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Abstract 
 

Biomedical event extraction is an important research topic in the field of biomedical text mining. However, much 
research work is required before event extraction systems become applicable. Thus, we proposed a novel and efficient 
approach for extracting nested biomedical events. First, using dependency parsing, we extracted the target sequences that 
contained biomedical entity (trigger/argument) chains. Second, the Condition Random Fields (CRFs) model was used to 
tag the entity chains which represented the nested argument-trigger edges. Thirdly, the post-processing step was used to 
output the events. This method is a new attempt to treat the biomedical event extraction as a sequence tagging problem. 
The experiment results showed that we got the performance of 47.3 in F-score which is promising when compared with 
the joint ML-based system in BioNLP-ST2013. Furthermore, we estimated the results of the trigger detection, which 
outperformed the state-of–the-art systems on the same corpus. Therefore, our work is a positive contribution to the 
biomedical text mining community. 
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1. Introduction 

Biomedical event extraction has become an important 
research topic in the field of biomedical natural language 
processing in recent years [1]. Biomedical events describe 
the fine-grained relations among biomedical entities. The 
biomedical literature contains substantial information 
regarding relations among biomedical entities, and these 
relations must be extracted to construct a knowledge 
database for researchers. This effort led to the BioNLP GE 
shared task (BioNLP-ST, hereafter) series [2-4], which aims 
to extract nested bio-molecular events from biomedical text. 
BioNLP-ST addressed nine types of biomedical molecular 
events related to protein biology. These events can be 
grouped into three categories: Simple, Binding, and 
Regulation. Simple events (Gene_expression, Transcription, 
Protein_catabolism, Phosphorylation, Localization) take one 
protein argument. Binding events (Binding) have one or 
more protein arguments. Regulation events 
(Positive_regulation, Negative_regulation and Regulation) 
have one obligatory Theme and one optional Cause 
argument. Each argument of Regulation events could be 
either a protein or another event. A Regulation event is 
considered nested if it has another event as its argument. A 
sample of an event annotation of a sentence (Sen.1) from 
training corpus is illustrated in Fig. 1. 

Sen.1: BMP-6 did not induce significant changes in the 
protein expression of Id2 and Id3. 

In this sentence, the trigger words are presented in bold 
font, whereas the protein arguments are expressed in 
underline font. In the definition of BioNLP09-ST [2], both 
triggers and arguments are called entities. In the upper 
textbox of the figure, proteins “BMP-6”, “Id2”, and “Id3” 
are labeled as T73, T74, and T75, respectively. In the lower 
textbox, T50 and T51 are two labels of triggers, and E27 and 
E28 are two events.  

Biomedical event extraction is a complex task that 
requires study before being applied. The complexity of event 
extraction rests on two aspects. First, the sentences in the 
biomedical literature are typically very complex. Second, 
many biomedical events are nested and are thus different 
from the event definition in the common field, such as the 
ACE2005 [5] event task. As shown in Fig.1, event E79 
contains the trigger word T169 and the protein argument 
T74. Meanwhile, event E79 is the argument of another event 
E76. Therefore, event E76 is a nested event while it is the 
argument of event E75. When multiple nested layers exist, 
extracting events becomes more difficult because errors in 
the lower layers could lead to errors in the upper layers. 

 
 

2. Related works 
To date, researchers have proposed many experimental 
methods to extract biomedical event based on
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BMP-6 did not induce significant changes in the protein expression of Id2 and Id3

Gene_expression/ThemePositive_regulation/Theme

Positive_regulation/Cause Regulation/Theme Gene_expression/Theme

T73 Protein 4993 4998 BMP-6
T74 Protein 5063 5066 Id2
T75 Protein 5071 5074 Id3

T167  Positive_regulation 5007 5013      induced
T168  Regulation 5026 5033 changes
T169  Gene_expression 5049 5059 expression
E75 Positive_regulation:T167 Theme:E76 Cause:T73
E76 Regulation:T168 Theme:E79
E77 Positive_regulation:T167 Theme:E78 Cause:T73
E78 Regulation:T168 Theme:E80
E79 Gene_expression:T169 Theme:T74
E80 Gene_expression:T169 Theme:T75  

