features on spectral similarity is not 
reflected comprehensively. Data were collected from USGS 
mineral_beckman_430. Kaolinite CM3 was used as the test 
spectrum, and Kaolinite CM9, Illite IL101, and 
Hydrogrossular NMNH120555 were used as reference 
spectra (Fig. 1). SID was used for SFM, and ED was used 
for the AFM. The calculated results are shown in Table 1. 
Although the reference spectrum and the test spectra show 
close curve shapes, they have significant amplitude 
differences (Fig. 1). The reference spectral curve can be 
viewed approximately as the gain or offset of the test 
spectral curve. In Table 1, the SID of the test spectrum and 
the reference spectrum is small (0.0070–0.0079) and 
SIDmax/SIDmin = 1.1, thus indicating the small variation of 
SID. However, their ED is relatively high (1.4560–4.6367) 
and EDmax/EDmin = 3.2, thus indicating a significant ED 
difference. The information entropy of SID measure and ED 
measure are 1.5834 and 1.4154, respectively, thus indicating 
the greater divergence of the ED measure. This example 
reflects that measures based on shape features cannot reflect 
the amplitude difference characteristics. Kaolinite CM3 and 
Kaolinite CM9 pertain to the same type of spectrum; 
however, measures based on shape features only cannot 
classify them accurately. 
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Fig.1. Five spectral curves of Kaolinite CM3 and others. 
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Table1. ED and SID of Kaolinite CM3, Kaolinite CM9, and 
others 

Measure Test 
spectrum 

Reference spectra 
Entropy Kaolinite  

CM9 
Illite 

IL101 
Hydrogrossular 
MNH120555 

SID Kaolinite  
CM3 

0.0070  0.0075  0.0079  1.5834  

ED 2.1656  4.6367  1.4560  1.4154  

2.3 Spectral similarity measure methods based on 
amplitude features 
Spectral similarity measure methods based on amplitude 
features include ED, Manhattan distance (MD), and 
Chebyshev distance (CD). ED is the most common one. 
Furthermore, a support vector machine [19] that directly 
uses spectral amplitude is a spectral similarity measure 
method based on amplitude features.  
 
2.3.1 ED 
ED has two expressions: 
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 The result of Equation (22) is influenced by the 
component number of the spectral vector; however, such 
effect is eliminated in Equation (23). ED in Tables 1 and 2 is 
calculated by Equation (22). 
 
2.3.2 Calculation example 
This calculation example elaborates that the measure result 
based on spectral amplitude features is only related to 
amplitude features. This example also confirms that the 
measure result based on spectral amplitude features cannot 
reflect the differences in spectral shape features and the 
effect of spectral shape features on spectral similarity 
comprehensively. Data were collected from USGS 
mineral_beckman_430. Kaolinite CM5 was used as the test 
spectrum. Kaolinite CM9, Eugsterite GDS140, and 
Lepidolite HS167.3B were used as reference spectra (Fig. 2). 
SID was used for SFM and ED was used for AFM. 
Calculated results are shown in Table 2. 
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Fig.2. Five spectral curves of Kaolinite CM5 and others. 
 
 
Table 2. ED and SID of Kaolinite CM5, Kaolinite CM9, and 
others 

Measure Test 
spectrum 

Reference spectra 
Entropy Kaolinite  

CM9 
Eugsterite  
GDS140 

Lepidolite  
HS167.3B 

ED Kaolinite  
CM5 

2.009 2.0479 2.0544 1.5849 

SID 0.0084 0.0351 0.0287 1.3964 

 

 
 Fig. 2 reflects that the reference spectrum is close to the 
test spectrum in the overall distance; however, evident 
differences in shape features are observed between them. In 
Table 2, ED of the test spectrum and the reference spectrum 
varies within a small range (2.009–2.0544, EDmax/EDmin = 
1.02). However, their SID changes within a relatively wide 
range (0.008–0.0351, SIDmax/SIDmin= 4.2), thus indicating 
the significant differences in shape features between them. 
The information entropies of the ED and SID measures are 
1.5849 and 1.3964, respectively. This results shows that the 
ED measured result remains basically the same, whereas the 
SID measured result has high divergence. This example 
confirms that the spectral similarity measure based on 
amplitude features only cannot reflect the difference in 
shape features. The measure method involving amplitude 
features alone cannot accurately classify the spectrum. 
 
