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Abstract 
 
Quadrotor unmanned aerial vehicle (UAV) is an unstable nonlinear control system. Therefore, the development of a high 
performance controller for such a multi-input and multi-output (MIMO) system is important. The backstepping 
controller (BC) has been successfully applied to control a variety of nonlinear systems. Conventionally, control 
parameters of a BC are usually chosen arbitrarily.  The problems in this method are the adjustment is time demanding 
and a designer can never tell exactly what are the optimal control parameters should be selected. In this paper, the 
contribution is focused on an optimal control design for stabilization and trajectory tracking of a quadrotor UAV. Firstly, 
a dynamic model of the aerial vehicle is mathematically formulated. Then, an optimal backstepping controller (OBC) is 
proposed.  The particle swarm optimization (PSO) algorithm is used to compute control parameters of the OBC. Finally, 
simulation results of a highly nonlinear quadrotor system are presented to demonstrate the effectiveness of the proposed 
control method. From the simulation results it is observed that the OBC tuned by PSO provides a high control 
performance of an autonomous quadrotor UAV. 
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1 Introduction 
 
The quadrotor system is a widely researched control 
problem. Many classic and modern control techniques have 
been utilized to stabilize the quadrotor system. In most 
research works, dynamic properties of the quadrotor are 
neglected in order to simplify equations of the system [1-6]. 
For an example, Hamel et al. present a simplified model of 
the X-4 Flyer in [1]. Both Pound et al. [2] and McKerrow et 
al. [3] use this model to for quadrotor control. However the 
simplicity of the model imply that sufficient quadrotor 
dynamics are not represented for effective control. Castillo 
et al. [4] apply a linear quadratic regulator (LQR) on a 
quadrotor platform. In the research, the roll and pitch angles 
of the quadrotor oscillate considerably, and the helicopter is 
not able to perform a good hovering motion. Even though 
the oscillation is reduced over a number of trials, an 
effective autonomous hover is not produced by the 
quadrotor. In [5] a proportional, integral and derivative 
(PID) controller is considered to stabilize a quadrotor 
helicopter. However, the model of the vehicle is modified in 
order to simplify controller design.  
 The backstepping control is a nonlinear control strategy 
based on the Lyapunov theorem. The backstepping control 
design techniques have received a great attention because of 
its systematic and iterative design procedure for nonlinear 
closed-loop  control systems [6-9]. The backstepping 

approach provides a design instrument for adjustment of 
nonlinearities. The cancellation of useful nonlinearity 
problem as in the feedback linearization method also can be 
avoided. Compared with other methods, backstepping has 
the advantage of design flexibility through recursive 
utilization of Lyapunov functions. The key idea of the 
backstepping design is a recursive selection of some 
appropriate state variables as virtual inputs for lower 
dimension subsystems of the overall system. Subsequently, 
Lyapunov functions are designed for each stable virtual 
controller [10]. Therefore, the stability of a control system 
can be guaranteed through the designed control law. Hence, 
the backstepping controller is used in this study for the 
quadrotor system.  
 The backstepping technique has been used to solve the 
stabilization and trajectory tracking problems of quadrotor 
helicopter [11-15]. Although the backstepping method can 
meet the desired robustness of the system, an accurate 
selection of controller parameters is not easy. Normally the 
backstepping controller parameters are chosen variously. If 
the parameters are selected improperly, it can lead to 
inappropriate responses. Thus, it is vital to choose proper 
parameters to acquire a good response. Even if a good 
output response is obtained, there is no formal way to 
ascertain the optimality of a controller parameter selection.  
 One of the most widely applied metaheuristic 
optimization methods is particle swarm optimization (PSO). 
PSO is a computational method that is based on population 
optimization algorithm. The method is motivated by the 
behavior of organisms, such as fish schooling and bird 
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flocking [16]. Generally, PSO has features such as a 
straightforward algorithm, simple to execute, 
computationally efficient and rapid convergence. Unlike the 
other metaheuristic techniques, PSO has a flexible and well-
balanced mechanism to enhance the global and local 
exploration abilities [17]. PSO has been extensively applied 
in off-line tuning of controller parameters, computer science 
and engineering [18-20]. Thus, due to these advantages, in 
this work PSO is used to compute the optimal backstepping 
controller parameter for a quadrotor system. The main 
contribution of this paper is the design of a backstepping 
control strategy using PSO algorithm to control a quadrotor 
UAV.  
 
