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Abstract 
 
Chaos theory has wide applications and its importance can be seen by the voluminous publications on various 
applications in several branches of science, commerce and engineering. Control, tracking or regulation and 
synchronization of different types of chaotic systems are importance areas of research in the control literature and 
various methods have been adopted over the past few decades for tackling these research problems. Also, the discovery 
of novel chaotic and hyperchaotic systems in various applications, their qualitative properties and the control of such 
systems are also important research areas in chaos theory. This paper announces a novel 4-D hyperchaotic Rikitake 
dynamo system, which is derived by adding a state feedback control to the famous 3-D Rikitake two-disk dynamo 
system (1958). The frequent and irregular reversals of the Earth’s magnetic field inspired a number of early studies 
involving electrical currents within the Earth’s molten core. One of the first such models to exhibit reversals was 
Rikitake’s two-disk dynamo system (Rikitake, 1958). This paper discusses the qualitative properties of the novel 
hyperchaotic Rikitake dynamo system. We note that the novel hyperchaotic Rikitake dynamo system has no equilibrium 
points. The Lyapunov exponents of the hyperchaotic Rikitake dynamo system are found as 𝐿! = 0.09136, 𝐿! =
0.02198, 𝐿! = 0 and 𝐿! = −2.11190.  The Kaplan-Yorke fractional dimension of the novel hyperchaotic Rikitake 
dynamo system is found as 𝐷!" = 3.05367.   Next, this paper discusses control and synchronization of the novel 
hyperchaotic Rikitake dynamo system with unknown parameters using adaptive control method. The main results are 
established using Lyapunov stability theory and numerically illustrated using MATLAB. Finally, for the 4-D novel 
hyperchaotic system, an electronic circuit realization in SPICE has been described to confirm the feasibility of the 
theoretical hyperchaotic Rikitake dynamo model. 
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 __________________________________________________________________________________________ 
 
1. Introduction 
 
Chaotic systems are defined as nonlinear dynamical systems 
which are very sensitive to initial conditions, topologically 
mixing and also with dense periodic orbits [1]. The first 3-D 
chaotic system was experimentally verified by Lorenz [2].  

The sensitivity to initial conditions of a chaotic system is 
indicated by a positive Lyapunov exponent.  If the sum of all 
Lyapunov exponents is negative, then the chaotic system is 
called a dissipative system. 

Great interest has been shown in the chaos literature in 
the modelling of many 3-D chaotic systems such as Rössler 
system [3], Rabinovich system [4],  ACT system [5], Sprott 

systems [6], Chen system [7], Lü system [8], Shaw system 
[9], Feeny system [10], Shimizu system [11], Liu-Chen 
system [12], Cai system [13], Tigan system [14], Colpitt’s 
oscillator [15], WINDMI system [16], Zhou system [17], etc. 

Recently, many 3-D chaotic systems have been 
discovered such as Li system [18], Elhadj system [19], Pan 
system [20], Sundarapandian system [21], Yu-Wang system 
[22], Sundarapandian-Pehlivan system [23], Zhu system 
[24], Vaidyanathan systems [25-33], Vaidyanathan-
Madhavan system [34], Pehlivan-Moroz-Vaidyanathan 
system [35], Pham systems [36-37], etc. 

 Chaos theory has many important applications in 
science  and engineering  such  as  vibration  control [38-40], 
oscillators [41-43], robotics [44-47], chemical reactors [48-
50], biology [51,52], ecology [53,54], cardiology [55], 
memristors [56-58], neural networks [59-61], secure 
communications [62-65], cryptosystems [66-69], networks 
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[70, 71], economics [72-74], market forecasting [75], etc. 
Several works have been carried out by researchers in 
exploring new applications of chaos theory in diverse fields. 

Chaos control and chaos synchronization are important 
research problems in the chaos theory. In the last three 
decades, many mathematical methods have been developed 
successfully to address these research problems. 

The study of control of a chaotic system investigates 
methods for designing feedback control laws that globally or 
locally asymptotically stabilize or regulate the outputs of a 
chaotic system.  

Many methods have been developed for the control and 
tracking of chaotic systems such as active control [76-80], 
adaptive control [81-87], backstepping control [88-90], 
sliding mode control [91, 92], etc. 