2.4 The spectral similarity measure by integrating SAF 
2.4.1 SSS 
SSS [10] combines ED and SCC. ED represents the 
amplitude features, and SCC represents the shape features. 
The calculation formula of SSS is expressed as follow: 

 
222 ),(ˆ),(),( RTRRTEDRTSSS +=               (24) 

 
where ED(T,R) is calculated by Equation (23), 22 1),(ˆ RRTR −=  , 
and R2 is the determination coefficient. SSS integrates shape 
and amplitude features and has high spectral identification 
accuracy. However, one index in SSS is easy to be drowned 
out by another one. When calculating the gain or offset of 
almost the same spectral curve, the SSS result only reflects 
the effect of ED(T,R)2. This result is almost equal to the 
similarity measure based on amplitude features. 
 
2.4.2 SPM 
SPM [11] integrates ED, SCC, and SID. ED is the amplitude 
features, whereas SCC and SID represent the shape features. 
The calculation formula of SPM is expressed as follows: 
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where ED(T,R) is calculated by Equation (23) and r is 
calculated by Equation (10). SPM still cannot avoid SCC 
being drowned out by ED when calculating gain or offset of 
almost the same spectral curves. 
 
2.4.3 NS3 
NS3 [12] combines ED and SAM. ED represents the 
amplitude features, whereas SAM represents the shape 
features. The calculation formula is: 

 
22 ))),(cos(1(),(ˆ),(3 RTRTARTNS θ−+=           (27) 

 
where ),(ˆ RTA  is the normalized ED. ED is calculated by 
Equation (23). As a general rule, (1-cos(SAM(T,R)))2 is far 
smaller than ),(ˆ RTA  , thus indicating that shape features will 
be drowned out by the amplitude features. 
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2.4.4 The proposed method for spectral similarity 
measure by fusing SAF 
To measure the difference of shape features between T and R 
accurately, spectral shape distance vector (S) is constructed. 
The definition of S can be expressed by the following: 
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where S depicts every component difference of the unit 
vectors of T and R. Thus, S can specifically reflect the shape 
feature differences between spectra. SAM, SID, SCC, SID-
SAM, SID-SCA, and JMD-SAM only represent the overall 
shape feature differences but cannot reveal the difference 
between spectral components.  
 To measure the amplitude features difference between T 
and R accurately, spectral amplitude distance vector A is 
constructed. Its definition has two expressions: 
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 The proposed fusing SAF is expressed as follow: 
 

ASRTSAFF ⋅=),(                                (32) 
 
where SAFF is the proposed method for spectral similarity 
measure by fusing SAF. Fusing SAF can be understood from 
the following three aspects: 
 
(1) Relationship between fusing SAF and ED 
When A is expressed by Equation (31) and ED is expressed 
by Equation (22), Equation (32) expresses the following: 
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where φ  is the generalized angle of S and A. From Equation 
(33), the value of SAFF is equal to the ED corrected by shape 
features. The correction factor is φcos|| ⋅S .  
 
(2) Relationship between fusing SAF and SID 
 When S is expressed by Equation (29), Equation (32) 
concludes that: 
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 From Equation (34), the value of SAFF(T,R)2 is equal to 
SID corrected by amplitude features. The correction factor is 

2)cos|(| φ⋅A . 
 
