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Abstract 
 

The purpose of this paper is to realize multivariable control , tuning and online state estimation of some parameters of the 
FCC unit . We implemented two control structures with the manipulated variables being the air inlet flow rate in the 
regenerator, the regenerated catalyst flow rate and the feed flow rate and, the controlled variable being the temperatures 
in the riser and in the densed bed of the regenerator. A novel four transfer function is built and used for controllability 
studies. Hard constraints are imposed with respect to the manipulated variables. Simulation results show that the 
configuration made of two inputs and two outputs is more easy to tune for control purposes. Althought there are 
important dynamic interactions between the components of the FCC and important nonlinearities, linear model predictive 
control is able to maintain a smooth multivariable control of the plant, while taking into account the different constraints. 
Tuning strategy is implemented to improve the tracking of the set point. Online state estimation is carried out with the use 
of the extended Kalman filter. The estimation gives results that can be used for monitoring purposes even in the presence 
of model mismatch. 
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1  Introduction 
 
 Fluid caalytic cracking (FCC) is of essential economic 
importance in a modern refinery. This is due to the fact that 
fluid catalytic cracking is used to crack heavy atmospheric 
residues and vacuum distillate into lighter molecules that can 
yield more valuable products. The FCC unit is a complex 
process [19] . Its complexity is due to the complex chemical 
reactions and dynamic interactions that take place in its main 
units, namely riser, separator and regenerator. The complex 
nature of this process make it a challenge to scientists and 
engineers in the field of control. In order to maximize the 
gains, this plant must be operated close to constraints [19] . 
Model predictive control (MPC) is used due to its capacity 
to take into account hard and soft constraints with respect to 
the manipulated variables, their moves and the controlled 
variables even with a multivriable process. 
 In this work, linear Model Predictive Control (MPC) of 
the FCC with two control structures, tuning and online states 
estimation with the use of extended Kalman filter are 
addressed. The organization of this paper is as follows, 
Section 2 is related to the process description. Section 3 
describes the model of FCC. Section 4 deals with model 
predictive control principles. Section 5 deals with model 
identification. Section 6 deals with controlability of the 
FCC. Section 7 deals with the control of the FCC unit with 
the discussions of the simulation results. Section 8 deals 

with the tuning of MPC parameters. Section 9 deals with 
online state estimation. Finally, the conclusions of the paper 
are presented in Section 10. 
 
 
2  Description of a modern FCC process 

  
An FCC process consists of three main units (Figure 1). The 
cracking reactions of the hydrocarbon feed take place in the 
riser while the catalyst is reactivated in the regenerator by 
combustion of the coke deposited on the catalyst in the riser 
reactor. 
 The temperature of the preheated feed is in the range of 
450-600K. This feed is injected in the bottom of the riser 
with a small quantity of vapor. At the contact of the hot 
catalyst from the regenerator in the range of 900-1100K, the 
feed is vaporised . The resulting hydrocarbon vapors 
undergo an endothermic reaction while rising to the top of 
the riser. This rising is due to a great pressure at the bottom 
of the riser and the low density of the mixing of catalyst and 
vapors. The residence time of the catalyst and the 
hydrocarbon vapors (supposing that the solid catalyst and 
the hydrocarbons have the same residence time) in the riser 
is a few seconds. The temperature at the top of the riser is 
between 750 and 820K. The disengagement part of the 
reactor is used to separate the catalyst particles from the 
vapors with the use of cyclones. The spent catalyst is 
separated from the vapors and flows in the extraction part 
where the remaining hydrocarbons on its surface are 
removed by injection of stripping steam. The catalyst flows 
through a transport line to the regenerator. 
 The air entering the regenerator is used to burn the 
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deposited coke on the catalyst. This partial or total 
exothermic combustion reaction reactivates the catalyst and 
maintains the bed temperature between 950-980K for future 
gasoil cracking. The regenerated catalyst flows in the riser 
through another circuit. The heat from the regenerator is 
used to compensate the endothermic reactions in the riser. 

 

   
Fig.  1. Schematic diagram of FCC unit 

   
 

3  Mathematical model of the FCC 
  
There are many models found in the litterature with more or 
less details. Some are for design, optimization or control 
purposes. The FCC model used is mainly destined for 
control purposes [1] and is adapted from [17] with some 
modifications by [3, 16]. This model describes the main 
dynamical aspects of an FCC unit and is adequate for 
predictive control because the main objectives of an FCC 
model are a description of the regenerator dynamics and a 
description of gasoline yield [2, 19]. Some important 
equations are presented in this work but a more detailed 
description of this model is found in [4, 5, 15]. 
 
Energy balance in the riser   
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 where ,1risT  is the temperature at the riser top.  