Fig. 1. An example sentence with gold event annotations 

the datasets of BioNLP-ST. These approaches can be 
divided into two main groups: pipeline-based and joint. The 
first group [6–9] generally treats the event extraction 
procedure as a pipeline of multiple steps, i.e., identifying 
event triggers and then assigning their arguments. For this 
group, the errors from previous steps propagate into 
subsequent steps. To overcome this issue, the second group 
adopted joint learning models [10-13]. Using the joint model, 
Riedel S. et al. achieved the best F-score on BioNLP-
ST2011 [11]. The latest event extraction systems have 
likewise adopted the joint model [12] and have demonstrated 
good performance. However, joint models suffer from the 
complexity of inference [13]. To remain tractable, joint 
models usually need to represent the task in a simplified way, 
which makes certain features harder to capture. 

In this paper, we introduced a novel ML-based method 
based on the Condition Random fields (CRFs) model to 
extract biomedical events jointly. This method does not need 
complex inference and task decomposition, and it includes 
only three steps. First, basing on syntactic dependencies, we 
extracted the target sequences that contained entity chains. 
In the chain, the current entity acts as a trigger of the 
previous one and as argument of the next. Therefore, the 
entity chain was composed of nested argument–trigger pairs, 
as shown in Fig. 1. Event E79 contains the trigger word 
T169 and the protein argument T74, and the role of the 
argument is Theme. Meanwhile, event E79 is the argument 
of another event E76, and its role is Theme, and so on. Thus, 
the triggers in these nested events form a chain: 
“expression” << “changes” << “induce” (corresponding 
label sequence: T169 << T168 << T167). Second, the CRFs 
model was used to tag entity chains. Third, on the basis of 
the tagged entities chains, a pro-processing step was 
implemented to construct the nested events. When evaluated 
on the BioNLP-ST2013 dataset, our system performance 
achieved an F-score of 47.3, outperforming the baseline 
system that also used joint ML-based approach on BioNLP-
ST2013. In addition, we evaluated the results of the trigger 
detection subtask on the same corpus and obtained a 
promising improvement when compared with similar 
systems. 

 

3. Method 

The workflow of the biomedical event extraction system is 
shown in Fig. 2.  

Text preprocessing

Assigning the roles of 
the argument

Postprocessing to 
construct events

Input data

Extracting taget
sequences

Tagging the entity 
chains

 
Fig.2. Overview of the extracting system 
 
 
3.1 Pre-processing 
3.1.1 Constructing the trigger dictionary 
In our method, all of the words that have acted as triggers 
were called candidate triggers. For each trigger, we counted 
nine frequencies corresponding to the nine types. We also 
counted the frequency in which each candidate trigger acted 
as common words (not a trigger in the sentence) in the 
training data. On the basis of the candidate trigger list and 
their frequencies, the trigger dictionary was built. In the 
trigger dictionary, each item contains the candidate trigger, 
its lemma, the counted frequencies that the word appeared as 
event triggers, and the frequency that it appeared as common 
words. 
 
3.1.2 Replacing the protein names 
We replaced all the names of annotated protein entities with 
label “PROi”, where “i” represents the order that the 
annotated protein appeared in the text. If two labels were 
connected with each other by a comma or a conjunction 
(such as “PROi_ and PROj_”), we combined them and 
replaced the combination with one label. For example, if 
“PRO1, PRO2, and PRO3” appears in a sentence, it will be 
replaced with “PRO1_PRO2_PRO3_”. After this pre-
processing, these proteins will be treated as one word and 
obtain the same parsing result. This treatment plays positive 
contribution to the extraction because it combines the tokens 
that have the same semantics while it doesn’t change the 
syntactic structure of the sentence. The replacement for the 
example passage is shown in Fig.3(a).  
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Fig.3. Preprocessing of Sen.1 (a) Replacing the proteins with certain 
holders; (b) Parsing Sen.1; (c) Optimizing the parse output of the verb 
phrase. 
 
