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Abstract 
 
The paper herein focuses on the dynamic response of a two-bogie vehicle to the excitations derived from the track 
vertical irregularities. The symmetrical and antisymmetrical modes due from the bounce and pitch motions of the axles’ 
planes in the two bogies are being considered. The analysis of the dynamic response in the vehicle relies on the response 
functions in three reference points of the carbody, composed by means of these response functions to the symmetrical 
and antisymmetrical excitation modes.   Similarly, the dynamic response of the vehicle to the track stochastic 
irregularities is examined and expressed as a power spectral density of the carbody vertical acceleration and the root 
mean square of the acceleration and the index of the partial comfort to the vertical vibrations is calculated. The paper is 
structured into two parts. The Part I includes all the theoretical elements required for the analysis of the dynamic 
response in the vehicle, while Part II introduces the results of the numerical analysis.  
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1. Introduction 

 
During running, the railway vehicle is subjected to a 
permanent behaviour of vibrations, mainly generated by the 
track geometrical irregularities [1]. The vehicle has to have 
the ability to limit the behaviour of vibrations to a level 
where the dynamic performance is not influenced [2]. The 
analysis of the dynamic response in the railway vehicle to 
the track geometrical irregularities is an important step in the 
investigation of the issues about the ride quality or the ride 
comfort [3 - 5]. 
 While running on a track with vertical irregularities, the 
axles make forced movements in a vertical plan, so that the 
plan of the axles in a bogie has a translation (bounce) and 
rotation motion (pitch) (fig. 1). For a two-bogie vehicle, the 
combination of the bounce and pitch motions in the plans of 
the axles of each bogie will result into the symmetrical and 
antisymmetrical motion modes of the plans of the vehicle 
axles (fig. 2 and fig. 3). Further on, these motions are 
conveyed to the suspended massed, via the suspension 
elements, thus exciting the symmetrical and antisymmetrical 
vibration modes of the railway vehicle in a vertical plan [6]. 
 

 
 
Fig. 1. The plan motions of the bogie axles: (a) bounce; (b) pitch. 

 
Fig. 2. The symmetrical motion modes of the planes of the vehicle’s 
axles: (a) symmetrical bounce; (b) symmetrical pitch. 
 

 
Fig. 3. The symmetrical motion modes of the planes of the vehicle’s 
axles: (a) antisymmetrical bounce; (b) antisymmetrical pitch. 
 

An important feature of the vertical vibrations in the 
railway vehicle is the geometric filtering effect of the 
excitation modes induced by the track vertical irregularities 
[3, 7 - 10]. As a matter of fact, this effect is the result of the 
movements between the vertical motions of the axles, which 
depend on the distance between the axles and on the 
velocity. As a consequence of the geometric filtering effect 
in the vehicle response, a series of minimum values will 
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occur, as an exclusive result of how the excitations derived 
from the track irregularities are transmitted to the suspended 
masses via the axles motions, irrespective of the suspension 
characteristics. Under certain conditions that are solely 
incidental to the wavelength of the track vertical irregularity 
and the distance between the axles, the axles plan can only 
have pitch motion, since the bounce motion is not conveyed 
to the bogie – the plan of the axles filter the bounce. 
Similarly, this plan can only perform bounce motions – in 
this case, the pitch motion is not transmitted to the bogie – 
the plan of the axles filters the pitch [11].   

The complexity degree of the vehicle model for studying 
the vertical vibrations is generally established in dependence 
on the precision required from the results. The more 
complex the model is, the closer the results are to reality, but 
it will be more difficult to draw general conclusions 
regarding the basic phenomena in the vehicle dynamics. 
Quality and even quantity results can be acquired based on 
‚rigid-body’ type simple mechanical models [12 -14]. 
Notwithstanding, the carbody modelling as a flexible body is 
necessary when the analysis of ride comfort is brought about 
[3 - 10, 16 - 18]. Even though the carbody structural 
vibrations are extremely complex [17, 19], the largest 
influence upon the dynamic behaviour of the vehicle comes 
from the first flexible vibration mode, whose frequency is 
included in the interval of interest for the vehicle vertical 
vibrations 0 ... 20 Hz [15, 20].   

