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Abstract 
 
Standard particle swarm optimization algorithm has problems of bad adaption and weak robustness in the parameter 
estimation model of chaotic control systems. In light of this situation, this paper puts forward a new estimation model 
based on improved particle swarm optimization algorithm. It firstly constrains the search space of the population with 
Tent and Logistic double mapping to regulate the initialized population size, optimizes the fitness value by evolutionary 
state identification strategy so as to avoid its premature convergence, optimizes the inertia weight by the nonlinear 
decrease strategy to reach better global and local optimal solution, and then optimizes the iteration of particle swarm 
optimization algorithm with the hybridization concept from genetic algorithm. Finally, this paper applies it into the 
parameter estimation of chaotic systems control. Simulation results show that the proposed parameter estimation model 
shows higher accuracy, anti-noise ability and robustness compared with the model based on standard particle swarm 
optimization algorithm. 
 
Keywords: Particle swarm optimization algorithm, chaotic control system, parameter estimation, double mapping constraint, 
evolutionary state identification, nonlinear decrease, genetic operator optimization. 

 __________________________________________________________________________________________ 
 
1. Introduction 
 
Chaotic motion is an objective and complex form of motion 
with ultimate boundedness and random regulation in nature 
[1]. At the beginning of the chaos phenomenon, the 
singularity, the high sensitivity to subtle change of initial 
conditions and instability make people feel it uncontrollable 
and try best to avoid it in production and experiment. People 
take it for grant that chaos does not possess the same 
synchronization as the periodic solution [2]. Recently, chaos 
science is interpenetrated with variety of disciplines else, 
such as biology, psychology, mathematics, physics, 
electronics, information science, astronomy, meteorology, 
economics, and even in music and art [3]. Among them, 
information security with synchronous chaos is most 
noticeable.  

Chaotic control studies generally include chaotic control, 
synchronous control, and negative control [4]. Ditto et.al 
firstly used OGY method to stably control the fixed point on 
magnetic elastomers, but this method requires much time to 
test whether the system goes into the neighbourhood of 
control action without regularity [5]. On the basis of OGY 
method, Pyragas realized the control of unstable periodic 
obit of chaotic system with retardation of its state variables 

as the feedback [6]. The adaptive control method of chaotic 
system was proposed by Huberman firstly and applied 
bySinha into a system with multiple parameters and high-
dimensional nonlinearity. Under the condition of parameter 
mutation or dynamic alteration by disturbance, the adaptive 
control algorithm proposed by Sinha is efficient for 
recovering the system state [7]. Both of two methods are not 
suitable to control the motion state of the system to an 
unstable orbit, and their control rigidity is not easily 
determined and the initial value range of disturbance 
parameter is also largely limited. Vassiliadsa proposed a 
parameter adaptive control algorithm based on reference 
model and made the chaotic system index approaches to 
target state [8]. Besides them, there are Backstepping 
control, impulse control, sliding-model control, fuzzy 
control and neural network control, and some new ways like 
passive control and constrained control which have achieved 
great attention by many scholars [9]. The parameter 
estimation problem of chaotic system is an inverse problem 
of kinetic study with the data in test and operation and the 
system identification technology to build the mathematic 
model  reflecting  the  essence  of  system   and  identify  the  
undetermined parameters. This is the traditional grey box 
model [10]. Chen estimated the parameters of objective 
system with parameter adaptive method and achieved the 
generalized synchronization [11]. Yassne also reached the 
estimation and synchronization of unknown systematic 
parameters [12]. Wang raised a kind of parallel genetic 
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algorithm for synchronous optimization of PID structure and 
parameter. Guan gave a concept of parameter identification 
observer, translating parameter identification problem into 
observation problem. Therefore, the design of observer is 
available for the parameter identification problem of the 
Lorenz system [13]. Gao et.al introduced improved PSO 
algorithm for the estimation and online estimation of Lorenz 
system [14]. Dai Dong constructed an appropriate fitness 
function which translated the parameter estimation problem 
to a parameter optimization problem with genetic algorithm 
[15].  