 
2 Quadrotor Systems Modeling 
In order to develop the model of the quadrotor, reasonable 
assumptions are established in order to accommodate the 
controller design. The assumptions are as follows [21]: 
 
Assumption 1: Quadrotor is a rigid body and has symmetric 
structure.  
Assumption 2: Aerodynamic effects can be ignored at low 
speed. 
Assumption 3: The rotor dynamics are relatively fast and 
thus can be neglected. 
Assumption 4: The quadrotor’s center of mass and body-
fixed frame origin coincides. 
    
2.1 Quadrotor Kinematic Model 
Let consider earth fixed frame E = x!, y!, z! and body fixed 
frame 𝐵 = 𝑥! , 𝑦! , 𝑧! B = x!, y!, z! , as seen in Figure 1. 
Let  𝑞 = 𝑥, 𝑦, 𝑧,𝜙, 𝜃,𝜓 ∈ 𝑅! be the generalized 
coordinates for the quadrotor, where 𝑥, 𝑦, 𝑧  denote the 
absolute position of the rotorcraft and 𝜙, 𝜃,𝜓  are the 
attitude angles (roll, pitch and yaw) that describe the vehicle 
orientation. Thus, the model could be defined respectively in 
translational and rotational subsystems by (1) and (2): 
                        

 
Fig. 1 Quadrotor UAV configuration 
 
 
𝜉 = 𝑥, 𝑦, 𝑧 ∈ 𝑅!                                                               1  
 
𝜂 = 𝜙, 𝜃,𝜓 ∈ 𝑅!                                                             2  
 
 The kinematic equations of the translational and 
rotational movements are obtained by means of the rotation 
R and transfer T matrices respectively. The expression of the 
rotation R and transfer T matrices can be found in [22] and 
defined accordingly by (3) and (4): 

 

𝑅 =
 𝑐𝜃𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓
 𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

      3  

 

𝑇 =
1 𝑠𝜙𝑡𝜃 𝑐𝜙𝑡𝜃
0 𝑐𝜙 −𝑠𝜙
0 𝑠𝜙/𝑐𝜃 𝑐𝜙/𝑐𝜃

                                              4  

 
where s ∙  , c ∙  and t ∙   are abbreviations for sin ∙  , cos ∙  
and tan ∙ , respectively. 
 
 The translational kinematic can be written as: 
 
𝜉 = 𝑅𝑉                                                                              5  
 
where 𝜉 and V are respectively the linear velocity vector 
w.r.t. the earth fixed frame E and body fixed frame B.  
 
 The rotational kinematics can be defined as follows: 
 
𝜂 = 𝑇𝜔                                                                             6  
 
where 𝜂 and 𝜔 are the angular velocity vector w.r.t. the earth 
fixed frame E and body fixed frame B, respectively.  
 
2.2 Quadrotor Dynamic Model 
The dynamic model of quadrotor is derived from Newton-
Euler approach. It can be useful to express the translational 
dynamic equations w.r.t. the earth fixed frame E and 
rotational dynamic equations w.r.t. the body fixed frame B. 
Therefore, the translational dynamic equations of quadrotor 
can be written as follows: 
 
𝑚𝜉 = −𝑚𝑔𝑒! + 𝑢!𝑅𝑒!                                                    7  
 
where 𝑚 denotes the quadrotor mass, 𝑔 the gravity 
acceleration, 𝑒! = 0,0,1 ! the unit vector expressed in the 
frame E and 𝑢! the total thrust produced by the four rotors. 
 
𝑢! = 𝐹! = 𝑏 Ω!!!

!!!
!
!!!                                                   8  

 
where 𝐹! and Ω!  denote respectively, the thrust force and 
speed of the rotor 𝑖 and 𝑏 is the thrust factor. 
 The rotational dynamic equations of quadrotor can be 
written as follows: 
 
𝐼𝜔 = −𝜔×𝐼𝜔 − 𝐺! + 𝜏                                                    9  
 
where 𝐼 is the inertia matrix, –𝜔 ×𝐼𝜔 and 𝐺! are the 
gyroscopic effect due to rigid body rotation and propeller 
orientation change respectively, while 𝜏 is the control torque 
obtained by varying the rotor speeds. 𝐺! and 𝜏 are defined 
as: 
 
𝐺! = 𝐽! 𝜔×𝑒! −1 !!!Ω!!

