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Abstract 
 

The main gas path components, namely compressor and turbine, are inherently reliable but the operation of the aero 
engines under hostile environments, results into engine breakdowns and performance deterioration. Performance 
deterioration increases the operating cost, due to the reduction in thrust output and higher fuel consumption, and also 
increases the engine maintenance cost. In times when economic considerations dominate airline operators’ strategies, 
carrying out unnecessary rectification, can be very costly and time consuming. In an attempt to minimize such 
unexpected circumstances, having detailed knowledge prior to any inspection will allow the gas turbine user to take some 
of the maintenance action when it is necessary. Advanced engine-fault diagnostics tools offer the possibility of 
identifying degradation at the module level, determining the trends of these degradations during the usage of the engine, 
and planning the maintenance action ahead. 
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1   Introduction 
 
The performance of an aircraft gas turbine is highly 
dependent on the aerodynamics and thermodynamics of 
every single component due to its complexity as a machine. 
The main gas path components, namely compressor and 
turbine, are inherently reliable but the operation of the aero 
engines under hostile environments, such as varying 
conditions of load, temperature and speed, and the cycle 
sensitivity to component degradation, results into engine 
breakdowns and performance deterioration [1-6]. The effect 
of component degradation is that the efficiencies and 
capacities of these get changed, and in order to determine the 
degradation level, it is required to estimate the level of 
changes in efficiency and capacity [1,7,8]. Performance 
deterioration is inevitable; increases engine maintenance 
cost and ultimately affects the safety of the engine, the 
aircraft and the crew. A deteriorated engine also increases 
the operating cost, due to the reduction in thrust output and 
higher fuel consumption. In order to keep the same thrust 
level of a clean engine, the engine reaches higher spool 
speeds and running temperatures that shorten the life span of 
various components.  
 In times when economic considerations dominate airline 
operators’ strategies, carrying out unnecessary rectification, 
such as replacing a fine or not taking action to a faulty 
component, can be very costly and time consuming. In an 
attempt to minimize such unexpected circumstances, having 
detailed knowledge prior to any inspection will allow the gas 
turbine user to take some of the maintenance action when it 

is necessary, reducing downtime and increasing the 
availability of the engine. Maintenance action is the process, 
to ensure that the gas turbine systems continually perform 
the intended function, at its designed level of reliability and 
safety. These condition monitoring systems, examples are 
described in [9,10], gather measurements data periodically 
from the engine instrumentation in service and then process 
information that can optimize both the subsequent operation 
of the gas turbine and the maintenance, repair and overhaul 
[11]. Advanced engine-fault diagnostics tools offer the 
possibility of identifying degradation at the module level, 
determining the trends of these degradations during the 
usage of the engine, and planning the maintenance action 
ahead. Therefore the purpose of monitoring systems is to 
extent to which it can enable the proper deduction of engine 
faults and minimize the total life cycle costs [88-96]. 

 
 
2 Physical Faults 

  
It is useful to examine a number of physical faults that may 
exist in the gas path of the gas turbine, affecting seriously 
the component and therefore the overall performance of the 
engine. The physical faults presented in Table 1 and 
discussed in details. 
 Fouling: Fouling is one of the commonest causes of 
performance reduction encountered by users of gas turbines 
[4,12] and can count for more than 70% of the performance 
loss during operation [2]. Particular contaminants (dirt, dust, 
oil, pollen, salt etc.) have the tendency to stick to the airfoil 
surface and change the aerofoil inlet angle, aerofoil shape, 
increase surface roughness and narrowing airfoil throat 
aperture [2], causing the degradation of gas path 
components’ pumping capacity and efficiency [13]. The 
decrease in mass flow will result in a decrease in thrust 
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necessitating an increase in the rotational speed to maintain 
a required thrust level, while the decrease in isentropic 
efficiency will cause an increase in TET [2,3,14] and SFC, 
thereby reducing the engine life and increasing the engine 
operating costs. Performance deterioration due to fouling is 
recoverable by cleaning/washing; when the mass flow 
decreases by approximately 2.5% [2]. 
 