In view of the problem that the parameter estimation 
model of current chaotic control system after adding noise 
has a low precision, this paper designed a parameter 
estimation model based on improved particle swam 
algorithm, with double mapping constraint strategy, 
evolution state judgement strategy, nonlinear decrease 
strategy, and crossover operator strategy to increase the 
robustness of this algorithm in chaotic control systems.  
 
 
2.  The Shortcomings of PSO Algorithm in Chaotic 

Control Parameter Estimation  
 
The proposal of Lorenz chaotic system opened a new era for 
chaotic system theory and its application. Lorenz chaotic 
system is a dynamic system with singular attractor. 
 

( )x y x
y x xz y
z xy bz

′ = ⋅ −⎧
⎪ ′ = − −⎨
⎪ ′ = −⎩

σ
γ                                                                 (1) 

 
where parameters 10,=σ 28,=γ  8 / 3b =  and this equation 
represents the chaotic system. A simple physical 
implementation is a circulation in heat convection tube 
where fluid is heated upside while cooled downside. At this 
time, x is the fluid velocity, y and z is the perpendicular and 
vertical temperature difference; σ is proportional to Prandtl 
number of fluid, b is a constant about space, and γ is 
proportional to Rayleigh number. 

In terms of chaotic system, the known systematic 
parameter σ and unknown parameter b is usually studied. 
However, the dynamic information of unknown parameter is 
difficult to obtain. Therefore, it is supposed that 0b′ = , and 
unknown parameter b is seen as a state variable, then an 
augmented state variable [ ] ,T Tx y z b⎡ ⎤

⎣ ⎦  is acquired. 

Moreover, if all the state in equation (1) is available, only 
unknown parameters are required. 

Particle Swarm Optimization algorithm (PSO), an 
evolutional computation method of swarm intelligence, is 
commonly used in numerical simulation. Suppose a target 
searching space of D dimensional, the PSO randomly 
initializes a swarm with m particles and the position iX of 
particle i is represented as 1 2{ , ,..., }i i iDx x x . This position 
information is added into the optimization estimation 
function to get the fitness value for performance assessment 
of particles. Corresponding flight speed iV is denoted as 

1 2{ , ,..., }.i i iDv v v  In each iteration process, the particle updates 
its velocity and position by tracing two extreme values: one 
is the optimal value so far, namely individually extreme 
value ibestP , .1 .2 .{ , ,..., }ibest ibest ibest DP P P ; the other is optimal 

solution of swarm particles, namely globally extreme value 
gbestP , .1 .2 .{ , ,..., }gbest gbest gbest DP P P [16]. 

Specifically speaking, in 1k + iterative calculation, 
particle i updates its velocity and position with Eq. (2) and 
(3), with velocity limitation in Eq. (4) [17]. 

 
1

1 1 . 2 2 .[ ( ) ( )]k k k k k k
id id ibest d id gbest d idv v c r p x c r p x+ = ⋅ + − + −ω            (2) 

 
1k k k

id id idx x v+ = +                                                                      (3) 
 

1 1
max max

1 1
min min

k k
id id
k k
id id

if v v v v
if v v v v

+ +

+ +

⎧  >  =⎪
⎨  <  =⎪⎩

                                                    (4) 

 
where 1,2,...,i m= ; 1,2,...,d D= ;ω is inertia weight; 1c and 

2c is accelerated factor; 1r and 2r is the random value 
uniformly distributed in interval [0,  1] ; maxv and minv is the 
extreme velocity. 

Then, the estimation process of unknown parameter b of 
chaotic system based on PSO algorithm is shown as follows. 

 

1) Initialization. 
M individuals ( )( 1,2,..., )t

iP k i M=  of the initial population 
are randomly generated, 

min max( )ib P t b≤ ≤ where minb and maxb is the up and down 
limit, and k is the iteration number. 

 
2) Fitness value. 

The corresponding state variable of individual ( )t
iP k  of 

generation k is set as,  
 

( ( ( )), ( ( )), ( ( )))t t t
i i ix P k y P k z P k                                              (5) 

 
According to the measured systematic state 

variables ( )( ),  ( ),  ( )x t y t z t , the fitness value is calculated, 
 

2 2 2
1 2 3

0
( , , )

T

i
t

f
=

=∑ η η η                                                               (6) 

 
where, 

 

1

2

3

( ( ) ( ))
( ( ) ( ))
( ( ) ( ))

t
i
t
i
t
i

x P k x t
y P k x t
z P k x t

⎧ = −
⎪ = −⎨
⎪ = −⎩

η
η
η

                                                          (7) 

 
t is a series of discrete-time sequence from 0 to T. 
 