!!!                                       10  
 

𝜏 =
𝜏!
𝜏!
𝜏!

=
𝑙𝑏 Ω!! − Ω!!

𝑙𝑏 Ω!! − Ω!!

𝑑 Ω!! + Ω!! − Ω!! − Ω!!
                        11  

 
where 𝐽! is the rotor inertia, 𝑙 represent the distance from the 
rotors to the centre of mass and 𝑑 is the drag factor. 
 



Mohd Ariffanan Mohd Basri, Abdul Rashid Husain and Kumeresan A. Danapalasingam 
/Journal of Engineering Science and Technology Review 8 (3) (2015) 39 -45 

 

 41 

 Then, by recalling (7) and (9), the dynamic model of the 
quadrotor in terms of position 𝑥, 𝑦, 𝑧  and rotation 𝜙, 𝜃,𝜓  
is written as: 
 
𝑥
𝑦
𝑧

=
0
0
−𝑔

+ !
!

𝑐!𝑠!𝑐! + 𝑠!𝑠!
𝑐!𝑠!𝑠! − 𝑠!𝑐!

𝑐!𝑐!
 𝑢!                      12  

 

𝜙
𝜃
𝜓

=

𝜃𝜓 !!!!!!!
!!!

𝜙𝜓 !!!!!!!
!!!

𝜃𝜙 !!!!!!!
!!!

−

!!
!!!
𝜃Ω!

− !!
!!!
𝜙Ω!
0

+

!
!!!
𝜏!

!
!!!
𝜏!

!
!!!
𝜏!

    (13) 

 
 Consequently, quadrotor is an underactuated system with 
six outputs 𝑥, 𝑦, 𝑧,𝜙, 𝜃,𝜓  and four control 
inputs ( 𝑢! , 𝜏!, 𝜏! , 𝜏!). 
 Finally, the quadrotor dynamic model can be written in 
the following form:  
 
𝑥 = 𝑐!𝑠!𝑐! + 𝑠!𝑠!

!
!
𝑢!

𝑦 = 𝑐!𝑠!𝑠! − 𝑠!𝑐!
!
!
𝑢!

𝑧 = −𝑔 + 𝑐!𝑐!
!
!
𝑢!

𝜙 = 𝜃𝜓 !!!!!!!
!!!

− !!
!!!
𝜃Ω! +

!
!!!
𝑢!

𝜃 = 𝜙𝜓 !!!!!!!
!!!

+ !!
!!!
𝜙Ω! +

!
!!!
𝑢!

𝜓 = 𝜃𝜙 !!!!!!!
!!!

+ !
!!!
𝑢!

                               14  

 
with a renaming of the control inputs as: 
 
𝑢! = 𝑏 Ω!! + Ω!! + Ω!! + Ω!!

𝑢! = 𝑏 Ω!! − Ω!!

𝑢! = 𝑏 Ω!! − Ω!!

𝑢! = 𝑑 Ω!! + Ω!! − Ω!! − Ω!!
                                          15  

 
and the definition of disturbance: 
 
𝛺! = 𝛺! + 𝛺! − 𝛺! − 𝛺!                                               16  

 
 
3  Control System for Quadrotor 
 
In this paper, only the z-directional linear motion (altitude) 
and angular motion (three attitude angles, roll, pitch and 
yaw) are chosen as four controllable degrees of freedom 
(DOF). For the design of the controller, the following state 
variables are defined: 
 
𝑥 = 𝑧 𝑧 𝜙 𝜙 𝜃 𝜃 𝜓 𝜓 ! = 𝑥! 𝑥! 𝑥! 𝑥! 𝑥! 𝑥! 𝑥! 𝑥! !      (17) 
 
Generally, the altitude and the rotational dynamics of 
quadrotor can be decomposed into four nonlinear 
subsystems: 
 
Altitude subsystem: 
 
𝑥! = 𝑥!
𝑥! = 𝑓! 𝑥 + 𝑔! 𝑥 𝑢!

                                                     18                                                                                                                        

 
where 
 

𝑓! 𝑥 = −𝑔 

𝑔! 𝑥 = 𝑐!𝑐!
1
𝑚  

 
Roll subsystem: 
 
𝑥! = 𝑥!
𝑥! = 𝑓! 𝑥 + 𝑔! 𝑥 𝑢!

                                                   19                                                                                                       

 
where 
 

𝑓! 𝑥 = 𝜃𝜓
𝐼!! − 𝐼!!
𝐼!!