 
3.1.3 Parsing sentences and trimming the parse output 
Similar with other text mining approaches employing 
dependency parsing [14-16], the dependency graph or 
syntactic parse tree of a candidate sentence is known to carry 
valuable information for event extraction tasks. Our method 
also depends closely on the dependency parsing. Before the 
text was sent to the parser, we removed the sentences 
without annotated proteins and segmented the rest. The 
sentences containing protein entities were incorporated to 
Gdep, which is the parser for biomedical text. The parse 
output is shown in Fig.3(3). Although the Gdep parser is 
specific for biomedical text, some outputs are still inefficient 
in extracting the edge of trigger-argument. Thus, we 
trimmed the output of the parser for the extraction of the 
semantic dependency sequences. The optimization strategies 
include the following two steps: 

1) Re-assigning the head word of the verb phrase 

In the dependency structure shown in Fig.3(3), the root node 
(also head word of the verb phrase) is the word “did” and the 
dependency path from protein entity “PRO1_” to candidate 
trigger “induce” is “PRO1_>> did << induce”, where both 
“PRO1_” and “induce” depend on the word “did”. Here 
“A>>B” represents that “A” depends on “B” and “A<<B” is 
in reverse. Using our optimization strategies the head word 
of the verb phrase is “induce” and the dependency relation 
of the trigger-argument is “PRO1_ >> induce”, in which the 
two entities connect directly, as shown in Fig.3(4). 

2) Combining the predicative structure  

Most of the triggers are nouns, verbs, and adjectives, except 
for a few other parts of speech. In predicative structure, 
usually it is the adjective that acts as the trigger. However, in 
the dependency relation of the predicative structure, the 
adjective depends on the auxiliary verb, which is not 
intuitive to extract the entity chains. Therefore, we combined 
the adjective phrase into the verb phrase and assigned the 
adjective as headword of the new verb phrase. 
 
3.2 Extracting the target sequences 
In a nested biomedical event, the entities from the bottom 
(protein entities) to the top argument trigger form a chain. 

The entity in the middle of the chain is the candidate trigger 
of the previous entity, and it is the argument of the entity 
behind it. In the sentence dependency graph, most of the 
chains are contained on the dependency path from protein 
node to root. We extracted the target sequences based on the 
dependency parsing. 

For sen.1 in Fig.2(4), we extracted two sequences from 
the proteins to the root node as follows: 

Seq1: PRO1_>>induce 
Seq2:PRO2_PRO3_>>of>>expression>>in>>changes

>>induce 

In the target sequences Seq1 and Seq2 above, the words 
in bold are the trigger entities that should be extracted. The 
nested entity pairs in the sequences form the entity chains.  
However, although the majority of nested argument-trigger 
pairs are contained in the target sequences, some pairs 
contained in special syntactic structure, such as compound 
words and coordinate structures, will be omitted. 

For example as following passage: 

Sen.2: …to detect PRO1_-induced changes in the 
phosphorylation of PRO2_..... 

In the compound word “PRO1_-induced”, there is a 
trigger-argument pair (induced, PRO1_). It is necessary to 
decompose the compound word and extract the dependency 
sequences as follows: 

Seq3:PRO2_>>of>>phosphorlation>>in>>changes>
> induced>>detect 

Seq4: PRO1_>>induced 

Coordinate structure makes it difficult to extract the 
target sequences directly. In our experiment, it is necessary 
to split the coordinative constituent to extract the target 
sequences. Consider the following example: 

Sen.3: …PRO1_ induces proteasomal degradation of 
PRO2_ and inhibits PRO3_ activity… 

In this passage, the coordinated words “induces” and 
“inhibits” have the common subject which is the protein 
entity “PRO1_”. We split the coordinated structure and 
extracted the sequences as follows: 

Seq5: PRO1_>>induces 
Seq6: PRO1_>>inhibits 
Seq7: PRO2_>>of>>degradation>>induces 
Seq8: PRO3_>>inhibits 