Table 1. Effect of physical faults on components’ 
performance 

 
 

  
 Corrosion: The chemical reaction between flow path 
components and contaminants that enters the gas turbine 
with the inlet air, fuel or injected water/stream, causes 
corrosion that is the loss of material from those gas path 
components [2]. Turbine blades are more susceptible to 
corrosion due to the presence of combustion products and 
elevated temperatures. The effect of corrosion is quite 
similar to the effect of erosion, since there is a loss of 
material, increase of surface roughness that leads to 
reduction of the component performance and isentropic 
efficiency. An effective protection from corrosion attack and 
subsequent loss of performance for both compressor and 
turbine is through coating. 
 Erosion: Operators flying in sandy or dusty 
environments suffer from the phenomenon of erosion. Most 
of the ingested dust particles in a desert environment are 
found to have sizes of 0-1000 µm [15]. Erosion is caused by, 
the abrasive removal of material from the gas path 
components by hard particles suspended in the air stream. 
Erosion leads to increased blade surface roughness, blade 
tip, seal clearance and changes in the inlet metal angle, 
airfoil profile, throat opening and blade surface pressure 
distribution. In compressors due to pressure loss, there is 
drop of mass flow capacity and component efficiency [3,16]. 
In turbines there is a drop in efficiency but due to larger 
passing area, flow capacity increases and less back pressure 
produced on the compressor [17]. In contrast to the case of 
fouling erosion is non-recoverable by washing or cleaning. 
 FOD: FOD is the result of a body striking the internal 
surfaces of the gas path components of the gas turbine. The 
origin of such particles can be via fan section, with air or 
broken particles from the engine inside being carried 
downstream [12]. A small dent or nick to the leading edge of 
attacked blades can cause a stress concentration that may 
develop into a fatigue crack and threaten the integrity of the 
blades and therefore the whole engine. The impact of larger 
object damage increases the throat area, altering the surface 
roughness and resulting reduction in both flow capacity and 
efficiency. 
 Air leakage: Air leakage on gas turbines refers to the 
leak of a duct or other mechanical containment of the engine 
(e.g. compressor), to the outer environment. 
 Rubbing wear: Rubbing wear is the removal of material 
from the rotor blade tips and knife edges seal, due to contact 

between static and rotating parts that happens in both 
compressors and turbines. 
 Hot end component damage: The very high temperatures 
in turbines can eventually cause damage at the trailing edges 
of the NGVs and rotor blades, because these parts are thin 
and difficult to cool. 
 Labyrinth seal damage: The damage to the seals e.g. due 
to aging, increases the internal leakage between the 
discharge and suction side of the compressors and turbines. 
 Increase tip clearance: Typical reason for the increased 
tip clearance is the thermal expansion. This effect can be 
accentuated by casing and shaft distortion, which is 
susceptible to high G loadings during combat flight 
maneuvers, as well as to turbulence and heavy landings. 

Seal erosion: Any wear in the seals results in localized 
heating and an increase in compressor bleed air. 

 
 

3 Diagnostic Methods 
 

3.1 Gas Path Analysis (GPA) 
Gas Path Analysis (GPA) pioneered by Urban 
[18,19,52,53], is used to assess the condition of individual 
engine components based, on the aero-thermodynamic 
relationships that exist between the component and direct 
measurements of gas path parameters [49]. The theory 
behind this relationship is shown in the conceptual 
framework in Fig.1 which can be summarised by: The 
presence of a primary gas-path physical fault induces 
change in the component characteristic that shows up a 
deviation of the measurable parameters from the baseline 
conditions [12]. Therefore, the purpose of the GPA is to 
detect, isolate and quantify the gas path components faults 
that have observable impacts on the measurable variables 
with the hope that will facilitate the subsequent isolation of 
the underlying physical fault [83-87]. 
 