 
Mass Balance of coke on the catalyst   
 

regcat

cbregcokeregcatsepcokespentcatregcoke

m
RCFCF

dt
dC

,

,,,,, )(
=

−−   (3) 

 

regcatF ,  is the flow rate of the regenerated catalyst 

(kg.s )1− , regcokeC ,  mass fraction of coke in the regenerator, 

regcatm ,  hold up of catalyst in the regenerator (kg), cbR  

kinetic of coke combustion (s). 
 
Energy balance in the regenerator  
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 coke combustion kinetic is given by   
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4  Model predictive control 

  
Model Predictive Control (MPC) is not a tool in itself but, 
represents a class of algorithms that use a process model to 
maintain the controlled variables of a given process close as 
possible to the set point while taking into account the 
different constraints . MPC was first implemented by [20], 
then Dynamic Matrix Control (DMC) was introduced [7, 9]. 
Nowadays, there are many algorithms for model predictive 
implementation ranging from linear one to nonlinear [10, 
13]. In the present work, linear model predictive control is 
used and step responses are also used for system 
identification, the corresponding algorithms are briefly 
described. DMC [9] minimizes a quadratic criterion without 
taking into account the constraints so that an analytical 
solution can be found for the control vector. Quadratic 
dynamic matrix control (QDMC) [11, 12] minimizes a 
criterion in while taking into account constraints. In this 
study, quadratic dynamic matrix control was used with 
constraints imposed on the manipulated variables and their 
variations. The code used has been developed in Fortran90. 

 
 

5  Open loop identification 
   

5.1  Simulation parameters 
The parameters that are used for FCC control are found in 
Tables 1 and 2. Table 1 gives the stationary values obtained 
by integration of the dynamic equations of the nonlinear 
model until a steady state is found for given values of 
manipulated inputs. 

 
Table 1. Steady state values of important variable for the 
FCC 

 
Symbole  

 Signification   Value  

CcregC    Coke concentration in the regenerator 
(kg/kg)  

 
0.0038  

CcsepC    Coke concentration in the riser at Z-1 
(kg/kg)  

 
0.0104  

risT (0)   Temperature in the riser at Z=0 (K)   805  

sepT    Temperature in the riser at Z=1 (K)   
780.62  

regT    Temperature in the dense bed of the 
regenerator (K)  

 
971.92  

2o
x    Molar fraction of oxygen in the 

regenerator  
 

0.0047  

0gy    Mass fraction of oil in the riser at Z=1   
0.4825  
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gy    Mass fraction of oil in the riser at Z=1   
0.3680  

 
 
Table  2.  FCC data used in the simulation 
 Symbol   Meaning   Value  

airpC ,    heat capacity of air (J.kg 1− .K 1− )   1074  

opC ,    heat capacity of oil (J.kg 1− .K 1− )   2671  

steampC ,    heat capacity of steam (J.kg 1− .K 1− )   1900  

acfE    activation energy for coke formation 
(J.mol 1− )  

 2089.5  

afE    activation energy for cracking of gas oil  
 (feed) (J.mol 1− )  

  
101.5103  

agE    activation energy for cracking of 
gasoline  

 (J.mol 1− )  

  
112.6103  

regairF ,    mass flow rate of air to regenerator 
(kg.s 1− )  

 25.378  

regcatF ,    mass flow rate of catalyst (kg.s 1−  )   294  

feedF    mass feed flow rate (kg.s 1− )   40.63  

regairm ,    holdup of air in the regenerator (mol)   20000  

regcatm ,    holdup of catalyst in regenerator (kg)   175738  

sepcatm ,    holdup of catalyst in separator (kg)   17500  

cokewM ,    molar weight of coke (kg.mol 1− )   14.10-3  

CHn    number of moles of hydrogen  
 per mole of carbon in the coke  

 2  
  

airT    temperaure of air to regenerator (K)   360  

boilT    boiling temperature of the feed (K)   700  

ct    residence time in the riser (s)   9.6  

feedT    feed temperature (K)   434.63  

vapHΔ    heat of feed vaporization (J.kg 1− )   51.5610  

crackHΔ    heat of cracking (J.kg 1− )   
310506.2   

2α    fraction of gas oil which cracks to 
gasoline  

 0.75  

 
 The manipulated variables are the regenerated catalyst 
flow rate and the flow rate of air to the regenarator; The 
controlled variables are the temperature at the top of the riser 
and the temperature in the regenerator dense bed (Table 3). 

 
Table  3. Manipulated variable and controlled variables 

2X2 control 
Input 1   Regenerated catalyst   1u   
Input 2   Flow rate of air into the regenerator   2u   

Output 1   Temperature at the top of the riser   1y   
Output 2   Temperature in the regenerator dense bed  2y   

 
In order t o carry out open loop identification of our system, 
step inputs are applied resulting in the responses of figures 3 
and 4 according to (2). From a steady value of the catalyst 

flow rate equal to 294 kg.s 1− , a step of 5+ % is applied, 
from a steady state value of the flow rate of air equal to 
25.378 kg.s 1− , a step of 0.05+ % is applied. 