−
𝐽!
𝐼!!

𝜃Ω! 

 

𝑔! 𝑥 =
𝑙
𝐼!!  

 
Pitch subsystem: 
 
𝑥! = 𝑥!
𝑥! = 𝑓! 𝑥 + 𝑔! 𝑥 𝑢!

                                                  20                                                                                                                           

 
where 

𝑓! 𝑥 = 𝜙𝜓
𝐼!! − 𝐼!!
𝐼!!

+
𝐽!
𝐼!!

𝜙Ω! 

𝑔! 𝑥 =
𝑙
𝐼!!

 

 
Yaw subsystem: 
 
𝑥! = 𝑥!
𝑥! = 𝑓! 𝑥 + 𝑔! 𝑥 𝑢!

                                                21                   

                                                                                                      
where 
 

𝑓! 𝑥 = 𝜃𝜙
𝐼!! − 𝐼!!
𝐼!!

 

𝑔! 𝑥 =
1
𝐼!!

 

 
 Thus each subsystem can be expressed into a single-
input nonlinear system as the following form:  
 
𝑥 ! = 𝑓 𝑥 + 𝑔 𝑥 𝑢,       𝑛 = 2                                      22                                                                                                       
 
where 𝑢 is the input; 𝑓 𝑥 and 𝑔 𝑥  are the nonlinear 
function. 
 
3.1 Backstepping Control System 
A suitable control law for the system (22) need to be 
designed so that the desired control objective can be 
achieved. Since the description of the control system design 
is similar for each subsystem, for simplicity only one 
subsystem of the four DOF quadrotor systems is considered. 
The backstepping control is designed sequently as follows: 
 
Step 1: The tracking error is assigned as: 
 
𝑒! =  𝑥! –  𝑥                                                                    (23) 
 
where 𝑥! is a desired trajectory.  
 Differentiating Eq. (23), it is obtained that: 
 
𝑒! =  𝑥! –  𝑥                                                                    (24) 
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 The first Lyapunov function is selected as: 
 
𝑉! 𝑒!
=
1
2 𝑒!

!                                                                                        (25) 
 
 The derivative of 𝑉! is: 
 
𝑉! 𝑒! = 𝑒!𝑒! = 𝑒! 𝑥! –  𝑥                                            (26) 
 
𝑥 can be viewed as a virtual control. The desired value of 
virtual control known as a stabilizing function can be 
defined as follows:  
 
𝛼 =  𝑥! +  𝑘!𝑒!                                                                (27) 
 
where 𝑘! is a positive constant.  
 
 By substituting the virtual control by its desired value, 
Eq. (26) then becomes: 
 
𝑉! 𝑒! = −𝑘!𝑒!! ≤ 0                                                        (28) 
 
Step 2: The deviation of the virtual control from its desired 
value can be defined as: 
 
𝑒! = 𝛼 − 𝑥 = 𝑥! +  𝑘!𝑒! − 𝑥                                          (29) 
 
 The derivative of 𝑒! is expressed as: 
 
𝑒! = 𝛼 − 𝑥
     = 𝑘!𝑒! + 𝑥! − 𝑓 𝑥 − 𝑔 𝑥 𝑢                                     (30) 

 
 The second Lyapunov function is chosen as: 
 

𝑉! 𝑒!, 𝑒!
=
1
2 𝑒!

!

+
1
2 𝑒!

!                                                                                 (31) 
 
Finding derivative of (31), yields: 
 

𝑉! 𝑒!, 𝑒! = 𝑒!𝑒! + 𝑒!𝑒! =
𝑒! 𝑥! –  𝑥 + 𝑒! 𝛼 − 𝑥                                
= 𝑒! 𝑒! − 𝑘!𝑒! + 𝑒! 𝑘!𝑒! + 𝑥! − 𝑓 𝑥 − 𝑔 𝑥 𝑢      (32) 
   = −𝑘!𝑒!! + 𝑒! 𝑒! + 𝑘!𝑒! + 𝑥! − 𝑓 𝑥 − 𝑔 𝑥 𝑢  
 
Step 3: For satisfying 𝑉! 𝑒!, 𝑒! ≤ 0, the control input 𝑢 is 
selected as: 
 
𝑢

=
1

𝑔 𝑥 𝑒! + 𝑘!𝑒! + 𝑥! − 𝑓 𝑥

+ 𝑘!𝑒!                                                                                       (33) 
 
where 𝑘! is a positive constant. The term 𝑘!𝑒! is added to 
stabilize the tracking error 𝑒!. 
 