 
Fig. 1. GPA Principle Engine 
 
 In an arbitrary gas-turbine configuration, the 
mathematical relationship between dependent and 
independent parameters is expressed analytically in Eq.1 
[12]: 
 

                                                                   (1) 
 
Linear GPA 
To simplify the non-linear relationship between components 
and measurable performance parameters, a linear 
approximation is introduced and can be expressed in matrix 
form, based on the assumption that the changes in the health 
parameters are very small and an operation point (e.g. 
maximum power or cruise) is selected. Given a steady state 
operating point, there is no deviation from standard ambient 
and nominal operating conditions, and so the measurement 



Ε. L. Ntantis  and P. N. Botsaris/ 
Journal of Engineering Science and Technology Review 8 (4) (2015) 64- 72 

 
 

66 

values depends only on the health condition of engine 
(neglecting any effect of measurement noise and bias).  
 

 
 

The health parameters deviation can be calculated by the 
inversion of the ICM matrix, named as “Fault Coefficient 
Matrix” (FCM) by using Eq.2:   
 
                                                             (2) 
 
ICM inversion to FCM is dependent on the number of 
performance parameters that should be less than or equal to 
the number of measurements, otherwise estimation 
techniques should be used. The whole basis of this linear 
GPA method is the assumption that the ICM is invertible 
and the measurements are noise-free. Investigation of the 
newer techniques, each with an ability to take into account 
the noise and possible sensor bias, while preserving the non-
linearity of the behaviour, led to the development of engine 
diagnostics based on optimisation techniques [80]. 
 
Non-linear GPA 
The assumption of linearity becomes increasingly false, 
when deteriorations cause the engine to operate further away 
from the condition for which the matrix was calculated [20]. 
The development of non-linear GPA addresses the non-
linear nature of Eq.1 and provides a significant advantage on 
the severe limitations of linear GPA models.  The non-
linearity of the engine thermodynamic behaviour is taken 
into account, by using the Newton-Raphson iterative 
technique, where linear prediction process is applied 
iteratively, until a converged solution is obtained [11].  
 

 
Fig. 2. Non-linear diagnostic model [47] 
 
 
Fig.2 demonstrates the idea of the non-linear model based 
method. The real engine component parameter vector x 
determines engine performance represented by the 
measurement vector z. With an initial guessed parameter 
vector  the model engine provides a predicted performance 
measurement vector . An optimisation approach is applied 
to minimise an objective function, which describes the 
relative difference between the predicted measurement 
vector  and the actual measurement vector z. A 
minimisation of the objective function is carried out 
iteratively until diagnostic error e from the iteration process 
is very small and thus the best predicted engine component 
parameter vector is obtained.  
 

 

 In particular, the convergence process is completed when 
Root-Mean-Square (RMS) is equal or lower to the 
convergence criteria δ [27]. The convergence criterion δ is a 
very small number, around 0.01 or less, and is being used 
through all the non-linear GPA calculations. However, this 
advantage comes at the expense of an increased 
computational time, due to the number of iterations required 
in order to get satisfactory result.   
 

 
 
Fig.3 illustrates the improvement on the accuracy of 
predicted deviation of component parameters on using non-
linear over linear. For the non-linear technique, the exact 
solution is found much higher than the solution obtained by 
linear GPA.  
 

 
 

Fig.3. Prediction of component parameter with linear and non-linear 
GPA [21] 
 
3.2 Kalman Filters 
In 1960, Kalman published a recursive solution to the 
discrete data linear filtering problem [22] and in 1961, 
Kalman and Bucy followed up a paper on the continuous-
time version [23]. The filter was finally called the Kalman 
Filter, although Shet and Rao argued that it is an algorithm 
rather than a filter [24].  Kalman Filter (KF) is an optimal 
recursive data processing algorithm, used in order to provide 
an estimation of the health of the engine components in 
presence of measurement noise and sensor bias [22,25,26]. 
A KF processes all available measurement data regardless of 
their precision, plus prior knowledge about the system and 
measuring devices, to produce an estimate of the desired 
variables in such a manner that the error is minimized 
statistically [81]. After a run of a number of candidate filters 
many times for the same application, the average results of 
the KF would be better than the average results of any other 
[54-58].  