(3) Relationship of fusing SAF with ED and SID 
 When A is expressed by Equation (31), S is expressed by 
Equation (29), and ED is expressed by Equation (22), the 
following can be concluded from Equation (32): 
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 In Equation (35), the value of SAFF(T,R) is not the 
simple product of SID representing the shape features and 
ED that representing the amplitude features. SID and ED 
express the overall features of vectors, but cannot reflect 
relations between wavebands of T and R. φcos  reflecting 
band-wise relations between T and R.  
 According to Equations (33), (34), and (35), fusing SAF 
is different from SID and ED but also has a certain 
relationship with them. Compared with SID, ED, SSS, and 
SPM, fusing SAF can accurately reflect the relations 
between wavebands of T and R and has higher spectral 
identification accuracy. 
 The spectral similarity measure function SAFF meets the 
following three properties:  
 
(1) Non-negativity: SAFF (T, R) ≥ 0; 
(2) Reflexivity: SAFF (T, R) = 0 only when T = R; 
(3) Symmetry: SAFF (T, R) = FSAF (R, T). 
 
 
3. Test and Result Analysis 
 
3.1 Test method 
3.1.1 Evaluation methods of RSDPB and RSDE 
Given a known spectral library �, spectra R in � is used as 
the reference spectra. By using the spectral measure method 
M, the category or name of the test spectrum T can be 
determined. To evaluate M, Ref. [17] provided two methods: 
RSDPB and RSDE. 
 
(1) RSDPB 
RSDPB is used to calculate the possibility for determining 
the test spectrum T: 
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where ),( ⋅⋅M  is the similarity measure function; T is the 
test spectrum; R is the reference spectra; n is the total 
number of spectra in library �; )(, jpMT Δ is the possibility for 
M to determine T as a spectrum in the library �. 
 
(2) RSDE 
On the basis of the definition of entropy in information 
theory, the relative spectral identification entropy RSDE can 
be derived according to RSDPB: 
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 Where ),( ΔTH M

RSDE is the information entropy of T 
confirmed by the spectra in �. A smaller information 
entropy leads to a more concentrated possibility distribution 
for T to be confirmed by the spectra in �. Thus, T can be 
easily determined. Otherwise, such determination possibility 
is more scattered and T is more difficult to be determined. 
When ),( ΔTH M

RSDE
is close to n2log , the determination 

possibility of T by the spectra in � is almost equal, T cannot 
be determined. 
 RSDPB and RSDE are widely used. They provide 
references for evaluating spectral similarity measure 
methods. However, they assume that the measure method 
has good monotony and rationality to spectral similarity 
measure. Monotony means that with the increase in 
similarity, similarity measure decreases. Rationality means 
that measured result is fair to similarity. They can only 
evaluate discrimination of spectral identification of the 
method from numerical value distribution of measured 
results. Without judgment on whether the spectral matching 
results are correct, they cannot evaluate the spectral 
identification accuracy of the method. 
 
3.1.2 Kappa factor 
Cohen presented the Kappa factor in 1960 for evaluating 
classification result of hyperspectral images. The Kappa 
factor can establish an error matrix by statistics on 
classification image and actual image pixels, thus enabling 
the accurate verification of the classification of hyperspectral 
images. Its calculation formula is expressed as follows: 
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where P0 is the overall classification accuracy; Pe is the 
probability of obtaining the correct classification caused by 
accident; n is the number of types; N is the sample size; Pi is 
the sample size of the ith type that are classified accurately. 
When the classification image tends to be consistent with the 
actual image, the Kappa factor approaches one. The Kappa 
factor is relatively reliable because it is based on actual 
image classification. However, it has to conduct field 
surveys on actual surface types of hyperspectral images. 
 
3.1.3 Test method based on USGS mineral_beckman_430 
3.1.3.1 Reference spectral library 
A spectral library is a set of spectral data of various surface 
features reflection (or radiation) collected by hyperspectral 
imaging spectrometer under certain conditions. With the 
growing studies on development and application of 
hyperspectral technology, higher requirements on spectral 
library are proposed. Representative surface feature spectral 
libraries in the world mainly include USGS, JPL, JHU, 
IGCP264, ASTER, etc. In this paper, spectral similarity 
measure method was tested by using the USGS 
mineral_beckman_430, which covers 430 spectral curves of 
207 categories of minerals. The distribution of intra-category 
spectrum quantity is displayed in Table 3. The table shows a 
total of 300 spectra with intra-category quantity ≥2 and 148 
spectra with intra-category quantity≥5. All spectral data 
were measured on a calibrated Beckman5270 spectrometer. 