The paper examines the dynamic response of the railway 
vehicle to the track vertical irregularities. For this purpose, 
the vehicle is represented by a discrete-continuous model, 
whose motions are described – upon the application of the 
modal analysis method – by two sets of four second-order 
ordinary differential equations, corresponding to the 
symmetrical and antisymmetrical vibration modes of the 
suspended masses. This paper focuses on the analysis of 
response functions in three reference points of the carbody, 
located at its centre and above the two bogies. They are 
defined by means of the carbody response functions to the 
symmetrical and antisymmetrical excitation modes; these 
functions include on their turn functions of partial response 
to the carbody movements for each of the 
symmetrical/antisymmetrical excitation modes given by the 
bounce/pitch in the plans of the axles. Similarly, the 
dynamic response of the vehicle to the track stochastic 
irregularities is examined and the root mean square of the 
acceleration and the comfort is calculated, using the relevant 
regulations [21 - 23].  

The paper is structured into two parts. The Part I 
includes all the theoretical elements required for the analysis 
of the dynamic response in the vehicle, while Part II 
introduces the results of the numerical analysis.   

 
 

2. The vehicle mechanical model  
 
To examine the vehicle response to the track vertical 
irregularities, the model in fig. 4 is taken into account. This 
is a four-axle vehicle, two suspension levels, travelling at a 
constant speed V along a prefectly rigid track with vertical 
irregularities. Such irregularities are described with the 
reference to each axle by functions hj,(j+1), with j = 2i - 1, for 
i = 1, 2, while mentioning that each bogie is equipped with 
the axles j and j+1. 

 

 
Fig. 4. The mechanical model of the vehicle/track system. 

 
 

The vehicle model includes a body with distributed 
parameters for the carbody and many rigid bodies for the 
two bogies (the suspended masses) and the four axles. These 
bodies are connected among them via Kelvin-Voigt type 
systems, which help to model the suspension levels.   

The carbody is represented by a free-free equivalent 
beam, with constant section and mass uniformly distributed, 
of Euler-Bernoulli type. The beam parameters are defined in 
terms of the carbody’, such as: L – beam length; ρc = mc/L – 
beam mass per length unit, where mc is the carbody mass; µ 
- structural damping coefficient; EI – bending modulus, 
where E is the longitudinal modulus of elasticity, and I is the 
area moment of inertia of the beam transversal section. 
There will be taken into account the carbody rigid vibration 
modes - bounce zc and pitch θc, and the first two carbody 
natural bending modes in a vertical plan (symmetrical and 
antisymmetrical). The carbody inertia reported to the rigid 
vibration modes is represented by mass mc and the mass 
moment of inertia Jc. 

The carbody movement w(x, t) comes from the 
superposition of the rigid vibration with the bending modes   
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where Tn(t), with n = 2, 3, the coordinates of the carbody 
natural bending modes (symmetrical and antisymmetrical), 
and Xn(x) is the eigenfunctions of the bending modes as in 
the relation  
 

 

Xn( x )= sinβnx + sinhβnx −

−
sinβnL− sinhβnL
cosβnL− coshβnL

(cosβnx + coshβnx )                    (2)                       

 
with 4 2 )/(EIcnn ρω=β   

and 
 

01coshcos =−ββ LL nn ,                                                       (3)                                                                                
 
where ωn is the angular frequnecy of the bending mode n. 

The bogies have two degrees of freedom: bounce zbi and 
pitch θbi, with i = 1, 2. Each bogie has the mass mb and mass 
moment of inertia Jb. The bogie wheelbase is 2ab, and the 
distance between the bogies axles is 2ac. 

The elastic and damping elements of the secondary 
suspension of each bogie are modelled via the Kelvin-Voigt 
system that operates on translation in the vertical direction, 
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with the elastic constant 2kzc, and the damping constant 2czc. 
The Kelvin-Voigt system positioned in the vertical direction 
at distance hc from the carbody neutral fiber and at distance 
hb from the bogie centre of gravity models the transmission 
system of the longitudinal forces between the carbody and 
the bogie. This has the elastic constant 2kxc and the damping 
constant 2cxc. The primary suspension corresponding to an 
axle is modelled by a Kelvin-Voigt system operating on 
translation in the vertical direction, with the elastic constant 
2kzb, and the damping constant 2czb. 
 
 
3. The vehicle motion equations 
 
The carbody vertical motions are described by the equations 
of the rigid vibration modes of the carbody and of the bogies 
– bounce and pitch, as well as by the equations of the first 
two natural bending modes of the carbody – symmetrical 
and antisymmetrical. 