3) Optimization.  

PSO algorithm is used for current population optimization. 
 
4) Stop condition. 

If 100k ≤ , then step ends; otherwise, 1k k= + , go back to 
step (2). 

 
Generally speaking, in a pre-estimated unknown 

parameter interval, the solution space of objective function 
(6) is multimodal with complex structures. Comparing with 
other searching methods like hill climbing method, method 
of exhaustion and random search method, PSO algorithm 
has its unique advantages but still exists some defects. 
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The estimation process of unknown parameter b of 
chaotic system based on PSO algorithm is popularized and 
added by white noise, as follows, 

 

1

3

2

( )x y x
y xz y
z xy z

′ = ⋅ −⎧
⎪ ′ = − −⎨
⎪ ′ = −⎩

θ
θ

θ
                                                                  (8) 

 
Constructing following system, 
 

   

′x = θ1 ⋅( y − x)

′y = −xz −θ3y

′z = xy −θ2z

L = (x, y,z)

⎧

⎨

⎪
⎪

⎩

⎪
⎪

→

′!x = !θ1 ⋅( !y − !x)

′!y = − !x!z − !θ3 !y

′!z = !x!y − !θ2 !z
!L = ( !x, !y, !z)

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

                           (9) 

 
The objective function is taken as,  
 

   
f (Θ) = L(t)− !L(t)

2

2

t=0

T

∑                                                    (10) 

 
PSO algorithm is used for parameter 

assessment 1 2 3( ,  ,  ).Θ = θ θ θ . We take (10,  10,  10) as the 
initial point, and make it evolve to 100  ( 0.01)T h h= = to 
obtain the standard static variables ( ,  ,  )x y z  at the discrete 
time sequence 0 ,  ,  ...,  ,  100h h h h  of the chaotic system of 
the unknown parameters. Therefore, standard PSO algorithm 
has bad robustness in the parameter estimation of the chaotic 
control system with noises. Thus, we make improvement on 
the PSO algorithm. 
 
 
3.  The Optimization of PSO Algorithm  
 
3.1.  Population Initialization Based on Double Mapping 
 
In order to improve the accuracy of the parameter 
estimation, the population initialization should be firstly 
optimized to limit the search space of PSO algorithm. This 
paper takes the strategies of double mapping, Tent mapping 
and Logistic mapping, to improve it [18]. 

The sequence from Tent mapping is defined as,  
 

1

,0

1 , 1
1

n
n

n
n

n

x x
x

x x
+

⎧ ≤ ≤⎪⎪= ⎨ −⎪ ≤ ≤
⎪ −⎩

σ
σ

σ
σ

                                                   (11) 

 
where (0,  1)∈σ , the sequence by Tent mapping has 
ergodicity  and uniformity, and it is not sensitive to the 
initial value. When 0.5=σ , the mapping subsection under 
this situation is shown below,  

 

14 ,0
4

1 12 4 ,
4 2
1 34 2,
2 4
34(1 ), 1
4

n n

n n

n

n n

n n

x x

x x
x

x x

x x

⎧ ≤ ≤⎪
⎪
⎪ − ≤ ≤⎪

= ⎨
⎪ − ≤ ≤
⎪
⎪
⎪ − ≤ ≤
⎩

                                                  (12) 

 
The definition of Logistic mapping is [19],  
 

1 ( ) (1 )n n n na f a a a+ = = ⋅ ⋅ −µ                                             (13) 
 

where 0 1, 1,  2,  ...na n< < = , meaning both the input and 
output of Logistic mapping is distributed in (0,  1).  
Compared with Tent mapping, it is a nonlinear mapping, and 
the segmented nonlinear Logistic mapping is defined as 
follows [20],  

 

1

4 (0.5 ),                   0 0.5
1 4 ( 0.5) (1 ),    0.5 1

n n n
n

n n n

a a a
a

a a a+

⋅ ⋅ − ≤ <⎧
= ⎨ − ⋅ − ⋅ − ≤ <⎩

µ
µ

            (14) 

 
In globally convergent PSO algorithm, if the initial 

population is inappropriate, the result will possibly reach the 
local optimum. To solve the convergence problem affected 
by initial population, this paper adopts double mapping 
strategy to generate the initial population for the PSO 
algorithm due to the randomness and sensitiveness to the 
initial value of chaotic mapping. 