The spectral range of this Beckman5270 spectrometer is 0.2
–3.0 um. All spectral reflectance data were corrected to 
absolute reflectance.  
 Mineral category of spectra is introduced in the 
mineral_beckman_430, which provides references for 
judging spectral classification accuracy. This overcomes the 
shortage of RSDPB and RSDE that cannot evaluate spectral 
identification accuracy. Therefore, 207 categories of 
minerals in the mineral_beckman_430 are almost covering 
all common minerals, which reflect the high reliability of the 
evaluation. 
 
Table 3. Spectrum quantity of intra-category spectrum 
quantity in mineral_beckman_430 
intra-category 
spectrum quantity 1 2 3 4 5 6 7 8 9 

In-library 
spectrum quantity 128 74 30 48 35 30 7 16 18 

intra-category 
spectrum quantity 10 11 12 13 14 15 16 17 18 

In-library  
spectrum quantity 0 11 0 13 0 0 0 0 18 

 
 
3.1.3.2 Test spectra 
Test spectra were chosen from the mineral_beckman_430 
according to the following steps: 
 
(1) Set the mineral_beckman_430 as the spectra set S0. SID 
of spectra in S0 is calculated through cross-footing. Spectral 
curves with SID (S0, S0) ≤ 0.01 are chosen to form the 
spectra set S1; 
 
(2) Choose T from S1. T shall meet intra-category spectrum 
(SID (T, S0) ≤ 0.01) quantity ≥2 and spectrum (SID (T, S0) 
≤ 0.01) quantity in S0 ≥ 10. 
 
 A total of 38 spectral curves were chosen from S0, which 
form the test spectrum set T (Table 4). 
 
Table 4. Test spectra 

No. Name category 
8 Albite GDS30 Albite 
9 Albite HS143.3B Albite 

10 Albite HS324.3B Albite 
11 Albite HS66.3B Albite 
70 Calcite CO2004 Calcite 
71 Calcite HS48.3B Calcite 
72 Calcite WS272 Calcite 

154 Grossular WS483 Grossular 
155 Grossular WS484 Grossular 
156 Grossular WS485 Grossular 
215 Kaolinite CM3 Kaolinite 
216 Kaolinite CM5 Kaolinite 
261 Montmorillonite CM26 Montmorillonite 
262 Montmorillonite CM27 Montmorillonite 
266 Montmorillonite STx-1 Montmorillonite 
267 Montmorillonite SWy-1 Montmorillonite 
274 Muscovite GDS114 Muscovite 
276 Muscovite GDS117 Muscovite 
277 Muscovite GDS118 Muscovite 
278 Muscovite GDS119 Muscovite 
279 Muscovite GDS120 Muscovite 
388 Talc TL2702 Talc 
393 Topaz Cameron_Cone_#42 Topaz 
394 Topaz Crystal_Park_#2 Topaz 
395 Topaz Glen_Cove_#6 Topaz 
396 Topaz Glen_Cove_#8 Topaz 
398 Topaz Harris_Park_#17 Topaz 
399 Topaz Harris_Park_#3 Topaz 
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400 Topaz Harris_Park_#9 Topaz 
401 Topaz Jos_#22 Topaz 
402 Topaz Little_3_Mine_#41 Topaz 
404 Topaz Tarryalls_#4 Topaz 
405 Topaz Wigwam_Area_2_#12 Topaz 
406 Topaz Wigwam_Area_3_#13 Topaz 
407 Topaz Wigwam_Area_4_#14 Topaz 
408 Topaz Wigwam_Area_5_#15 Topaz 
409 Topaz Wigwam_Area_6_#16 Topaz 
410 Topaz Wigwam_Area_A_#10 Topaz 

 

 
3.2 Test results 
In this paper, SAM, SID, SCC, SID-SAM, SID-SCA, JMD-
SAM, ED, SSS, SPM, NS3, and fusing SAF were evaluated 
on the basis of the mineral_beckman_430. Among them, 
shape features (S) in fusing SAF were calculated through 
Equation (28) and amplitude features (A) in fusing SAF 
were calculated through Equations (30) and (31). Test results 
are shown in Table 5.  
 