The equation of motion for the carbody has the general 
form of  
 

  

EI ∂4 w( x,t )

∂x4
+ µI ∂5 w( x,t )

∂x4 ∂t
+
ρc ∂

2 w( x,t )

∂t2
=

= Fzciδ ( x − li )
i=1

2

∑ + hcFxci
dδ ( x − li )

dx
i=1

2

∑
,             (4)         

where δ(.) is the Dirac’s delta function, the distances li set 
the position of the carbody supporting points on the 
secondary suspension and Fxci and Fzci stand for the forces 
derived from the secondary suspension of the bogie i 
 

   
Fzci = −2czc

∂w( li ,t )
∂t

− !zbi
⎛
⎝⎜

⎞
⎠⎟
− 2kzc( w( li ,t )− zbi ) ;                            

(5)                                                         
 

   

Fxci = 2cxc hc
∂2 w( li ,t )
∂x∂t

+ hb
!θbi

⎛

⎝
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⎞

⎠
⎟⎟
+

+2kxc hc
∂w( li ,t )

∂x
+ hbθbi

⎛
⎝⎜

⎞
⎠⎟

.                           (6)                                                

 
 Upon the application of the modal analysis method and 
considering the orthogonality property of the eigenfunctions 
of the carbody bending modes, the equation of motion (4) is 
changed into four second-order differential equations with 
ordinary derivatives that describe the bounce, pitch, 
symmetrical and antisymmetrical bending carbody motions: 

 

   

mc!!zc = Fzci
i=1

2

∑ ;                                                                      (7)                  

 

   

Jc
!!θc = Fzci li −

L
2

⎛
⎝⎜

⎞
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i=1

2

∑ − hcFxci
i=1

2

∑ ;                                               (8)                                                                                                                 

 

   

mm2
!!T2 + cm2

!T2 + km2T2 = Fzci
i=1

2

∑ X2( li )− hcFxci
dX2( li )

dx
i=1

2

∑ .   (9)                        

                                

   

mm3
!!T3 + cm3

!T3 + km3T3 = Fzci
i=1

2

∑ X3( li )− hcFxci
dX3( li )

dx
i=1

2

∑          (10)                                                           

 

where mm2,3 is the modal mass, cm2,3 – modal damping and 
km2,3 – the modal stiffness corresponding to the first two 
natural bending modes of the carbody. They can be 
calculated via the below relations, for n = 2, 3: 
 

  

kmn = EI
d2 Xn

dx2
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d2 Xn
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d x
0

L

∫ ; 

  

mmn = ρc Xn
2 d x

0

L

∫ .                                                             (11)                                  

 
The equations describing the bounce and pitch motions 

of the bogies are: 
 

   

mb!!zbi = Fzbj, j+1
j=2i−1

2i

∑ − Fzci ,    (12)                                                            

  
with i = 1, 2 and j = 2i -1 ;  

 

   

Jb
!!θbi = ab (−1) j+1Fzbj

j=2i−1

2i

∑ − hbFxci ,    (13)                             

with i = 1, 2 and j = 2i - 1,  
 
where Fzbj,j+1 represent the forces due to the primary 
suspension corresponding to the axles j and (j+1), 
respectively 
 

   

Fzbj, j+1 = −2czb( !zbi ± ab
!θbi − !η j , j+1 )−

−2kzb( zbi ± abθbi −η j , j+1 )
.   (14)                         

 
The analysis of the dynamic response of the vehicle can 

be more easily done depending on the symmetrical and 
antisymmetrical motions in the system. To this purpose, the 
coordinates of the symmetrical motions are being introduced 

 

  
p1
+ = zc ;

  
p2
+ = T2 ;

  
p3
+ = 1

2
( zb1 + zb2 ) ;

  
p4
+ = 1

2
(θb1 −θb2 ) , (15)                                           

 
and of the antisymmetrical ones 
 

  
p1
− =θc ;

  
p2
− = T3 ;

  
p3
− = 1

2
( zb1 − zb2 ) ;

  
p4
− = 1

2
(θb1 +θb2 ) . (16)                                      

 
Similarly, the symmetrical excitation modes induced by 

the track vertical irregularities are entered   
 

 
η1
+ =

η1 +η2 +η3 +η4
4

;  
 
η2
+ =

η1 −η2 −η3 +η4
4

,  (17)                                                                           

while mentioning that +η1 corresponds to the symmetrical 

bounce of the axles’ planes, whereas 
 
η2
+  - to the 

symmetrical pitch of the same planes.   
Likewise, for the antisymmetrical excitation modes, it is 

written 
 

 
η1
− =

η1 +η2 −η3 −η4
4

; 
 