 
Fig. 4. Typical application of the Kalman Filter 

 
 

The linear algorithm of KF based on two mechanisms: 
 

§ Prediction: This step is used to propagate the 
internal state of the system. At time step k, the 
filter predicts the value of the internal state vector 
at the next time step k+1. 

§ Correction: This step is responsible for fine-tuning 
the prediction step under the influence of external 
observations. At time k+1 when an actual 
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measurement is available, the filter corrects itself 
based on the prediction error. This correction is 
done by minimizing the error covariance. 

 
Although, the Kalman Filter is a successful method for 
tracking and estimation, its application to non-linear systems 
can be difficult. Bearing in mind that, most of applications 
of interest the system dynamics and observation equations 
are non-linear, a suitable extension to the KF has to be 
sought. The most common approach to non-linear systems is 
the Extended Kalman Filters (EKF) and the Iterated 
Extended Kalman Filters (IEKF) [59-61]. The EKF and 
IEKF apply to non-linear systems by simply linearising all 
the non-linear models so that the traditional linear KF 
equation can be applied. However both produce biased and 
sub-optimal estimates, due to the linearization of the 
functions which leads to a low accuracy estimation. 
 
3.3 Genetic Algorithms 
First pioneered by H.J Holland in the 1960 at University of 
Michigan, Genetic Algorithms (GA) has been widely 
studied, experimented and applied in many engineering 
fields. The basic concept of GA is designed to simulate 
processes in natural system necessary for evolution, 
specifically those that follow the principles first laid down 
by Charles Darwin of survival of the fittest. The GAs is 
applied as an effective optimization tool to obtain a set of 
components parameters that produce a set of predicted 
dependent parameters, through a non-linear gas turbine 
model that leads to predictions which best match the 
measurements [20,48]. The solution is obtained when an 
objective function which is a measure of difference between 
predicted and measured parameters, achieves its minimum 
value [78,79]. 

A diagnostic algorithm based on GA is 
implemented as a computer simulation in which a 
population of abstract representations (called as genome or 
the genotype or chromosomes) to an optimisation problem   
fitness is associated to the value of one.  
 

                    (3) 

 

 
Fig. 5. The objective function [48] 

 
 
The GA is operating over a wide number of iterations, each 
one of them consists, the following fundamental [20,47,48]: 

§ A selection is a process where stings are assessed 
according to a ‘survival of the fittest’ criterion and 
selectively copied to be used in the next 
generation. 

§ A crossover is a process that permits information 
exchange between strings in the form of swapping 
of parts of the parameter vector, so as to produce 
fitter strings from the current population. 

§ The mutation operation randomly alters part of 
existing individuals without exceeding the pre-

decided upper and lower thresholds to produce new 
individuals. 

 
 The number of GA generations and the size of 
population determine the accuracy of searched results and 
the speed of search, thus the selection of these GA 
parameters should be a compromise between the accuracy 
and speed [27]. 
 

 
 

Fig.6. GA re-production cycle [46] 
 

 
3.4 Artificial Neural Network 
Artificial Neural Network (ANN) or Neural Network (NN) 
began in 1943 [28] and showed that it was possible to 
construct a network using only mathematics and algorithms. 
Neural Network found application in aircraft engine 
diagnostics by Dietz [27], space main engine by Whitehead 
[30,31] and an increasing number of other fields [32]. The 
Neural Network approach is a non-linear estimator that 
attempts to simulate the learning process performed by the 
brain, making it effective at pattern recognition [62-65]. 
According to [33], the NN is a mathematical structure that 
distributes input data into several interconnected simple 
units (the artificial neurons), separating the fault diagnosis 
into two phases: identifying the faulty component(s) and 
proceeding to quantify the fault. For example, Fig. 7 pictures 
the inputs of the NN which are the changes in the 
measurable parameters, whereas the outputs are the resulted 
shifts in some gas turbine components characteristics [66-
69]. 