 Substituting (33) into (32), the following equation can be 
obtained: 
 
𝑉! 𝑒!, 𝑒! = −𝑘!𝑒!! − 𝑘!𝑒!! = −𝐸!𝐾𝐸 ≤ 0                  (34) 
 

where 𝐸 = 𝑒! 𝑒! ! and 𝐾 = 𝑑𝑖𝑎𝑔 𝑘!, 𝑘! . 
Since 𝑉! 𝑒!, 𝑒! ≤ 0, 𝑉! 𝑒!, 𝑒!  is negative semi-definite. 
 
 Therefore, the control law in (33) will asymptotically 
stabilize the system. 
 
3.2 Overview of Particle Swarm Optimization  
The PSO is a type of swarm intelligence methods and a 
population based algorithm that normally used as 
optimization tool. Each individual (particle) of the 
population is a candidate solution. In PSO each particle 
navigates around the search (solution) space by updating 
their velocity according to its own and also  the other 
particles searching experience. Each particle attempts to 
imitate the successful peers attributes to improve 
themselves. Further, each particle has a memory to keeps 
track the previous best position (known as pbest) and 
corresponding fitness. The particles with greatest fitness in 
the population is called gbest. 
 There are three steps involve in the basic PSO algorithm, 
namely, generating particles’ positions and velocities, 
velocity update, and finally, position update [23]. First, by 
using the design upper, 𝑥!"# and lower, 𝑥!"# bound values, 
the initial positions, 𝑥!! ,  and velocities, 𝑣!! , of particles are 
randomly generated, as expressed in Eqs. (34) and (35): 
 
𝑥!! = 𝑥!"# + 𝑟𝑎𝑛𝑑(𝑥!"# − 𝑥!"#)                                   (35) 
 
𝑣!! = 𝑥!"# + 𝑟𝑎𝑛𝑑(𝑥!"# − 𝑥!"#)                                   (36) 
 
 In Eqs. (34) and (35), the subscript and superscript 
denoting the ith particle at iteration 𝑘, respectively, while 
rand is a uniformly distributed random variable that can take 
any value between 0 and 1. 
 The second step is to update the velocities of all particles 
according to the following expressions: 
 
𝑣!!!! = 𝑤 ∙ 𝑣!! + 𝑐! ∙ 𝑟𝑎𝑛𝑑 ∙ 𝑝𝑏𝑒𝑠𝑡 − 𝑥!! + 𝑐! ∙ 𝑟𝑎𝑛𝑑 ∙
(𝑔𝑏𝑒𝑠𝑡 − 𝑥!!)                                            (37)   

                      
 Three weight factors, namely, inertia factor, 𝑤, self 
confidence factor, 𝑐!, and swarm confidence factor, 𝑐!, are 
incorporated in Eq. (37) to effect the particles direction. The 
following inertia weight is used [24]: 
 
𝑤 = 𝑤!"# − 𝑤!"#  −  𝑤!"# 𝑘 𝑘!"#                           (38) 
 
where 𝑘 and 𝑘!"# are the current number of iterations and 
the maximum number of iterations, respectively. 𝑤!"# and 
𝑤!"# are the maximum and minimum weights respectively.  
 Lastly, velocity vector is used to update the position of 
each particle as Eq. (39) and illustrated in Figure 2. 
 
𝑥!!!! = 𝑥!! + 𝑣!!!!                                                        (39) 
 
 Repeat the three steps of (i) velocity update, (ii) position 
update, and (iii) fitness calculations until a stopping criterion 
is reached. 
 

 
3.3 PSO-Based Optimal Backstepping Control System 
In the previous section a controller (33) has been designed to 
stabilize each subsystem. The coefficients 𝑘!, 𝑘! are  control   
parameters and need to be positive to satisfy stability 
criteria. Conventionally, these parameters are selected by 
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trial and error. To overcome this drawback, this paper adopts 
the PSO for selecting the optimal value of the backstepping 
control parameters. The performance of the controller varies 
according to adjusted parameters. The structure of the 
proposed OBC for one subsystem is as shown in Figure 3. 
As aforementioned, the quadrotor system is comprised of 
four subsystems. Then there are in sum eight control 
parameters that need to be selected simultaneously so that 
each subsystem is asymptotically stable. 
 