η2
− =

η1 −η2 +η3 −η4
4

,   (18)                                                           
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where 
 
η1
−  represents the excitation mode correlated with the 

antisymmetrical bounce of the axles’ planes and 
 
η2
−  - with 

the antisymmetrical pitch in the same planes. 
Based on the symmetry and antisymmetry properties of 

the eigenfunctions in the first two vertical bending modes of 
the carbody, the following notations can be introduced: 

 

  
ε+ = X2( l1 )= X2( l2 ) ;

  
ε− = X3( l1 )= −X3( l2 ) ;                (19)                                                                     

 

  
λ+ =

dX2( l1 )
dx

= −
dX2( l2 )

dx
;
  
λ− =

dX3( l1 )
dx

=
dX3( l2 )

dx
.  (20)                                                               

 
Upon using the above notations and adequately 

processing, the set comprising the equations (7) – (10) and 
(12) – (13), is decomposed into two independent four-
equations sets, which describe the symmetrical and 
antisymmetrical motions of the vehicle, 
 

++++++++ +=++ RηηPpKpCpM !!!! ;   (21)                                    
                                                         

−−−−−−−− +=++ RηηPpKpCpM !!!! ,    (22)                                                                                                   

where 
   
p± = [ p1

± p2
± p3

± p4
± ]T stand for the vectors of 

the motion coordinates and T
21 ]ηη[ ±±± =η - the vectors of 

the symmetrictial and antisymmetrical excitation modes. 
The matrices M+ and M- are the inertia matrices, in the 

form of   
 

   
M+ = diag( mc ,  mm2 ,  mb ,  Jb ) ;  

   
M− = diag( Jc ,  mm3 ,  mb ,  Jb ) . 

 
The damping matrices, noted as C+ and C-, write as 

below  
 

   

C+ =

4czc 4czcε
+ −4czc 0

4czcε
+ C1 −4czcε

+ 4cxchchbλ
+

−2czc −2czcε
+ C2 0

0 2cxchchbλ
+ 0 C3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
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⎦

⎥
⎥
⎥
⎥
⎥
⎥
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C− =

C4 C5 −4czcac 4cxchchb

C5 C6 −4czcε
− 4cxchchbλ

−

−2czcac −2czcε
− C2 0

2cxchchb 2cxchchbλ
− 0 C3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

, 

 
where the following notations were used  
 

  
C1 = cm2 + 4czc( ε+ )2 + 4cxchc

2(λ+ )2 ;  C2 = 4czb + 2czc ; 
 

  
C3 = 4czbab

2 + 2cxchb
2 ; 

  
C4 = 4czcac

2 + 4cxchc
2 ; 

 

  
C5 = 4czcacε

− + 4cxchc
2λ− ; 

  
C6 = cm3 + 4czc( ε− )2 + 4cxchc

2(λ− )2 . 
 

 The matrices K+ and K- are the stiffness matrices, written 
as   
 

   

K+ =

4kzc 4kzcε
+ −4kzc 0

4kzcε
+ K1 −4kzcε

+ 4kxchchbλ
+

−2kzc −2kzcε
+ K2 0

0 2kxchchbλ
+ 0 K3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

; 

 

   

K− =

K4 K5 −4kzcac 4kxchchb

K5 K6 −4kzcε
− 4kxchchbλ

−

−2kzcac −2kzcε
− K2 0

2kxchchb 2kxchchbλ
− 0 K3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

, 

 
with the subsequent notations: 
 

  
K1 = km2 + 4kzc( ε+ )2 + 4kxchc

2(λ+ )2 ;   K2 = 4kzb + 2kzc ; 
 

  
K3 = 4kzbab

2 + 2kxchb
2 ; 

  
K4 = 4kzcac

2 + 4kxchc
2 ; 

 

  
K5 = 4kzcacε

− + 4kxchc
2λ− ; 

  
K6 = km3 + 4kzc( ε− )2 + 4kxchc

2(λ− )2 . 
 

 In terms of the vectors P and R, they write as   
 

   

P =

0 0
0 0

4czb 0

0 4czbab

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

; 

   

R =

0 0
0 0

4kzb 0

0 4kzbab

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

. 