 
Fig. 7. A neural network for fault quantification [95] 

 
The NN structure in Fig.7 demonstrates that the data within 
neurons processed in parallel system and its functionality is 
determined by the network structure and connection 
strengths [32]. Because of their high connectivity and 
parallelism, NN is able to link, in a non-linear way, a multi-
dimensional input space with a multi-dimensional output 
space, allowing very high computational speed [33]. This 
technique is capable of simulating the functional relationship 
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between dependent and independent variables by adapting 
and storing experimental knowledge in the network (which 
is the training phase) and can be configured to be tolerant of 
noise in the measured or training-data sets. The stopping 
criterion for the NN training phase is the minimization of a 
performance function or the mean-square error on the whole 
training set between the target and the corresponding NN 
computed outputs [32]. 
 
3.5 Bayesian-Belief Network  
Bayesian-Belief Network (BBN) is a powerful tool for fault 
identification in gas turbines and based upon formal 
probability theory [74-76]. It is a system that integrates test 
measurements and gas path analysis program results with 
information regarding operational history and direct physical 
observation, helping for a cost effective diagnosis and using 
value of information calculations [36]. More generally, BBN 
is a graphical representation of a probability distribution 
which encodes the cause and effect relationships between 
particular variables represented as nodes and arches. Each 
node represents an observation or a fault that contains the 
conditional probability that describes the relationship 
between the node (effects) and the parents (causes) of that 
node. Kedamb at [37], designated the health parameters as 
the parent nodes and the measurements as the child nodes. If 
a particular child node is affected by the fault the link 
between parent and child node is established as the 
illustrated example in Fig.8.  

 
Fig.  8. Typical BBN layout [35] 
 
3.6 Expert Systems 
Expert systems have been in use for medical diagnosis for 
over 30 years so far, and since there are direct comparisons 
between medical and technical diagnosis, it was decided to 
build an expert system to diagnose engine faults [70-73]. 
Expert systems are defined as a computer program designed 
specifically to simulate a specialist human engineer’s ability 
to problem-solve or giving advice(s). Expert systems use 
sophisticated problem-solving techniques and vast stores of 
organised knowledge, concerning a definite area of expertise 
to solve problems justify its own line of reasoning, and to act 
on deductions just as human would. Instead of being 
programmed to follow step-by-step procedures, expert 
systems uses facts about the problem supplied by a user, 
plus its knowledge base and general problem solving 
procedures to find and apply a specific solution. The main 
components of an expert system, as illustrated in Fig.9, are: 

 
§ The inference engine which deals with all the 

reasoning operations of the system. 
§ The knowledge base which contains the inference 

rules and facts that the expert system has been 
taught about the problem by the human tutor. 
 

 
Fig. 9. Typical Expert System layout 
 
 
3.7 Fuzzy Logic Systems 
Fuzzy logic systems (FLS) were introduced by L.Zedah at 
University of Berkeley in 1960 as means to model the 
uncertainty of natural language. Historically, FLS has been 
used to identify and isolate the faulty components rather 
than the degree of deterioration [51,77,82], however, they 
were used to determine when to service the T700 engine 
[36]. FLs are defined as a method to formalise the human 
ability to reason approximately and judge under uncertain 
conditions [39]. The primary benefit of FL is to approximate 
system behaviour, where analytical functions or numerical 
relations do not exist [40]. Therefore, they have the potential 
to understand complex systems that have not been tested or 
that do not have a vast array of data available on them, such 
as the gas path diagnostics of gas turbines [41]. A typical 
FLS design may consists of: 
 

§ Fuzzifiation; the process of converting crisp 
ordinary values into degrees of membership to 
predefined fuzzy input set [38,39]. 

§ Rule evaluation or fuzzy inference engine; maps 
fuzzy input sets to fuzzy output sets. 