 

 
Fig. 2. Identification process 

   
 

  
Fig. 3. Open loop response to a flow rate step of catalyst: temperature at 
the top of the (left), temperature in the regenerator (right) 

    

  
Fig . 4. Open loop response to a flow rate step of air: temperature at the 
top of the riser (left), temperature in the regenerator (right) 

   
 The step responses obtained are presented in Figure 5. 
For the catalyst flow rate step 1u , the temperature at the 

riser top 1y  and the temperature in the regenerator 2y  
follow an inverse response. In fact, the increase of catalyst 
flow rate increases abruptly the temperature at the bottom of 
the riser, hence the one at the top of the riser without 
dynamic effect; then, the temperature decreases dynamically 
due to the endothermicity of the cracking reactions and 
increases slowly due to the exothermicity of the regenerator 
and its great thermal inertia. At the opposite, for the air flow 
rate step 2u , the responses are close to first order transfer 
functions. In fact, the increase of the flow rate of air 
enhances the exothermic combustion reaction in the 
regenerator and consequently the temperature of the 
regenerator according to a first order process. The 
regenerator temperature is also that of regenerated catalyst 
which influences the temperature at the bottom of the riser 
and consequently that of the riser top. 
 Using a sampling period 250=sT s, the step response 
coefficients are calculated (Figure 5) which enable us to 
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build the dynamic matrix A  used in DMC and QDMC 
control algorithms. 

 
 

  
Fig 5. Coefficients of the step response: 1u  flow rate of catalyst, 2u  

flow rate of air, 1y  riser temperature, 2y  regenerator temperature 

   
 

6  Controllability of the FCC 
  

The controllability of the FCC model used have been studied 
by [16] using the relative gain array [8]. [2] gives the 
possible combination of manipulated variables and 
controlled variables for partial and complete combustion 
mode. As previously mentioned, the controlled variables 

risT , regT  and manipulated variables airF , catF  are chosen. 

 The choice of the structure of the control variables is 
also important [15] and the relative gain array is a useful tool 
to examine the coupling of the manipulated and controlled 
variables in a multivariable process. This tool was proposed 
by [6]. It enables us to choose the best coupling between 
inputs and ouputs. [18] used it for the design of a regulator 
for the FCC. For controller that are not multivariable like the 
PID, it permits to be sure of the controllability of the system 
with the selected input-output structure. 
 According to Figure 5, the transfer functions 
corresponding to the step responses have been identified 
with the following model coupling an algebraic response and 
an inverse response for the couples )( 11 yu −  and )( 21 yu −  as:   
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 and first order transfer functions for the couples )( 12 yu −  

and )( 22 yu −  as:   
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  According to the previous transfer functions, the time 
responses to a unity input step have been calculated 
respectively as:   
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 and:   
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  where )(tH  is the Heaviside function. 
 
Table  4. Identified continuous transfer functions 

 Symbol   Couple  Transfert function  
G 11    )( 11 yu −    

12827
5.847

13010
5.8870.32

+
−

+
+

ss
  

G 12    )( 21 yu −    
12884

7.751
13102

7.7110.08
+

−
+

+−
ss

  

G 21    )( 12 yu −    
12853

11.039
+s

  

G 22    )( 22 yu −    
12348

19.904
+s

  

 
  

   
 The identification has been performed by minimizing a 
least squares criteria comparing the step responses 

expy  and 

the time response of the model 
mody  to a unity input step:   

 
2

1=

))()()((= iyiyiwJ modexp

n

i
−∑    (10) 

 
 In the case of transfer functions )(1 sG i

, the weight )(iw  
were equal to 1 when 15≤i  and equal to 10 when 16≥i  in 
order to give more weight to the final form of the shape of 
the response. For transfer functions )(2 sG i

, the weights 

)(iw  were all equal to 1. For transfer functions (6), knowing 
the approximate value of the final response, a constraint was 
imposed:   
 

iiii KKay 121 =)( −+∞δ     (11) 
 
 with ia  read on the step response. For these transfer 
functions, three parameters were thus identified. For transfer 
functions (7), iK2′  could have directly determined, but a 
simple identification with two parameters was carried out. 
Using the function "fminsearch" of Matlab, the transfer 
functions parameters have been obtained (Table 4). On the 
figures 6, the step response and the response of identified 
model are compared and show a satisfactory agreement for 
the response with the input 1u  (catalyst flow rate) and a 

very good agreement for the response with the input 2u  
(flow rate of air). 
 For the response to the input 1u  (flow rate of catalyst), 

the time constant 2τ  is slightly greater than 1τ . The 
catalyst residence time in the riser is negligible, the 
residence time of catalyst in the separator is equal to 59.5s 
and the residence time of catalyst in the regenerator is equal 
to 597.7s. Thus, the time constants of the identified transfer 
functions (Table 4) are about 4 to 5 times the greater 
residence time. 
 For the relative gain matrix, the transfer functions 
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)(1 sG i
 (eq. 6) are approximated as first order transfer 

functions with gain iK1 . The following gains were 
deduced:   
 