  
 

 
4. The vehicle response functions 
 
Further on, it is considered that the track vertical 
irregularities are in a harmonic shape with the wavelength Λ 
and amplitude η0. With the reference to each axle, the 
vertical irregularities of the track can be written as 
 

  
η1,2( x )=η0 cos

2π
Λ

( x + ac ± ab ) ; 

   
η3,4( x )=η0 cos

2π
Λ

( x − ac ∓ ab ) ,                                      (23)                                  

 
where Vtx = is the coordinate of the carbody centre. 

The functions ηj,j+1, with j = 2i – 1 for i = 1, 2, can be 
expressed as time harmonic functions  

 

  
η1,2( x )=η0 cosω t +

ac ± ab
V

⎛
⎝⎜

⎞
⎠⎟

; 

   
η3,4( x )=η0 cosω t −

ac ∓ ab
 V   

⎛
⎝⎜

⎞
⎠⎟

,                                        (24)  
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in which w = 2πV/Λ means the angular frequency induced 
by the track excitation. 

As for the vehicle response, this is assumed to be 
harmonic, with the same frequency as the track excitation 
induced frequency. The coordinates describing the 
symmetrical and antisymmetrical motions of the vehicle are 
written under the general form as 

 

 
pk
±( t )= pk

± cos(ωt +φk
± ) ,     (25)  

 
with k = 1÷4,  
 
where 

 
pk
±  is the amplitude, and 

 
φk
±  represents the phase of 

the coordinate k compared to the track vertical irregularities 
with respect to the vehicle centre. 

In addition, the complex values associated with the real 
ones, for i2 = -1:  

 
- for the track vertical irregularities with the reference to the 
axles 

 

  
η j , j+1( t )=η j , j+1e

iωt ,     (26)   

 
for j = 2i – 1 and i = 1, 2; 
 
- for the coordinates of the vehicle motions 

 

 
pk
±( t )= pk

±eiωt ,                                                                                                                 
(27)                                                                                                                                                               
 
where the complex amplitudes of the track irregularities with 
the reference to the axles are in the form of  
 

  
η1,2 =η0e

iω t+
ac±ab

V
⎛
⎝⎜

⎞
⎠⎟ ; 

   
η3,4 =η0e

iω t−
ac∓ab

V
⎛
⎝⎜

⎞
⎠⎟                     (28)                                                                                   

 
while the complex amplitude of the coordinate k writes as  

 

  
!pk
± = pk

±eiφk .                                                       (29)                                                                                                                                                              
 

Similarly, starting from relations (17) and (18), the 
below equations are  

 

  
η1,2
+ ( t )=

η1 ±η2 ±η3 +η4
4

eiωt = 1
4
η0H f 1,2

+ eiωt ;    (30)                                                                            

 

   
η1,2
− ( t )=

η1 ±η2 ∓η3 −η4
4

eiωt = 1
4
η0H f 1,2

− eiωt ;                 (31)                                                                                 

where  

  
H f 1,2

+ = e
iω

ac+ab
V ± e

iω
ac−ab

V ± e
−iω

ac−ab
V + e

−iω
ac+ab

V ;         (32)                                                              

  

   
H f 1,2

− = e
iω

ac+ab
V ± e

iω
ac−ab

V ∓ e
−iω

ac−ab
V − e

−iω
ac+ab

V .         (33)                                    

 
are the characteristics of geometric filtering effect of the 
symmetrical and antisymmetrical excitation modes. 

The vectors of the symmetrical and antisymmetrical 
excitation modes write as  

 

   
η+( t )=η0H f

+ eiωt =η0 [ H f 1
+ H f 2

+ ]T eiωt ;              (34)                                                                              

 

   
η−( t )=η0H f

− eiωt =η0 [ H f 1
− H f 2

− ]T eiωt ,            (35)                                                                            

 
where 

  
H f

±  is the column vectors of the geometric filtering 

effect characteristics in the symmetrical and antisymmetrical 
excitation modes.  

The vectors of the coordinates of the car body and bogies 
movement thus become: 

 

   
!p±( t )= !p± exp( iωt ) ,                           (36)                                                                                                                                            
 

where 
   
p± = [ p1

± p2
± p3

± p4
± ]T  is the vector of the 

complex amplitudes of the movements.  
The equations of motion (21) and (22) of the vehicle are 

as: 
 

   
(−ω 2M+ +K+ + iωC+ )p+ = ( iωP + R )η0H f

+ ;               (37)                                                                       

 

   
(−ω 2M− +K− + iωC− )p− = ( iωP + R )η0H f

− .               (38)                                                                 

 
Further on, the response functions of the vehicle to the 

track induced excitations can be established. The vector of 
the response functions to the symmetrical and 
antisymmetrical excitations will be calculated as below 