§ Defuzzification; a scalar quantity is delivered from 
the fuzzy outputs when crisp numbers are needed 
as an output of the fuzzy logic system. 

§ A knowledge base includes fuzzy rules and 
functions that play a key role in the fuzzy inference 
process. 
 

 
Fig. 10. Typical FLS layout 
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3.8 Weighted-Least-Squares 
Weighted-Least-Squares (WLS) algorithms are linear but 
often employ non-linear extensions to identify large-
magnitude faults. WLS emphasize correct determination of 
the faulted component, while placing less emphasis on 
getting the magnitude right [38]. They do not seek to find a 
single true solution but instead a solution with the highest 
probability of being near to the one, true solution. Therefore, 
WLS tries to find a function that closely approximates the 
data for a best fit and is weighted such that points with a 
greater weight contribute more to the fit. In order to account 
for the fact that some measurements are more accurate than 
others, it may be necessary to place more weight on the more 
accurate readings and less on the accurate measurements. 
 
 
4 Discussion 
 
An overview of the most common GPA techniques is 
presented, with the intention of highlighting some of the 
most important advantages and disadvantages for each 
diagnostic tool according to [20, 42-46]. 
 
Linear/Non-Linear GPA    

Advantages: 
- Faults can be isolated at component level by means 

of calculations of the corresponding performance 
parameters variations. 

- Diagnosis can be performed in more than a single 
engine component. 

- Calculations of the performance allow 
quantification of the fault(s). 

Disadvantages: 
- Accurate assessment is complicated by only having 

relatively few measurements available and errors in 
the measurements.  

- Linearization and iterative approaches can only 
handle the non–linearity. 

- Larger number of sensors - for better predictions - 
leads to higher costs.   

Kalman Filter  
Advantages: 
- Is recursive method; the memory requirements are 

minimised and thus the filter can deal with real-
time data processing. 

- It provides after each measurement an estimate of 
the errors in the parameter characterising the state 
of the system. 

- The filter responds well to discontinuous changes 
(steps) in the measurements, without erratic 
transients occurring. 

Disadvantages: 
- If a systematic error is present as part of the 

measured signal then no amount of filtering will 
reduce this fixed error. 

- KF may become unstable because either it contains 
too many small values or because the computer 
calculations have not been sufficiently accurate. 

- The apriori estimate is a reasonable guess and has 
to be close to the true value for the residuals to be 
small and hence higher degree of accuracy.  

- The smearing effect is present and the 
concentration on the faulty components may be 
difficult. 
 

Generic Algorithms 

Advantages  
- The inductive nature of the GA means that it 

doesn't have to know any rules of the problem, 
since it works by its own internal rules. This 
characteristic is very useful for complex or loosely 
defined problems. 

- It can quickly scan a vast solution set.  
- Bad proposals do not affect the end solution 

negatively as they are simply discarded. 
Disadvantages 
- Evolution is inductive; in nature life does not 

evolve towards a good solution, it evolves away 
from bad circumstances and therefore GAs risk 
finding a suboptimal solution. 

- As population and generation number grows, 
longer computation time required.  
 

Neural Network  
Advantages  
- Able to deal with large non-linearity degradations 

and instrumentation faults. 
- Using the information of data for training, makes 

the network suited for solution to the problems 
where no exact algorithmic solutions exist but 
large number of examples.  

- Very good data fusion technique; different kind of 
data such as vibrational, thermodynamic and 
electrostatic, are allowed to be used to produce an 
answer.  

- Can be trained to recognise noisy measurements to 
interpret them accordingly. 

Disadvantages 
- The period of the system training is highly timing 

consuming. 
- Difficulties when diagnosing faults with noisy 

data. 
- Requires good quality data for the training phase. 
- Needs time to be retrained if model engine 

hardware changes. 
 

Bayesian-Belief Network   
Advantages  
- Different types of data (qualitative, continuous 

numbers or discrete numbers) are accepted. 
- Diagnosis can be performed in more than a single 

engine component. 
- No mathematical relationships are required to build 

a BBN, but only the way variables affect to each 
other. 