This paper takes the chaotic mapping mentioned above 
to generate the velocity and position of initial population, 
includes three steps following. 

 

1) Firstly, the random sector 1 D⋅ of position 1X and 
velocity 1V of one of two particles representing the 
population is generated and each subsection of the 
vector is valued among (0,  1) . 

2) 2 ( 1)N⋅ − vectors are generated by iteration of 
equation (15) and (16), representing the position 

2 3, ,..., NX X X and velocity 2 3, ,..., NV V V of the 1N −  
particles left. 

 

,
.

4 4 ( 1,  )(0.5 ( 1,  )),
0 ( 1,  ) 0.5

( 1, )
1 4 4(1 ( 1,  ))( ( 1,  ) 0.5)

0 5 ( 1,  ) 1

X i d X i d
X i d

X i d
X i d X i d

X i d

⋅ − − −⎧
⎪                 < − <⎪+ = ⎨ − ⋅ − − − −⎪
⎪                 ≤ − <⎩

  (15) 

 

,
.

4 4 ( 1,  )(0.5 ( 1,  )),
0 ( 1,  ) 0.5

( 1, )
1 4 4(1 ( 1,  ))( ( 1,  ) 0.5)

0 5 ( 1,  ) 1

V i d V i d
V i d

V i d
V i d V i d

V i d

⋅ − − −⎧
⎪                          < − <⎪+ = ⎨ − ⋅ − − − −⎪
⎪                         ≤ − <⎩

    (16) 

 

3) Because the initial value is among (0,  1) from these 
two steps, different optimization problems require 
different optimization interval.  Therefore,  we map the  
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initial position and velocity from above steps into the 
appointed search space ( ,  )id idS S−  according to (17). 

 
( ,  ) (2 ( ,  ) 1)
( ,  ) (2 ( ,  ) 1)

id

id

X i d S X i d
V i d S V i d

= ⋅ ⋅ −⎧
⎨ = ⋅ ⋅ −⎩

                                        (17) 

 
It is completed with double mapping in three steps to 

generate initial population of PSO algorithm. 
 
 
3.2.  Particle Fitness Optimization Based on Evolutional 

Status Prediction 
 
To avoid the premature convergence due to the inappropriate 
fitness value, this paper takes evolutionary state 
identification strategy to select the fitness value, including 
following steps. 
1) In each stage of population evolution, the mean 

Euclidean distance between each particle and other 
particles is calculated as its mean distance under 
current evolutionary state. 

 

2

1, 1

1 ( )
1

N D
k k

i i j
j j i k

d x x
N = ≠ =

= −
− ∑ ∑                                   (18) 

 

2) The mean distance between the global optimal particle 
and other particles is labelled as gd , and the maximum 

distance maxd and minimum mean distance mind  is 
selected to calculate the evolutionary factor fof current 
state. 

 
min

max min

[0,  1]gd d
f

d d
−

= ∈
−

                                                 (19) 

 

3) Different evolutionary factors represent different 
evolutionary states, divided into four state sets: 
detection, development, convergence, and exit denoted 
as 1S , 2S , 3S and 4S , respectively. Because the division 
of evolutionary factor is fuzzy and uncertain, this paper 
chooses fuzzy classification method to classify the 
evolutionary state of population. 
 