 

   
H+ = p+ / η0 ; 

   
H− = p− / η0 .                                             (39)                                                                                                                            

 
The relations above can be rewritten as 

 

  
H+ = H p

+H f
+ ; 

  
H− = H p

−H f
− ,     (40)                                                                                                                          

 
where 

   
H p

+ = [−ω 2M+ +K+ + iωC+ ]−1[ iωP + R ] can be 

named the matrix of the vehicle functions of partial response 
to the two symmetrical excitation modes, whereas 

   
H p

− = [−ω 2M− +K− + iωC− ]−1[ iωP + R ]  - is the matrix of 

the vehicle functions of partial response to the two 
antisymmetrical excitation modes. These two matrices are as 
below 
 

   

H p
+ =

H p11
+ H p12

+

H p21
+ H p22

+

H p31
+ H p32

+

H p41
+ H p42

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

;

   

H p
− =

H p11
− H p12

−

H p21
− H p22

−

H p31
− H p32

−

H p41
− H p42

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

.  (41)                                                                     

 
Based on the latest relations, the response functions of 

the vehicle carbody can be determined for the symmetrical 
and antisymmetrical excitation modes. Thus, the response 
function corresponding to the carbody bounce motion is 
given by the relation 

 

  
H1

+ = H p11
+ H f 1

+ + H p12
+ H f 2

+ ,    (42)                                                                                                                     
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where the functions of partial response for the carbody 
bounce motion excited by the symmetrical bounce of the 
axles’ planes,

  
H p11

+ , and by the symmetrical pitch of the 

axles’ planes, 
  
H p12

+ , can be found. 

The response function for the carbody symmetrical 
bending can be similarly calculated: 

 

  
H2

+ = H p21
+ H f 1

+ + H p22
+ H f 2

+ ,    (43)                                                                                                                           

where 
  
H p21

+  is the function of partial response 

corresponding to the carbody symmetrical bending excited 
by the symmetrical bounce of the axles’ planes, and 

  
H p22

+  - 

the function of partial response corresponding to the carbody 
symmetrical bending excited by the symmetrical pitch of the 
axles’ planes. 

In terms of the response functions of the vehicle carbody 
to the antisymmetrical excitation modes, they write as:  

- for the carbody pitch motion 
 

  
H1

− = H p11
− H f 1

− + H p12
− H f 2

− ;                            (44)                                                                                                                             

 
- for the car body antisymmetrical bending 

 

  
H2

− = H p21
− H f 1

− + H p22
− H f 2

− ,                                             (45)                                                                                                                     

 
where 

  
H p11

−  and 
  
H p12

−  stand for the functions of partial 

response that correspond to the carbody pitch motion excited 
by the antisymmetrical bounce and pitch of the axles’ 
planes; 

  
H p21

−  and 
  
H p22

−  are the functions of partial response 

correlated with carbody antisymmetrical bending excited by 
the antisymmetrical bounce and pitch of the axles’ planes. 

To calculate the response functions in any point of 
abscissa x, located on the carbody longitudinal axis, the 
relation below holds 

 

  
Hc = H1

+ + L
2
− x

⎛
⎝⎜

⎞
⎠⎟

H1
− + X2( x )H2

+ + X3( x )H2
− ,              (46)                                                                               

 
that can be applied for three carbody reference points, 
thence: 

 
- at the carbody centre,  

 

  
Hcm = H1

+ + X2( L / 2 )H2
+                                            (47)                                                                                                                                           

 
or  
 

  
Hcm = Hcmη1

+ H f 1
+ + Hcmη2

+ H f 2
+ ,                                      (48)                                                                                                 

 
where 
 

  
Hcmη1

+ = H p11
+ + X2( L / 2 )H p21

+                                      (49)                                                                                                             

 

is the function of partial response at the carbody centre to the 
excitation due to the symmetrical bounce of the axles’ 
planes, and   

 

  
Hcmη2

+ = H p12
+ + X2( L / 2 )H p22

+                                 (50)                                                                                                                          

 
is the function of partial response at the carbody centre to the 
excitation due to the symmetrical pitch of the axles’ planes; 
 

- above the bogies, 
 

  
Hcb1,2

= H1
+ ± acH1

− + X2( l1,2 )H2
+ + X3( l1,2 )H2

− ,               (51)                                                                           

 
or   
 

  