  
3.3 Tagging the entity chains in the target sequences 
We used the conditional random fields (CRFs) model [17] to 
tag the trigger entity chains in the target sequences with the 
pre-defined labels. The CRFs were first introduced by 
Lafferty et al., which represented a form of undirected 
graphical model. CRFs provide a discriminative framework 
for building structured models to segment and label 
sequence data. Recently, there has been increasing interest in 
CRFs, with successful applications including text processing 
[18, 19] and bioinformatics [20]. Specifically, we use the 
CRF++ toolkit, which has been shown to be highly 
successful over various chunking tasks. The algorithm is 
described in the following paragraphs. 
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Assume that we have an input sequence of observations 
x = (x1, x2 …, xn), and a state variable y = (y1, y2, … , yn) 
that needs to be inferred from the given observations. Given 
x, the probability of a label sequence y determined by CRF 
model is calculated as follows 
 
 ))x(y,Fλexp(

x)Ζ
1λx,|p(y

j
jj∑(

=)        (1) 

 
where λj is the parameter to be estimated from training data 
and indicates the informativeness of the respective feature 
Z(x) is a normalization factor. Fj(y, x) in formula (1) is 
calculated as  
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where each fj(yi-1, yi, x, i) is a state function. 

In order to tag the entity chains, we defined label sets = 
{Gene_expression, Transcription, Protein_catabolism, 
Phosphorylation, Localization, Binding, Regulation, 
Positive_regulation, Negative_regulation, NONE}, which 
were composed of nine types of labels of the trigger/event 
plus the label “NONE”. The type labels were used to tag the 
triggers, and the label “NONE” was used to tag the common 
words in the dependency sequences. The features used in the 
CRFs model template were Lemma, POS (part of speech), 
dependency labels, and the relative position of a word in a 
sentence (left or right). 

For example, using our CRFs model, the dependency 
sequences Seq1 and Seq2 in section 3.2 were tagged with 
the sequences Tag1 and Tag2, as follows: 

 
Seq1: PRO1_>>induce 
Tag1: NONE>>Positive_regulation  
Seq2:PRO2_PRO3_>>of>>expression>>in>>changes

>>induce 
Tag2:NONE>>NONE>>Gene_expression>>NONE>>

Regulation>> Positive_regulation 
 
3.4 Revising the output of the CRFs 
After tagging, two steps were implemented to improve the 
output of the CRFs. In sequences extraction, some trigger 
entities can be contained by different dependency sequences. 
For example, both Seq5 and Seq7 contained the entity 
“induces”, which can be tagged as different labels. When 
CRFs tagged the same entity as different labels, we 
compared their probability values from CRFs and chose the 
label with higher marginal probability as the tagging result. 
In addition, ML-based approaches tend to classify all the 
data into the majority class [21, 22]. In biomedical texts, a 
candidate trigger often appears as a common word, so the 
entities tend to be tagged as “NONE” by the discriminative 
probabilistic CRFs model. Accordingly, we revised the 
output of CRFs by setting the marginal probability 
thresholds. The probability threshold P was learned from the 
developed data and obtained nine values related to nine 
types of triggers, as shown in Table 1. According the rule of 
revision, if the word is tagged as “NONE” and the second-

highest probability is larger than P, the tagger of this word 
should be corrected with the label corresponding to the 
second-highest probability. If the word is not in the 
dictionary, it should be ignored. 
3. 5 Post-processing to output the events 
Based on the dependency sequences and their label 
sequences above, we have extracted the entity pairs, their 
labels, and the role labels to form the event edge tetrads, 
shown as follows: 
 

 Positive_regulation(PRO1_, induce, Cause) 
 Gene_expression(PRO2_PRO3_, expression, Theme) 
Regulation(expression, changes, Theme) 
Positive_regulation(changes, induce, Theme) 
 
Based on the tetrads above, it is easy to construct the 

event output according to the format specification of 
BioNLP2013-ST. Simple events have only one Theme 
argument represented by proteins. The Binding events have 
one or more Theme arguments which are all proteins. The 
regulation events are the most complex because they have 
one obligatory Theme and one optional Cause argument. In 
addition, the argument of the regulation events could have 
the other events as their arguments. In a tetrad, if the first 
entity is a trigger, it must be a Regulation event or it would 
be removed. Based on the tetrads above, we obtained the 
formal event representation as follows: 

 
E1 Gene_expression:expression  Theme:PRO2_ 
E2 Gene_expression:expression  Theme:PRO3_ 
E3 Regulation:changes  Theme:E1 
E4 Regulation:changes  Theme:E1 
E5 Positive_regulation:induce  Theme:E4  

Cause:PRO1_ 
E6 Positive_regulation:induce  Theme:E5  

Cause:PRO1_ 
 
 

4 Experiments 
 
4.1 Data sets and evaluation criteria 
The BioNLP2013-ST dataset include training, development, 
and test data. The training set and the development set are 
prepared with the gold protein annotation and the gold event 
annotation given. The testing set is provided without the 
gold event annotation. Table 2 shows the statistics of 
training, development, and test datasets [4]. 
 