 
Table 5. Test results of similarity measure methods 

Similarity measure methods 
Identification of test spectra Identified  

quantity 
Identification  

rate 

Mean  
identification  

rate 10 11 70 71 72 155 261 262 267 274 393 

SFM 

SAM √ × √ √ √ × × √ × √ √ 30 79% 

79% 

SID × × √ √ √ √ × √ × √ √ 30 79% 
SCC √ √ × √ √ √ × √ × √ √ 31 82% 

SID_TAN_SAM × × √ √ √ × × √ × √ √ 29 76% 
SID_SIN_SAM × × √ √ √ × × √ × √ √ 29 76% 
SID_TAN_SCA √ × √ √ √ √ × √ × √ √ 31 82% 
SID_SIN_SCA √ × √ √ √ √ × √ × √ √ 31 82% 

JMD_TAN_SAM × × √ √ √ × × √ × √ √ 29 76% 
JMD_SIN_SAM × × √ √ √ × × √ × √ √ 29 76% 

AFM ED √ × × × × × √ × √ × × 26 68% 68% 

Integrating 
SAF 

 

SSS √ × × √ √ √ √ √ √ √ √ 32 84% 

82% 
SPM × × √ √ √ × √ √ √ √ √ 31 82% 
NS3 √ × × × × × √ × √ × × 26 68% 

Fusing SAF (S1, A1) √ × √ √ √ √ √ √ √ √ √ 33 87% 
Fusing SAF (S1, A2) √ × √ √ √ √ √ √ √ √ √ 33 87% 

 
 For convenience, similar results of measure methods are 
omitted from Table 5. Five test spectra (No.8, 154, 156, and 
266) cannot be identified by all methods, and 23 test spectra 
(No.9, 215, 216, 276-388, and 394-410) that can be 
identified by all methods. Test results demonstrate that: 
 
(1) Spectral similarity measure based on shape features 
identifies 29–31 spectra, showing an identification rate of 
76%–82%, 79% in average. The overall identification 
accuracy is higher than the spectral similarity measure based 
on amplitude features but lower than that based on 
comprehensive shape and amplitude features. 
 
(2) Spectral similarity measure based on amplitude features 
identifies 26 spectra, showing an identification rate of 68%. 
Its overall identification accuracy is the lowest, thus 
indicating that amplitude feature-based identification is 
inferior to shape feature-based identification.  
 
(3) Spectral similarity measure based on comprehensive 
shape and amplitude features identifies 26–33 spectra, 
showing an identification rate of 68%–87%, 82% in average. 
The overall identification accuracy is higher than that based 
on shape features and amplitude features. 
 
(4) The proposed fusing SAF identifies 33 spectra, achieving 
an identification rate of 87%. It is confirmed having 
significantly higher spectral identification accuracy than in 
other methods. 

 
 
4. Conclusions 
 
According to definitions of shape features vector and 
amplitude features vector in this paper, spectral similarity 
measure methods are divided into SFM, AFM, and 
integrating SAF. The test results of spectral similarity 
measure methods based on the USGS mineral_beckman_430 
reveal that integrating SAF shows the highest mean 
identification accuracy, followed by SFM and AFM 
successively. 
 The discussed spectral similarity measure methods 
integrating SAF such as SSS, SPM, and NS3, neglect the 
relation between shape feature distance vector and amplitude 
feature distance vector. They only combine results of shape 
features and amplitude features; thus, significantly 
influenced by weights of shape and amplitude features. Any 
improper weight selection will lead to single shape measure 
or amplitude measure. For example, NS3 will obtain a result 
equal to the AFM under certain conditions.   
 Fusing SAF not only combines spectral shape and 
amplitude features, but also considers the relationship 
between shape feature distance vector and amplitude feature 
distance vector. Therefore, it achieves higher identification 
accuracy than SSS, SPM, and NS3, which is superior to a 
certain extent. 
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