I. 1S :At the beginning of algorithm, the particles in 
initial population are dispersed without the 
spatial feature of the solution, therefore, the 
membership function is defined as,  

 

1

0,                     0 0.4
5 2,        0.4 0.6

( ) 1,                   0.6 0.7
10 8,    0.7 0.8

0,                  0.8 1

f
f f

S f f
f f

f

≤ ≤⎧
⎪ ⋅ − < ≤⎪⎪= < ≤⎨
⎪− ⋅ + < ≤⎪
⎪ < ≤⎩

µ                           (20) 

 
II. 2S :After ceaseless iteration, the solution space 

region is approaching, the particles in the 
population will be close to the optimal region. 
At this time, the membership function is 
defined as,  
 

2

0,                   0 0.2
10 2,    0.2 0.3

( ) 1,                0.3 0.4
5 3,   0.4 0.6

0,               0.6 1

f
f f

S f f
f f

f

≤ ≤⎧
⎪ ⋅ − < ≤⎪⎪= < ≤⎨
⎪− ⋅ + < ≤⎪
⎪ < ≤⎩

µ                             (21) 

 

III. 3S :All the particles will collect together around 
optimal solution after iterations, here, the 
membership function is defined as,  

 

3

1,                     0 0.1
( ) 5 1.5,   0.1 0.3

0,                  0.3 1

f
S f f f

f

≤ ≤⎧
⎪= − ⋅ + < ≤⎨
⎪ < ≤⎩

µ                           (22) 

 

IV.  4S : When the algorithm is constrained to the local 
optimum, the real global optimal solution will 
deviate the centre of current population, then 
the membership function is defined as,  

 

4

1,                    0 0.7
( ) 5 3.5,    0.7 0.9

1,                  0.9 1

f
S f f f

f

≤ ≤⎧
⎪= ⋅ − < ≤⎨
⎪ < ≤⎩

µ                            (23) 

 
From Eqs. (20) & (23), we can see that when the 

population stays at the transition stage, two membership 
functions are activated. It has two evolutionary states if only 
judged by the f , thus we cannot determine the final state. 
 
 
3.3.  Inertia Weight Optimization Based on Nonlinear 

Decrease 
 
The inertia factor ω of PSO algorithm is one of the 
parameters of great importance. In order to possess better 
dynamic property and help search the optimal solution in the 
global and local search area, this paper takes the nonlinear 
decrease strategy to optimize it. 

 
2

max

max

( )( / )
( )(2 / )

i start end i

start end i start

t t
t t

= −
        + − +
ω ω ω

ω ω ω
                          (24) 

 
where the maximum iteration number is denoted as max ,t  

it is current iteration time, startω and endω is the maximum 
and minimum  value of inertia factor. Similarly, the inertia 
factor is firstly valued with a maximum ,startω  and then 
nonlinearly decreases with the iteration. The ω value of 
each stage is calculated by (24) until the minimum endω is 
reached. 

In addition, to reach the local optimal solution as quickly 
as possible, this paper makes improvement on the global and 
local search ability in the iteration period. Thus, the velocity 
equation is adjusted to another one with inertia factor. 

 
1 1

2 2

( 1) ( ) ( ( ) ( ))
( ( ) ( ))

id id id id

id id

v t v t c r p t x t
c r np t x t

+ = + −
                  + −

ω
                     (25) 
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Therefore, it can have good performance in searching the 
optimal with a higher accuracy and faster convergence 
speed. 
 
 
3.4.  Particle Iteration Based on Genetic Operator 
 
After the inertia weight is optimized by nonlinear decrease, 
the PSO algorithm is further optimized by hybridization of 
genetic algorithm. Firstly, we select the particles with a 
certain of determined crossover probability by users. Then, 
random assortment between particles is conducted to 
generate children particles of same amount, and replace the 
parent particles so as to keep constant the particle number. 
The updating equation for the particle position is,  

 

   child1(
!
X ) =

!
P ⋅ parpent1(

!
X )+ (1−

!
P) ⋅ parpent2(

!
X )  (26) 

 

   child2(
!
X ) =

!
P ⋅ parpent2(

!
X )+ (1−

!
P) ⋅ parpent1(

!
X )  (27) 

 
where   

!
X is d dimensional position vector, 

( )kchild X
r

and
   parpentk (

!
X ), 1,  2k =  represents the position 

of child particle and parent particle, respectively;   
!
P is                       

d-dimensional uniformly distributed random vector, which is 
valued among [0,  1] . The velocity of particle is updated 
from equations below. 