 
Fig. 2 Depiction of the velocity and position updates in PSO 
 
 In the present study, an integral absolute error (IAE) is 
utilized to judge the performance of the controller. IAE 
criterion is broadly used to assess the performance of the 
control framework [25]. The index IAE is defined such as: 
 
𝐼𝐴𝐸

= 𝑒(𝑡)
!

!

𝑑𝑡                                                                          (40) 

 
 Since the system is comprised of four subsystems, hence 
a vector integral absolute error for the entire system is taken 
as 𝐼𝐴𝐸! = [𝐼𝐴𝐸!  𝐼𝐴𝐸!  𝐼𝐴𝐸!  𝐼𝐴𝐸!], where the subscripts 
are denoted for altitude, roll, pitch and yaw subsystem, 
respectively. The purpose of PSO algorithm is to minimize 
the fitness function 𝐽, expressed as: 
 
𝐽 = 𝐼𝐴𝐸! ∙𝑊                                                                    (41) 
 
 Where 𝑊 = [𝑊!  𝑊!  𝑊!  𝑊!]! is weighting vector used 
to set the priority of the multiple objective performance 
index (MOPI) parameters and the value of “𝑊” varies from 
0 to 1. Since the minimizations of the indexes are equally 
important, hence weights for the four objectives to be 
obtained are considered equal. For calculating the fitness 
function, the quadrotor system model is simulated for the 
time period, 𝑡. In order to enhance the transient response and 
steady-state errors, the fitness function has to be minimized. 
The PSO based approach to find out the optimal set of 
backstepping controller parameters is shown in Figure 4. 
 

 
Fig. 3 Structure of the optimal backstepping controller for one 
subsystem 

 

4 Simulation Results  
 
In this section, the performance of the proposed approach is 
evaluated. The algorithm is executed in 
MATLAB/SIMULINK simulation environment. The model 
parameter values of the quadrotor system are adopted from 
[26] and listed in Table 1. Initially, the quadrotor control 
model is utilized to search the controller parameter 
optimization, and later the identified parameter values are 
used by the quadrotor control system developed in 
MATLAB/SIMULINK for further evaluation. 
 
 The following values are assigned in this work: 
 

i. Dimension of the search space = 8 ( i.e., 𝑘!!!…! ); 
ii. Population/swarm size = 15; 

iii. The number of maximum iteration = 20; 
iv. The self and swarm confident factor, 𝑐! and 𝑐! = 2; 
v. The inertia weight factor 𝑤 is set by (38), where  

w!"# = 0.9 and 𝑤!"# = 0.4; 
vi. The searching ranges for the backstepping 

parameters are limited to [0, 20]; 
vii. The simulation time, 𝑡 is equal to 10s; 

viii. Optimization process is repeated for 20 times;  
 
 
Table 1 Parameters of the quadrotor 
Parameter Description Value Units 

g Gravity 9.81 m/s2 
m Mass 0.5 kg 
l Distance 0.2 m 

Ixx Roll inertia 4.85×10-3 kg · m2 
Iyy Pitch inertia 4.85×10-3 kg · m2 
Izz Yaw inertia 8.81×10-3 kg · m2 
b Thrust factor 2.92×10-6  
d Drag factor 1.12×10-7  

 
 

 
Fig. 4 The flowchart of the PSO-based optimal backstepping control 
system 
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 The best optimized controller value is chosen from the 
finest set of values among the simulation runs. The 
parameter and fitness values of each particle during the 
simulation are summarized in Table 2. The best fitness value 
is 7.312𝑒 − 008 appeared in iteration number 7, and the 
optimal parameters are 𝑘! = 14.28, 𝑘! = 14.52, 𝑘! =
14.64,  𝑘! = 14.14,  𝑘! = 14.38, 𝑘! = 14.21, 𝑘! = 14.61 
and 𝑘! = 14.11. The variation of the fitness function with 
number of iterations is shown in Figure 5. Meanwhile, the 
variations of backstepping control parameters with respect to 
the number of iterations are shown in Figure 6. As can be 
seen, through about 20 iterations, the PSO method can 
prompt convergence and obtain good fitness value. These 
results show that the PSO approach can search optimal 
backstepping controller parameters quickly and efficiently. 