19.904=,11.039=,0.12=,0.36= 22211211 KKKK −  (12) 
 
  Hence, the relative gain array matrix RGA can be 
determined knowing that:   
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  The relative gain array matrix (RGA) results as:   
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  If the matrix Λ  were the identity matrix, the system 
would be perfectly decoupled [8]. In the present case, the 
element 

11λ  is close to 1. The chosen coupling ( 1y  coupled 

to 1u  and 2y  coupled to 2u , i.e. the temperature at the top 
of the riser coupled to the flow rate of catalyst and the 
temperature of the regenerator coupled to the flow rate of 
air), would allow an efficient control of the FCC with PID 
controllers. 
 

 
 
     (a) Step response of the system 
and transfer function 

11 yu − ) 

 
 
         (b) Step response of the 
system and transfer function 

21 yu − ) 

 
    
  ( c) Step response of the system 
and transfer function 

12 yu − ) 

 

 
       (d) Step response of the 
system and transfer function 

22 yu − ) 

Fig. 6. Step response of the system (symbol "o") and the identified 
transfer functions (Continuous curves) 

 
 

7  QDMC Control of FCC   
 
7.1  Generality 
The FCC control will be carried out with several cases: First, 
the control will use two manipulated and two controlled 
variables, then three manipulated and two controlled 

variables. 
 
7.2   QDMC 2X2 control 
In the present case, constraints are imposed on the 
manipulated variables (Table 5). The set points are known a 
priori. Set points are chosen in a desynchronized manner so 
as to better show the input-output coupling effect within the 
process. Two cases have been studied (Table 5). The 
simulations results (Figures 7 (c), 7 (d), 7 (a), 7 (b) show that 
despite the changes in the set point, the outputs follow the 
set point with deviation respectively of 1 to 2K at most 
whereas the manipulated variable remain within the 
constraints limits. The results (Figures 8 (c), 8 (d), 8 (a), 8 
(b)) show the controller performance in the case of reduced 
weights on the outputs. The manipulated variables remain in 
the limits of constraints and the outputs continue to follow 
their respective set points in an acceptable manner.  

 
Table 5. MPC parameters 2X2 

 Parameters   Case 1   Case 2  
Sampling period   250s   250s  

Prediction horizon   60   20  
Control horizon   3   3  

Constraints Min-Max on the input 1   [270,  320]   [270,  320]  
Constraints Min-Max on the input 2   [24,  50]   [24,  50]  

Γ diagonal values   10   10   3   3  
Λ diagonal values   1   1   10   1 0  
 

 
(a) Temperature at the riser top 1y  
(K) 

 
 
 (b) Temperature in the 
regenerator 2y  (K) 

 
    ( c) Flow rate of regenerated 

catalyst 1u  (kg.s
1−

)  

 
     (d) Flow rate of air to the 

regenerator 
2u  (kg.s

1−
) 

Fig. 7. QDMC control 2X2, case 1: Controlled and manipulated 
variables 

  
 

 
(a) Temperature at the riser top 

1y  (K) 

 
(b) Temperature in the regenerator 

2y  (K) 
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( c) Flow rate of regenerated 

catalyst 
1u  (kg.s

1−
) 

 
(d) Flow rate of air to the 

regenerator 2u  (kg.s
1−

) 

Fig.  8. QDMC 2X2, case 2: Controlled and manipulated variables 
 
  

 The coupling effects are visible on Figures 7( c), 7(b), 
7(d), 7(a). For example, output 1 returns quickly to its steady 
state after a transient while output 2 follows its new set 
point. Hence, QDMC based on step responses is able to 
maintain the outputs of a complex process near its variable 
set points with acceptable deviations. 
 The influence of the weights on the criterion has been 
studied (Table 5). The energy part is given less weight than 
the performance one . This led to correct tracking (Figures 
7(a), 7(b) ) but, at the same time we notice some steep 
variations changes of the inputs, visible at set point changes. 
The reduction of the weights Γ (Figures 8 (a) and 8 (b)) 
leads to less acceptable tracking of the set point with 
important temperature deviations around the set point 
changes, but this remains acceptable. The inputs in this case 
are more smooth. 
 Some variables such as the coke concentrations on the 
catalyst in the separator and in the regenerator, the molar 
fraction of oxygen in the regenerator dense bed are presented 
in Figures 9, 10. Figure 9 shows that the coke on the catalyst 
is not completely burnt which agree with the hypothesis that 
the regenerator is in partial combustion mode. The coke 
content at the riser top is similar to the coke in the separator 
and follows the same evolution as the coke in the 
regenerator, so when the regenerator temperature increases, 
the coke content decreases also and when the temperature in 
the riser increases, the coke content increases also. The 
increase of the air flow rate in the regenerator leads to the 
decrease of the quantity of coke in the regenerator as well as 
in the separator. The variations of the molar fraction of 
oxygen in the regenerator (Figure 10) are in the opposite 
way to the variations of the the coke in the regenerator, so 
when the coke is high, the oxygen molar fraction is low and 
this is due to the fact that oxygen is consumed in a great 
quantity and reciprocally. 