Table 2. Statistics of training, development, and test datasets 

Items Training Develop Test 
Articles 10 10 14 
Words 54938 57907 75144 
Proteins 3571 4138 4359 
Entities 121 314 327 
Events 2817 3199 3348 

 

Trigger types Gen Tra Pro Pho Loc Bin Reg Pos Neg 
P-thresholds 0.25 0.25 0.25 0.25 0.25 0.08 0.3 0.25 0.16 

Table 1. P-thresholds for each type of triggers 
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We adopted the Precision-Recall metric to evaluate the 
performance. Precision-Recall metric is defined as the 
following:  

RP
RPF

FNTP
TPR

FPTP
TPP

+
×=

+
=

+
= 2,,

 
 

Here P (Precision) is the ability of a system to present only 
relevant items; R (Recall) is the ability of a system to present 
all relevant items; and F (F-measure) is the harmonic mean 
of precision and recall.  
 
 4.2 Results 
Table 3 shows the results of our extraction method evaluated 
on the test dataset of BioNLP-ST2013. The performance of 
the method on test dataset was 47.3 F-score, which a 2.8 
point lower that of the development dataset. It achieved the 
best results on simple events (SIMPLE ALL), with the F-
score 73.47, followed by protein modification events 
(PROT-MOD ALL) with the F-score 67.04, and regulatory 
events (REGULATION-ALL) with the F-score 34.33. 
However, F-score of the binding events reached 42%, which 
is better than that of the development dataset. The difference 
may be attributed to the text materials chosen for the corpus. 
 
Table 3. Results on test dataset of BioNLP-ST2013 

Event Type recall prec. fscore 
Gene_expression 70.44 88.87 78.59 
Protein_catabolism 53.47         75.00 62.43 
Transcription 57.14    57.14 57.14 
Localization 35.34 85.00 49.94 
 [SIMPLE ALL]    63.99 86.25 73.47 
Binding 37.54      47.46 42.00 
Phosphorylation                73.12 74.03 73.57 
 [PROT-MOD ALL] 61.26 74.03 67.04 
Regulation                     17.36 23.67 20.03 
Positive_regulation 33.01 50.96 40.07 
Negative_regulation 24.52 38.94 30.1 
 [REGULATION ALL]        28.4 43.39 34.33 
 [EVENT TOTAL]            40.2 57.44 47.3 

 
Table 4 presents a comparison between the results of our 

method and the similar system. In BioNLP2013-ST, the 
participators adopted various methods to implement the task, 
including ML-based pipeline, Rule-based pipeline, Mixed-
pipeline, Joint pattern, and Joint ML. Among these systems,  
HDS4NLP[4] was the best system that adopted the joint 
ML-based method to extract the events. Similar to this 
system, our method adopted the ML-based method CRFs to 
tag the triggers and argument-trigger edges jointly. 

 
Table 4. Performance comparison with other systems in 
BioNLP-ST2013 

Event types Rec. Prec. F-
score Rec. Prec. F-

score 
SIMPLE ALL 75.27 83.27 79.07 63.99 86.25 73.47 

Binding 41.74 33.74 37.32 37.54 47.46 42.00 
PROT-MOD 

ALL 70.68 75.84 73.17 61.26 74.03 67.04 

REGULATION 
ALL 16.67 30.86 21.64 28.4 43.39 34.33 

EVENT ALL 37.11 51.19 43.03 40.2 57.44 47.3 
Systems HDS4NLP Ours 

 

 
The comparison results in Table 4 showed that our 

method obtained >4% improvement in overall F-score. Our 
method also showed significant advantages on the Binding 
and Regulation events. However, in the simple (SIMPLE 
ALL) and protein modification (PROT-MOD ALL) events, 
the F-scores were lower than HDS4NLP system. This result 
conformed to the method we adopted. According to the 
biomedical event definition, only Regulation events could be 

nested. Our approach is based on sequence tagging model, 
and is appropriate for tagging chains containing multiple 
entities. Accordingly, our method showed good performance 
on regulation types. 