 

   
child1(

!
V ) =

parpent1(
!

V )+ parpent2(
!

V )
parpent1(

!
V )+ parpent2(

!
V )

⋅ parpent1(
!

V )  (28) 

 

 
   
child2(

!
V ) =

parpent1(
!

V )+ parpent2(
!

V )
parpent1(

!
V )+ parpent2(

!
V )

⋅ parpent2(
!

V )  (29) 

 
where   

!
V is d dimensional position vector, 

   childk (
!

V ) and 

   parpentk (
!

V ),  1,  2k = represents the velocity of child 
particle and parent particle, respectively. 
 
 
4.  Simulation Experiment 
 
To verify the effectiveness of the improved algorithm, this 
paper conducted the simulation experiment. It chose three 
typical function optimization problems to test the 
performance of improved PSO algorithm. In this paper, the 
initial population size is set as   Size = 100 , learning 
factor 1 2 1.5c c= = , 0.9,start =ω 0.9,end =ω  maximum 
iteration step 100T = . Three typical functions are shown as 
follows. 
 

1) Sphere function,  
 

2
1( )

n

i
i

f x x=∑                                                           (30) 

 
Global optimum point, 0,ix = 1( ) 0f x = , 100 100ix− ≤ ≤ . 
 

2) Rosenbrock function, 
 

( ) ( )( )1
2 22

2 i+1 i i i
1

( ) 100 x -x + x - ,   30 x 30
n

i
f x

=

= ⋅ − ≤ ≤∑   (31) 

Its optimal state and optimal value is,  
 

*min ( ) (1,  1,  ,  1) 0f x f= =K                                        (32) 
 

3) Rastrigrin function, 
 

2
3 i i

1
( ) ( 10cos(2 x )+10),   5.12 x 5.12

n

i
i

f x x
=

= − − ≤ ≤∑ π  (33) 

 
Its optimal state and value is,  
 

3
0

( ) (0,  0,  ,  0) 0
n

i
f x f

=

= =∑ K                                         (34) 

 
Simulation experiment is conducted on a computer with 

2.8GHZ CPU, 2G memory and Matlab 7.0. The simulation 
results are listed in Table 1 and shown in Figs. 1-3. 

 
Functions Optimization Average Success 

 rate / % 
Execution  

time / s 

Sphere 
PSO 1.45×10-

55 80.6 10.33 

IM-PSO 1.06×10-
77 93.7 5.66 

Rosenbrock 
PSO 10.31×10-

1 86.2 11.03 

IM-PSO 2.46×10-
10 94.8 9.11 

Rastrigin PSO 2.95×10-1 76 18.6 
IM-PSO 1.46×10-3 94.9 17.1 

 

Tab. 1. The results for the test. 
 

 

 
Fig. 1. The Rosenbrock function optimization process. 

 
 

 
 

Fig. 2. Rastrigin function optimization process. 
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Compared with original PSO algorithm, the improved 
PSO algorithm presented in this paper is faster, more stable 
and easier to reach the optimum value. 

Then, this improved PSO algorithm is used for parameter 
estimation firstly under the condition without noise, shown 
in Fig. 4. 

 

 
Fig. 3. the Sphere function optimization process. 

 

 

 
Fig. 4. Parameters noiseless case compared with the estimated. 

 
 
 
 
 
 

Taking into consideration of noises, the standard state 
variable ( ,  ,  )x y z  is superimposed by white noises in 
[ 0.1,  0.1]−  with the comparable results in Figure 5. 

 

 
Fig. 5. Parameters are compared with the estimated noise case. 

 
From the simulation result, the parameter estimation 

model of chaotic control system based on improved PSO 
algorithm shows little difference with standard PSO 
algorithm under the condition without noise, but have better 
robustness under noises. 
 
 
5. Conclusion 
 

There exist a lot of problems in current chaotic control 
and synchronous control methods, such as incomplete state 
variables of chaotic system, partially unknown or totally 
unknown parameters, and disturbance in systematic 
parameters. This paper proposes a parameter estimation 
model of chaotic control system based on improve PSO 
algorithm. Simulation results show that the proposed model 
has higher accuracy and stronger robustness in parameter 
estimation. 
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