 

  
Fig. 9. QDMC 2X2, case 1: Mass fraction of coke on the catalyst in the 
regenerator (left), Mass fraction of coke on the catalyst in the separator 
(right) 

   

 
Fig. 10. QDMC 2X2, case 1: Molar fraction of oxygen in the 
regenerator 

   
 

7.2.1  Disturbance rejection 
Many possible disturbances exist, in particular the feed flow 
rate, the quality of feed, the temperature of the feed, the 
temperature of air entering the regenerator, the hold up of 
catalyst in the regenerator. 
 In the present case, a series of disturbances of the feed 
flow rate is introduced by 5%  increase of the feed flow rate 
at 25000=t s, then a decrease by 10% at t=50000s and 
again back to it initial level at t=75000s. Figures 10, 10, 10, 
10 present the results of simulations in the case of feed 
disturbance with constant set point. The disturbances are 
well rejected by QDMC control. The temperature at the riser 
top varies in opposite direction with regard to the feed flow 
rate and dispalys a peak of about 5K for a variation of 5% of 
the feed flow rate. The temperature in the regenerator varies 
in a more complex manner with first a fast deviation of 
about 2K in the inverse direction of the variation of 5% of 
the feed flow rate, followed by a slower deviation of about 
2K in the direction of the variation of the feed flow rate. 
Thus, it takes more time for the regenerator temperature to 
come back to its set point than the riser top temperature. The 
control 1u , corresponding to the flow rate of regenerated 
catalyst, increases of about 5% when the feed flow rate 
increases and the control 2u , corresponding to the flow rate 
of air in the regenerator increases almost in the same 
proportion. 

 
(a) Temperature at the riser top 

1y  (K) 

 
(b) Temperature in the regenerator 

2y  (K) 

 
( c) Flow rate of regenerated 

catalyst 1u  (kg.s
1−

) 

 
(d) Flow rate of air to 

the regenerator 2u  (kg.s
1−

) 
 

Fig. 11. QDMC 2X2: Controlled and manipulated variables in the case 
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of feed flow rate disturbance (increase of 5% at t=25000s, decrease of 
10% à t=50000s, then back to initial value at t=75000s) 

  
 
 

7.3   QDMC 3X2 control 
The QDMC 3X2 control has been studied by adding the feed 
flow rate as a manipulated variable (Table 6). 
 
Table  6. Manipulated and controlled variables 

3X2 control 
Input 1   Regenerated catalyst   1u   
Input 2   Flow rate of air to the regenerator   2u   
Input 3   Flow rate of feed   3u   

Output 1   Temperature at the riser top   1y   
Output 2   Temperature at the regenerator dense bed  2y   

  
   

 Figures 12(a), 12(b) and 12( c) present the step responses 
for the identification of the FCC with three manipulated 
variables, the flow rate of regenerated catalyst, the flow rate 
of air to the regenerator and the feed flow rate. Simulations 
are carried out with the same tuning parameters as in the 
case of two manipulated variables (Table 5). Concerning the 
responses 5, the influence of the regenerated catalyst flow 
rate and the air flow rate are identical, whereas the influence 
of the feed flow rate show a response that is similar to a first 
order with a negative gain, this means that an increase of 
feed flow rate leads to a decrease of the temperature at the 
riser top and in the regenerator dense bed.  

 

 
(a) Step response coefficients, 
influence of catalyst flow rate 
 

 
 
  (b) Step response coefficients, 

influence of air flow rate 

 
( c) Step response coefficients, influence of feed flow rate 

Fig. 12. Step response coefficients for QDMC 3X2 control: 1u  flow 

rate of regenerated catalyst , 2u  flow rate of air, 3u  feed flow rate, 1y  

riser temperature, 2y  regenerator temperature 

 
Table  7. MPC parameters 3X2 

 Paramètres  Values  
Sampling period   250s  

Prediction horizon   60  
Control horizon   3  

Contrainst Min-Max input 1   [270,  320]  
Contrainst Min-Max input 2   [24,  50]  
Contrainst Min-Max input 3   [15,  70]  

Γ diagonal value   5   10  
Λ diagonal value   1   1  1  

   
 
 QDMC 3Χ2 has been carried out with the tuning of 
Table 7. Figure 13 represents the temperature at the riser top 
and in the regenerator dense bed, Figure 14 the manipulated 
variables during the control. The set point are well tracked 
with oscillations around the set point changes . 
 In fact, it is interesting to compare the results of the 
QDMC 3X2 control (Figures 13 and 14) to the results of 
QDMC 2X2 control (Figure 7). The set point tracking is 
improved for QDMC 3X2 control, but at the expense of 
oscillations of the temperature at the riser top which are not 
desirable and are tied to oscillations of the inputs. 