Hcb1,2
= Hcb1,2η1

+ H f 1
+ + Hcb1,2η2

+ H f 2
+ +

+Hcb1,2η2
+ H f 1

− + Hcb1,2η2
− H f 2

−
,                                 (52)                          

 
where the notations below 

 

  
Hcb1,2η1

+ = H p11
+ + X2( l1,2 )H p21

+ ;                             (53)                                                                                       

 

  
Hcb1,2η2

+ = H p12
+ + X2( l1,2 )H p22

+ ,                                       (54)                                                                                                        

 
are the functions of partial response of the carbody above the 
bogies to the excitation coming from the symmetrical 
bounce and symmetrical pitch, respectively, of the axles’ 
planes, and    

 

  
Hcb1,2η1

− = ±acH p11
− + X3( l1,2 )H p21

− ;                               (55)                                                                                                           

 

  
Hcb1,2η2

− = ±acH p12
− + X3( l1,2 )H p22

− ,                                  (56)                                                                                               

 
are the functions of partial response of the carbody above the 
bogies to the excitations due to the antisymmetrical bounce 
and pitch of the axles’ planes. 

In dependence on the symmetry and antisymmetry 
properties of the natural functions of the symmetrical and 
antisymmetrical carbody bending and according to relations 
(19), the partial response functions of the carbody in the 
points above the bogies write as  

 

  
Hcbη1

+ = Hcb1η1
+ = Hcb2η1

+ = H p11
+ + ε+H p21

+ ;   (57)                                

                                                  

  
Hcbη2

+ = Hcb1η2
+ = Hcb2η2

+ = H p12
+ + ε+H p22

+ ;   (58)                                                                       

 

  
Hcbη1

− = Hcb1η1
− = −Hcb2η1

− = acH p11
− + ε−H p21

− ;   (59)                                                                    

 

  
Hcbη2

− = Hcb1η2
− = −Hcb2η2

− = acH p12
− + ε−H p22

− .   (60)                                                                             

 
According to the latest notations, relation (52) becomes 

 

  
Hcb1,2

= Hcbη1
+ H f 1

+ + Hcbη2
+ H f 2

+ ± Hcbη1
− H f 1

− ± Hcbη2
− H f 2

− . (61)                                            
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5. The vehicle dynamic response to the track stochastic 
irregularities 
 
Further on, the track vertical irregularities are considered to 
represent a stationary stochastic process, which can be 
described via the power spectral density. The theoretical 
curve of the power spectral density is representative for the 
average statistical properties of the European railway, as in 
the relation [21] 

 

  
S(Ω )=

AΩc
2

(Ω 2 +Ωr
2 )(Ω 2 +Ωc

2 )
,                                        (62)                                                                                                                              

 
where Ω is the wavelength, Ωc = 0.8246 rad/m, Ωr = 0.0206 
rad/m, and A is a coefficient depending on the track quality. 
For a high level quality track, A = 4.032⋅10-7 radm, whereas 
for a low level quality, the coefficient A is 1.080⋅10-6 radm. 

As a function of the angular frequency ω = VΩ, the 
power spectral density of the track irregularities can be 
written as in the general relation 

 
 G(ω )= S(ω / V ) .                                                (63)                                                                                                                                                             
 

What results is the power spectral density of the track 
irregularities in the form of  

 

  
G(ω )=

AΩc
2V 3

[ω 2 + (VΩc )2 ][ω 2 + (VΩr )2 ]
.                (64)                                                                                                         

 
Starting from the response functions of the vehicle 

carbody and the spectrum of the track irregularities, the 
power spectral density of the carbody vertical movement is 
calculated, as in the general relation 

 

  
Gc = G(ω ) Hc

2 .                                                     (65)                                                             
                                                                                                

Upon applying the above equation, the result will be the 
power spectral density in the reference point at the carbody 
centre and in the points above the bogies, respectively: 

 

  
Gcm = G(ω ) Hcm

2 ;
  
Gcb1,2

= G(ω ) Hcb1,2

2
.          (66)  

 
 The power spectral density of the carbody acceleration is 
established from the below equation: 

 

  
Gca =ω 4G(ω ) Hc

2 ,                                (67)                                                                                                                                                    
 
which can be also written for the three reference carbody 
points by a suitable replacement of the response functions 
with the particular relations in the previous section.  

Based on vehicle dynamic response, expressed in the 
form of the power spectral density of the carbody 
acceleration, the root mean square acceleration and the 
comfort index can be further calculated, values that count in 
evaluating the ride quality and the ride comfort. 