 
Fig. 5 The convergence of fitness function with number of iterations 

 

 
Fig. 6 The variations of optimal parameters versus number of iterations 

 
 

Table 2 The parameters and fitness value of each optimal 
particle 

Iteration 
No. Optimal parameters Fitness 

value 
 

1 
 

𝑘! = 12.60, 𝑘! = 14.31 
𝑘! = 12.82, 𝑘! = 12.46 
𝑘! = 13.69, 𝑘! = 15.50 
𝑘! = 15.53, 𝑘! = 13.51 

 
2.511𝑒

− 007 

 
3 

 
𝑘! = 14.72, 𝑘! = 14.21 
𝑘! = 14.74, 𝑘! = 13.74 
𝑘! = 14.00, 𝑘! = 14.29 
𝑘! = 15.44, 𝑘! = 13.49 

 
1.696𝑒

− 007 

 
7 

 
𝑘! = 14.28, 𝑘! = 14.52 
𝑘! = 14.64, 𝑘! = 14.14 
𝑘! = 14.38, 𝑘! = 14.21 
𝑘! = 14.61, 𝑘! = 14.11 

 
7.312𝑒

− 008 

 
20 

 
𝑘! = 14.28, 𝑘! = 14.52 
𝑘! = 14.64, 𝑘! = 14.14 
𝑘! = 14.38, 𝑘! = 14.21 
𝑘! = 14.61, 𝑘! = 14.11 

 
7.312𝑒

− 008 
 
 
 

 To explore the effectiveness of the proposed optimal 
backstepping controller, two simulation experiments have 

been performed on the quadrotor UAV. The first experiment 
provides the simulation results of the proposed controller for 
a stabilizing problem. While the second experiment 
investigates the performance of the scheme for a tracking 
problem. 
 
4.1 Simulation experiment 1: stabilizing problem 
The control objectives are to reach and maintain quadrotor at 
a certain desired altitude/attitude, such that the helicopter 
can hover at a fixed point. The desired altitude/attitude is 
given by 𝑥!" = 𝑧! ,𝜙! , 𝜃! ,𝜓! =  [20, 0, 0, 0]!. The initial 
states are given by 𝑧 = 0, 𝜙 = 0.2, 𝜃 = 0.2 and 𝜓 = 0.2. 
Simulation results show the control design is able to 
stabilize the helicopter in hover mode. Under the proposed 
OBC, it can be observed that the altitude/attitude of the 
quadrotor can be maintained at the desired altitude/attitude, 
that is, the hovering flight is stable as shown in Figure 7. 
Also from this figure, it can be noted that the attitude states 
converge to zero set-point for a given initial condition 
rapidly as the system starts to achieve asymptotic stability of 
the quadrotor system.   
 

 
Fig. 7 Altitude/attitude of the hovering quadrotor using OBC 

 
 

4.2 Simulation experiment 2: tracking problem 
To further highlight the advantage of the proposed control 
structure the simulation results of the OBC for altitude 
tracking due to periodic trapezoidal function is depicted in 
Figure 8. As it can be seen, the system can track the desired 
reference trajectory quickly. Also it is obviously that the 
OBC can give small tracking error and good tracking 
performance.  
 

 
Fig. 8 Altitude tracking response due to periodic trapezoidal function 
using OBC 

 
 As aforementioned, the improper selection of the 
backstepping control parameters leads to inappropriate 
responses of the system. As can be seen from Figure 9 and 
10, it is evident that the poorly defined of backstepping 
control parameters will degrade the performance response of 
the system. From Figure 9, some oscillation in the transient 
response can be observed. The settling time is also 
significantly longer than that achieved by using OBC. At the 
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same time, the ability of the system to track the reference 
trajectory is also affected as shown in Figure 10. 
 

 
Fig. 9 Altitude/attitude of the hovering quadrotor using BC with 
improper parameters 

 

 

Fig. 10 Altitude tracking response due to periodic trapezoidal function 
using BC with improper parameters 
 
5 Conclusions 
In this paper, the application of an optimal backstepping 
controller for the trajectory tracking and stabilization of 
quadrotor UAV is successfully demonstrated. First, the 
mathematical model of the quadrotor is introduced. Then, 
the proposed optimal backstepping controller which can 
automatically select the controller parameters by using PSO 
algorithm is developed. The backstepping control design is 
derived based on Lyapunov function, so that the stability of 
the system can be guaranteed. Finally, the proposed control 
scheme is applied to autonomous quadrotor UAV. 
Simulation results show that high performance response can 
be achieved by using the proposed control system

. 

______________________________ 
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