- Changes of the model engine hardware can be 
easily entered in the network because any addition 
or removal of a node can be made, without the 
need to rebuild the whole network as BBN are 
local distributions. 

Disadvantages 
- Needs substantial time and big effort to gather 

information needed for setting up a data base. 
- Requires an expert or someone familiar with this 

network to make any change in a timely manner. 
- Bayesian belief network is combined with the 

results of GPA hence some of the drawbacks of 
GPA would be inherently present in such a system. 

- Cannot deal with sensor bias. 
 

Expert Systems  
Advantages 
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- Constant availability of expert advice eliminates 
any waiting for the expert’s time even in a remote 
or harsh environment. 

- They represent the knowledge of a group as a 
whole and thus there is a elimination of individual 
bias, prejudice and errors due to oversight or 
fatigue. 

Disadvantages 
- The human experts are often in short supply and as 

such are often expensive to maintain reflecting the 
large investment in time and money required to 
establish this high level of expertise. 
 

Fuzzy Logic Systems  
Advantages  
- Supports the generation of a fast prototype and 

incremental optimization. 
- The intelligence of the system is not involved with 

differential equations or source code and thus 
remains simple to understand. 

- The feature of the model-free allows data-fusion 
and reductions in computational time. 

Disadvantages 
- Unable to approximate faults that occur outside 

range of data that they have already been set up to 
tackle. 

- The achieved accuracy is a compromise between 
the computational speed in producing the required 
output and the effort expended by the designer in 
formulating the rules. 

- The number of rules increases according to the 
complexity of the process that is being 
approximated. 

 
Weighted-Least-Squares 

Advantages 
- Constant availability of expert advice eliminates 

any waiting for the expert’s time even in a remote 
or harsh environment. 

- They represent the knowledge of a group as a 
whole and thus there is a elimination of individual 
bias, prejudice and errors due to oversight or 
fatigue. 

- It uses fewer equations than it has values to find. 
Disadvantages 
- Prior knowledge and tuning is needed. 
- The WLS algorithm tends to smear the fault over 

many components; thereby the isolation of the 
faulty component becomes difficult. 

- The assumed approximation to the linear model 
may reveal a larger error than anticipated. 

 

5 Conclusion 
 
Apparently, every technique has its own advantages and 
limitations but it would be interesting to list the 
characteristics of a theoretically ideal technique that may 
exist in the future. These characteristics of the hypothetical 
diagnostic tool introduced in 2004 by L. Marinai et al. [20] 
and presented as it follows:  
 

§ Based on a non-linear model. 
§ Capable of detecting even small changes in 

performance with reasonable accuracy. 
§ Able to deal with measurement noise and sensor 

bias. 
§ Diagnose with high accuracy, by using 

measurements less than the number of health 
parameters (N>M). 

§ Designed specifically for single or multiple fault 
isolation. 

§ Avoid any smearing effect and possess a 
concentration capability on the actual fault. 

§ No need for any training and tuning uncertainties, 
difficulties and dependencies for the setting-up 
parameters. 

§ It is model-free that allows data-fusion and 
reductions in computational time. 

§ Competent to incorporate expert knowledge. 
 
 

Nomenclature 
 
Acronyms 
DMI  - Direct Matrix Inverse 
FCM  - Fault Coefficient Matrix  
FOD  - Foreign Object Damage 
GPA   - Gas Path Analysis 
ICM  - Influence Coefficient Matrix  
RMS  - Root Mean Square 
SFC  - Specific Fuel Consumption 
TET  -Turbine Entry Temperature 
 
Notations 
Δz  - Performance Parameters Deviation 
Δx  - Engine Module Parameters Deviation 
 
Subscripts 
z!   - Dependent parameter vector 
x!   - Independent (component) parameter vector 
w!   - Environmental variables vector (i.e. ambient 
pressure, temperature) 
 

______________________________ 
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