 
 
6. Evaluating the ride quality and ride comfort  
 
The ride quality in a railway vehicle is evaluated by means 
of the acceleration root mean square [22]. Starting from the 
power spectral density of the acceleration, the root mean 
square of the carbody vertical acceleration can be 
established via the formula 

 

  

ac =
1
π

Gca dω
0

∞

∫ .                                                            (68)                                                                                                                                                       

 
To evaluate the ride comfort in the vertical direction, the 

partial comfort index is used, which is calculated with the 
relation [23] 

 

  
N MV = 6ac95

Wab .                                                      (69)                                                                                                                                                        
 
where ac is the root mean square of the vertical acceleration, 
95 refers to the quantile of order 95%, and Wab = Wa⋅Wb 
represents the weight filter of the accelerations in the vertical 
direction.  
 

 
 

Fig. 5. The transfer functions of the weighting filters: (a) for filter Wa; 
(b) for filter Wb. 
 
 The filter Wa is a band-pass type filter, with the 
following transfer function (fig. 5, (a)) 

 

  

Ha( s )=
s2 2π f2( )2

s2 +
2π f1
Q1̀

s+ 2π f1( )2⎡

⎣
⎢

⎤

⎦
⎥ s2 +

2π f2
Q1

s+ 2π f2( )2⎡

⎣
⎢

⎤

⎦
⎥

, (70)                                                          

 
with  f1 = 0.4 Hz, f2 = 100 Hz and Q1 = 0.71.   

The weighting filter Wb, which takes into account the 
higher human sensitivity to the vertical vibrations within the 
frequencies ranging from 3 to 13 Hz, has the transfer 
function in the form of  (fig. 5, (b)) 

 

  

Hb( s )=
s+ 2π f3( ) ⋅ s2 +

2π f5
Q3

s+ 2π f5( )2⎡

⎣
⎢

⎤

⎦
⎥2πKf4

2 f6
2

s2 +
2π f4
Q2

s+ 2π f4( )2⎡

⎣
⎢

⎤

⎦
⎥ s2 +

2π f6
Q4

s+ 2π f6( )2⎡

⎣
⎢

⎤

⎦
⎥ f3 f5

2

 (71)                                        

 
where f3 = 16 Hz, f4 = 16 Hz, f5 = 2.5 Hz, f6 = 4 Hz, Q2 = 
0.63, Q4 = 0.8, K = 0.4 and s = iω (with i2 = -1).   
 When adopting the hypothesis that the vertical 
accelerations have a Gaussian distribution with the null 
mean value and considering the relation (68) to calculate the 
root mean square acceleration, the following relation for the 
comfort index is derived 



M. Dumitriu/Journal of Engineering Science and Technology Review 8 (4) (2015) 24 - 31 
 

 31 

 

  

N MV = 6Φ−1( 0,95 ) 1
π

Gca Hab
2

dω
0

∞

∫ ,   (72)                                                                                                

where   Φ
−1( 0,95 )  represents the quantile of the standard 

Gaussian distribution with the probability of 95%.  
 
 
7. Summary 

 
The Part I of this paper includes the mechanical model of the 
vehicle and the equations of motion, the response functions, 
as well as the theoretical elements required for the analysis 
of the dynamic response of the railway vehicle to the track 
vertical stochastic irregularities. 

To study the vertical vibrations of the vehicle, this is 
represented via a discrete-continuous model with eight 
degrees of freedom. The excitation modes induced by the 
track vertical irregularities come, on the one hand, from the 

symmetrical bounce and pitch of the axles’ planes – the 
symmetrical excitation modes – and, on the other hand, by 
the antisymmetrical bounce and pitch of the axles’ planes – 
the antisymmetrical excitation modes. The equations of 
motion are as such processed that the symmetrical and 
antisymmetrical motions of the vehicle be described via two 
independent sets of equations.  Similarly, the response 
functions of the vehicle carbody are separately established 
for the symmetrical and for the antisymmetrical excitation 
modes. They include the partial response functions for the 
carbody movements for each of the four excitation modes. 
These functions serve as a basis of calculation for the 
response functions in three reference points of the carbody – 
at the centre and above the two bogies. 

The dynamic response of the vehicle to the track 
stochastic irregularities is in the form of the power spectral 
density of the carbody acceleration, based on which the 
evaluation quantities of the ride quality and ride comfort – 
the root square mean of acceleration and comfort index – are 
calculated.  

 
_____________________________ 
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