 

 
(a)Temperature at the riser top 

(K) 

 
(b) Temperature in the regenerator 

(K)  
Fig.13. 3X2 control: controlled variables 

 
 

 
(a) Flow rate of regenerated 

catalyst (kg.s
1−

) 

 
(b) Flow rate of air to the 

regenerator (kg.s
1−

) 
 

 

( c) Feed flow rate (kg.s
1−

)   
Fig. 14. QDMC 3X2 control : Manipulated variables 

  
 

8  MPC tuning 
  
The results of simulation presented up to now have been 
obtained with the same MPC parameters. However, the 
tuning of FCC control is of critical importance in order to 
obtain good behavior. In this part, the influence of MPC 
parameters on the simulation results will be presented and 
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tuning solutions proposed for these parameters with respect 
to the QDMC algorithm applied to the FCC. Table 8 
presents the different cases of parameters used in the 
simulations. 
 
Table  8. MPC tuning parameters 
   Τ  

  
  

 
Horiz
on  
 ΗP  
  

 
Hor
izo
n  
 HC  

 
Contrain
st  
 Min-
Max  
 on 
input 1  

 
Contrain
st  
 Min-
Max  
 on 
input 2  

 γ 
 values  
 
diagona
ls  

 H  
  
  

Case 1   
250
s  

 60   3   
[270,32
0]  

 [24,50]   10   10   1   1  

Case 2   
250
s  

 20   3   
[270,32
0]  

 [24,50]   10   10   1   1  

Case 3   
250
s  

 60   3   
[270,32
0]  

 [24,50]   2   2   1   1  

Case 4   
250
s  

 60   3   
[270,32
0]  

 [24,50]   2   2   15   15  

Case 5   
250
s  

 20   3   
[270,32
0]  

 [24,50]   10   10   15   15  

Case 6   
250
s  

 20   3   
[270,32
0]  

 [24,50]   2   2   15   15  

Case 7   
250
s  

 60   3   
[270,32
0]  

 [24,50]   5   5   1   1  

         
 The notations of table 8 are the sampling period sT , the 

prediction horizon pH , the control horizon cH , the 

minimal value of the prediction instant lowpH , . 

 Case 1 (Figures 15 and 16) can be considered as a basic 
case for the tuning parameters and all the following 
comparisons are done with respect to case 1 or derived 
cases. Table 8 can be considered as a numerical 
experimental design . However, the tuning of case 1 cannot 
be consider to be optimal because it would have been needed 
to define an optimality criterion such as a statistical criterion 
based on deviations or simply the value of the quadratic 
criterion considering 1=,lowpH  in all the cases . In 

case 2 (Figures 17 and 18), the prediction horizon is 
decreased, this decreases the oscillations when the set point 
constraints are imposed. The manipulated variables vary 
more smoothly. 
 In case 3 (Figures 19 and 20), the weight on the outputs 
is decreased to give more weight to the energy part of the 
criterion with regard to the performance. Smooth responses 
are expected due to smoother manipulated inputs, which 
really occurs, however the temperature tracking is less 
satisfactory. 
 In case 4 (Figures 21 and 22) compared to case 3 the 
minimal horizon 15=,lowpH  is used. The control is very 

smooth, but the set point tracking is not satisfactory. 
 In case 5 (Figures 23 and 24), the prediction horizon is 
decreased as 15=pH  with 10=,lowpH . As the weights 

on the outputs remain high, the responses are satisfactory 
and smooth with an anticipating effect of the set point 
changes. 
 In case 6 (Figures 25 and 26), compared to the previous 
case, more weight is given to the energy term of the 
criterion, and the inputs are softened with respect to to case 

5, however the difference is small. 
 In case 7 (Figures 27 and 28), instead of brutal set point 
steps, a reference trajectory is imposed as a linear ramp over 
12 sampling periods. The consequence is that the oscillations 
visible in the case 1 at the set point changes are almost 
eliminated and the tracking of set point is excellent. 
 A conclusion of all the tuning is that the filtering of the 
set point brings more smoothness in this case of difficult 
control, for the steps of flow rate of catalyst create strong 
inverse response added to an important algebraic effect. It is 
important to use large weights on the outputs. The use of the 
lower limit of the prediction horizon lowpH ,  did not have 

the expected effect. 
 