In event extraction systems, the results of trigger 
detection could show the performance of event extraction in 
some extent. Recently, several approaches were proposed to 
focus on trigger detection subtask [23-25], which conducted 
experiments on BioNLP2009-ST corpus. Similar with these 
systems, we chose the BioNLP2009 training datasets as 
training sets, and the BioNLP2009-ST development datasets 
as test sets to implement the experiment. Also, we estimated 
the result of trigger detection on the BioNLP2013-ST. The 
experiment results and comparison with the state-of-the-art 
trigger detection systems are shown in Table 5. 

 
Table 5. Performance comparison of Trigger detection on 
BioNLP2009-ST datasets 

 Precision Recall F-score 

Zhang[23] 79.83 56.02 65.84 

Campos[24] 69.3 57.3 62.7 

Ours 76.56 61.22 68.03 
 

 
To test the robustness and reproducibility of this method, 

we also estimated the results on the dataset of BioNLP2013-
ST using the same model and parameters mentioned above. 
Different from the corpus of BioNLP2009-ST which were 
retrieved from PubMed abstracts, the data set of 
BioNLP2013-ST were composed of PubMed full papers. 
Table 6 shows the results of the experiment on 
BioNLP2013-ST corpora. We obtained the F-score of 71.33, 
which is higher than that of BioNLP-ST2009. This may be 
attributed to the text material of the corpus. The result shows 
that our method also performs better on full paper text 
materials.  
 
Table 6. Result estimation on the datasets of BioNLP2013-
ST 

 Precision Recall F-score 

Trigger detection 80.54 64 71.33 

 
4.3 Discussion 
In our event extraction system, we used the sequence 
tagging method based on CRFs model to tag the relations of 
the trigger and argument, which is a new research attempt in 
this field. The results showed that our method achieved 
overall improvement compared with the baseline system. 
Meanwhile, the performance of the complex events (Binding 
and Regulation) showed significant advantage. This 
improvement was benefited from the dependency sequences 
containing the entity chains. The entity chains were formed 
by nested argument-trigger pairs. Therefore, our method 
improved the results of the nested Regulation events 
distinctly. In these chains, the entities are the context for 
each other, thus, they could identify each other instead of 
transmitting errors. However, while this strategy of 
extracting the dependency sequences was helpful to enhance 
the precision, it also reduced the recall.  

In addition, there are several factors that affect the 
performance of the system. First, the performance of the 
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parser is important to our method. Because the key step in 
our method is to extract the target dependency sequences, 
the output of the parser is crucial. However, the accuracy of 
most dependency parser is below 90%, which affects the 
accuracy of the extraction of target sequences. If the output 
of the parser is incorrect, the target sequences are unreliable 
and we cannot grasp the correct entity chains. Second, the 
coverage of the target sequences is important for this method. 
However, the biomedical text often contains long and 
complex sentence structures which make the target 
sequences difficult to extract. Therefore, some omitted 
sequences containing entity chains affected the recall of the 
overall system. 
5. Conclusion 
 
We presented a joint inference approach to extract the 
biomedical event of BioNLP-ST13. This approach 
simplified the task of extracting complex structure with 
regard to sequence tagging. This treatment avoided the 

complex inference but kept the structure feature of the 
entities. Both dependency features and context features were 
contained in the target sequences, which made it possible for 
a common machine learning model to extract the complex 
semantic relations. The evaluation on BioNLP-ST2013 test 
corpora has shown that our system achieved good results 
comparable with the similar system of BioNLP-ST2013. For 
further studies, we plan to enhance the recall of the event 
extraction and resolve the anaphora in the text. Moreover, 
combining the outputs of multiple parsers may further boost 
performance. 
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