 
(a)Temperature at the riser 

top (K) 

 
(b)Temperature in the 

regenerator (K) 
Fig.  15.  QDMC control, case 1: Controlled variables 

 
 
 

 
  (a) Flow rate of regenerated 

catalyst (kg.s
1−

)    

 
(b) Flow rate of air to the 

regenerator (kg.s
1−

) 

Fig.  16.  QDMC control, case 1: Manipulated variables 
  

 
(a)Temperature at the riser top 
(K) 

 
(b)Temperature in the regenerator 
(K) 

Fig. 17. QDMC control, case 2: Controlled variables 
 
 

 
(a) Flow rate of regenerated 

catalyst (kg.s
1−

) 

 
(b)Flow rate of regenerated 

catalyst (kg.s
1−

) 
Fig.  18. QDMC control, case 2: Manipulated variables 
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(a)Flow rate of regenerated 

catalyst (kg.s
1−

) 

 
(b) Flow rate of regenerated 

catalyst (kg.s
1−

) 
Fig.  19. QDMC control, case 3: Controlled variables 

 
 

 
(a)Flow rate of regenerated 

catalyst (kg.s
1−

)    

 
(b) Flow rate of air to the 

regenerator(kg.s
1−

)   
Fig.  20. QDMC control, case 3: Manipulated variables 

  

 
(a)Temperature at the riser top 

(K) 

 
(b)Temperature in the regenerator 

(K) 
 

Fig.  21. QDMC control, case 4: Controlled variables 
 

 
(a)Flow rate of regenerated 

catalyst (kg.s
1−

)    

 
(b)Flow rate of air to the 

regenerator (kg.s
1−

)   
Fig. 22. QDMC control, case 4: Manipulated variables 

 
 

 
(a)Flow rate of air to the 

regenerator (kg.s
1−

)   

 
(b)Flow rate of air to the 

regenerator (kg.s
1−

)   
Fig.  23. QDMC control, case 5: Controlled variables 

 
 

 
(a)Flow rate of regenerated 

catalyst (kg.s
1−

)    

 
(b)Flow rate of air to the 

regenerator(kg.s
1−

)   
Fig. 24. QDMC control, case 5: Manipulated variables 

   

 
(a)Flow rate of air to the 

regenerator(kg.s
1−

) 

 
(b)Temperature in the regenerator 

(K) 
Fig. 25. QDMC control, case 6: Controlled variables 

 

 
(a) Flow rate of regenerated 

catalyst (kg.s
1−

)    

 
(b) Flow rate of air to the 

regenerator(kg.s
1−

)   
Fig. 26. QDMC control, case 6: Manipulated variables 

 

 
(a)Temperature at the riser top (K)    

 
(b)Temperature in the regenerator 

(K)   
Fig 27. QDMC control, case 7: Controlled variables 

 
 

 
  (a)Flow rate of regenerated 

catalyst (kg.s
1−

)    

 
  (b)Flow rate of regenerated 

catalyst (kg.s
1−

)    
Fig. 28. QDMC control, case 7: Manipulated variables 

 
 

9  FCC parameters estimation 
 
Many parameters of the FCC are difficult to measure. The 
coke content of catalyst at the regenerator exit and the coke 
content on the catalyst at the riser top are among the main 
parameters. Other parameters although measurable, must be 
estimated to allow a monitoring of the process and to 
continue to control the process even when some sensors are 
faulty. This includes for example the temperature in the 
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differents bed of the regenerator and the temperature in the 
riser. 
 The estimation technique used is based on the extended 
Kalman filter to which the MPC control system of the FCC 
is coupled. This enables us to have an estimation of some 
parameters while controlling on line the system. The 
estimation is used here for monitoring purpose. The 
estimated variables are not used by the predictive control 
part. 
 
9.1   Estimation of state parameters principles 
The EKF is an extension of the linear Kalman filter in the 
case of a non linear system. The nonlinear model is 
linearized in the prediction phase, then a correction using the 
Kalman gain and measurements is performed in order to 
obtain the state estimations [14]. 
 In the present case, the continuous-discrete EKF is used 
as in most industrial cases [21]. It is based on a continuous 
time model and discrete measurements. 
 The state equation is represented by  
 

wtuxftx +),,,(=)( θ!  (16) 
 
w  is a Gaussian noise of zero mean with covariance matrix 
Q . At time k , the output equation is represented by  
 

kkk vxhz +)(=  (17) 
 
 where kv  is a discrete Gaussian white noise of zero mean 

and covariance matrix kR . 

 The states at time k  are estimated using measurements 
at time k . The algorithm is decomposed in a first phase of 
prediction, followed by correction:  
 
 1 Propagation of the state estimation and the error 
covariance:  
 the continuous differential equations describing the 
variation of the state vector x  and of the error covariance 
matrix P  are integrated on the time interval ]1,[ kk −  to 

obtain the predictions respectively noted )(−kx  and 

)(−kP . kz  are the measurements.  
 2 Update of the state estimation and the error covariance:  
 At each sampling instant kt , the state estimation and the 
covariance are updated as  
 
 

)())](ˆ([=)(
))](ˆ([)(ˆ=)(ˆ
−−−+
−−+−+

kkkkk

kkkk

PxHKIP
xhzKxx

 (18) 

  
where kK  is the Kalman gain matrix given by 

 

1]))(ˆ()())(ˆ())[(ˆ()(= −+−−−−− k
T
kkkkk

T
kkk RxHPxHxHPK

 (19) 
 
 and kH  is the jacobian h given by 
 

)(ˆ=

=))(ˆ(
−

⎟
⎠
⎞⎜

⎝
⎛
∂
∂−

kxx
kk x

hxH  (20) 

 
 The corrected estimations are )(ˆ +x  and )(+kP .  
 
9.2   Results and discussion 
The tuning of the Kalman filter is done with the values in 
Table 9. 
∫ Tuning parameters of Kalman filter 

 Parameters   Values  
Number of measured outputs   2 
Number of estimated states   5 

standart deviation measurement noise de 
mesure  

 0.3=σ   

Covariance matrix Q   diagonal 
10 3−  

Covariance matrix R    diagonal 2σ  
Initial values of estimated states  

Mass fraction of coke in the separator   0.01 
Separator temperature (K)   780 

Mass fraction of coke in the regenerator   0.0032 
Regenerator temperature (K)   970 

Molar fraction of O 2  in the regenerator   0.004 

   
 Figures 30 (a), 30 (b), 29 (a), 29 (b) present the 
estimated parameters such as mass fraction of coke on the 
catalyst in the regenerator, mass fraction of coke on the 
catalyst in the separator and measure and estimated 
temperature in the regenerator molar fraction of oxygen in 
the regenerator. When we examin these results, we see that 
extended Kalman filter gives a good estimate of all these 
parameters. 
 A study of the robustness of the estimator have been 
carried out. For this reason, the model used for the 
estimation has been chosen volontarily different from the 
process model consider as perfect. The difference in the 
model concern some constant for which we have chosen 
differents values. So, the hold up of solid in the regenerator 
is decrease of 0.1% . 
 Figures 29 (c) present the measured temperature and the 
estimated temperature with the estimator model different 
from the real process model. We notice that the estimation 
gives reliable results even in the case of erronoeus model use 
by Kalman filter., this is normal because the temperature is 
measured and the estimator just filters the measures. Figure 
30 (c) presents mass fraction of coke in the regenerator in 
the case of the estimator model different to the process 
model. We notice an estimation which present a great 
deviation which increases with time. This is tied to the 
influence of the model errors on certains estimations. In fact, 
the decrease of the hold up of catalyst in the regenerator of 
0.1%  is enough to increase the mass fraction of coke 
produced; this is justified when we look at the differential 
equation which describe the mass fraction of coke in the 
regenerator. We have to notice that an important 
modification of the model does not permit a reliable 
estimation for, the reduced system use by Kalman filter can 
become unstable. In fact, the problem is tied to the 
instability of the process due to the recycle coke as soon as 
we go too much beyong it nominal state. Figure 30 (d) 
present the estimation of the mass fraction of coke in the 
regenerator, the real coke in the regenerator, the coke with 
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the modified model of the estimator and the coke at the riser 
top. We notice that the regenerator is run on partial 
combustion mode for the coke is not completly burn in the 
regenerator.We also notice that the coke in the regenerator 
has the same appearance as the coke at the riser top, the only 
different being the different amplitude level which is due to 
coke combustion in the regenerator. 

 
(a) Measured and estimated 
temperature in the regenerator    

 
(b) Molar fraction estimated and 

theoritical in the regenerator 

 
( c ) Robustness: Temperature in the regenerator 

Fig.  29. Temperature, molar fraction  
 

 
(a) Estimated and theoritical coke 

in the regenerator 

 
(b)Estimated and theoritical coke 

in the separator 

 
(c ) Estimation of coke in the 

regenerator with modified model 
and real coke  

 
(d) Estimation of 

regenerator coke with modified 
model, real coke, coke at the top of 
the riser 
 

Fig.  30. theoritical, estimated, modified model parameters 
 

    
10  Conclusion 

  
In this work, model predictive control algorithm was used 
along with the extended Kalman filter for online state 
estimation and control of the FCC unit . The manipulated 
variable used were the regenerated catalyst flow rate , the 
flow rate of air to the regenerator and the flow rate of feed to 
the riser . A novel four transfer functions were identified and 
proposed. Two control structures were studied, 2X2 and 
3X2. Simulation results showed a very good tracking of the 
set points of the top or riser and regenerator temperatures 
and feed disturbances were well rejected. As these 
temperatures were successfully followed despite the strong 
interactions between the riser and the regenerator, the yield 
of products such as gasoline and, more generally, the overall 
yield of an FCC unit can be improved while taking into 
account the different constraints of the process. MPC tuning 
was studied and showed that the filtering of the set point 
brings more smoothness and that it is important to use large 
weights on the outputs to achieve good tracking. Online state 
estimation is carried out. Results show estimation that are 
reliable even when model mismatch is tested.  

______________________________ 
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