A hyperchaotic system is generally defined as a chaotic 
system with at least two positive Lyapunov exponents. Thus, 
the dynamics of a hyperchaotic system are expended in 
several different directions simultaneously. Thus, the 
hyperchaotic systems have more complex dynamical 
behaviour and hence they have miscellaneous applications in 
engineering such as secure communications [93-95], 
cryptosystems [96-98], encryption [99-101], electrical 
circuits [102-105], etc. 

Chaos synchronization problem deals with the 
synchronization of a couple of systems called the master or 
drive system and the slave or response system. To solve this 
problem, control laws are designed so that the output of the 
slave system tracks the output of the master system 
asymptotically with time.  

Because of the butterfly effect, the chaos 
synchronization problem is seemingly a challenging research 
problem even when the initial conditions of the master and 
slave systems are nearly identical because of the exponential 
divergence of the outputs of the two systems in the absence 
of any control. The synchronization of chaotic systems has 
applications in secure communications [106-109], 
cryptosystems [110,111], encryption [112,113], etc. 

In the chaos literature, many different methodologies 
have been also proposed for the synchronization and anti-
synchronization of chaotic systems such as PC method 
[114], active control [115-125], time-delayed feedback 
control [126,127], adaptive control [128-139], sampled-data 
feedback control [140-142], backstepping control [143-149], 
sliding mode control [150-158], etc. 

The minimum dimension for an autonomous, 
continuous-time, hyperchaotic system is four. Since the 
discovery of the first hyperchaotic system by Rössler in 
1979 [159], many 4-D hyperchaotic systems have been 
reported in the literature such as hyperchaotic Lorenz system 
[160], hyperchaotic Lü system [161], hyperchaotic Chen 
system [162], hyperchaotic Wang system [163], 
hyperchaotic Newton-Leipnik system [164], hyperchaotic 
Vaidyanathan systems [165-167], etc. 

In this research work, a novel 4-D hyperchaotic Rikitake 
dynamo system has been proposed, which is derived by 
adding a feedback control to the famous 3-D Rikitake two-
disk dynamo system (1958) found by Rikitake [168]. An 
extensive study by Cook and Roberts (1970) established 
chaos in the Rikitake two-disk dynamo system [169].  

The 4-D novel hyperchaotic Rikitake dynamo system 
proposed in this research work has the Lyapunov exponents 
𝐿! = 0.09136, 𝐿! = 0.02198, 𝐿! = 0 and 𝐿! = −2.11190.  

Also, the Kaplan-Yorke dimension of the 4-D 
hyperchaotic Rikitake dynamo system is found as 
𝐷!" = 3.05367.  

It is noted that the novel hyperchaotic Rikitake dynamo 
system does not have any equilibrium point, which is a novel 
feature of the system.  

Some examples of hyperchaotic system without an 
equilibrium point are Wang’s system [170], Pham’s systems 
[171,172], etc. 

According to a new classification of chaotic dynamics 
[173,174], there are two types of attractors: self-excited 
attractors and hidden attractors. A self-excited attractor has a 
basin of attraction that is excited from unstable equilibria. In 
contrast, hidden attractor cannot be found by using a 
numerical method in which a trajectory started from a point 
on the unstable manifold in the neighbourhood of an 
unstable equilibrium [173]. Studying hyperchaotic systems 
with hidden attractors is still an open research 
problem[175,176]. 

The paper is organized as follows. In Section 2, we 
describe the equations and phase portraits of the novel 
hyperchaotic Rikitake dynamo system. In Section 3, we 
derive the qualitative properties of the novel hyperchaotic 
Rikitake dynamo system. In Section 4, we derive an adaptive 
controller for the stabilization of 4-D novel hyperchaotic 
Rikitake dynamo system with unknown parameters.  

In Section 5, we derive an adaptive controller for the 
synchronization of identical 4-D novel hyperchaotic 
Rikitake dynamo systems with unknown parameters. Section 
6 contains a circuit realization of the proposed 4-D 
hyperchaotic Rikitake dynamo model. Section 7 concludes 
this research work with a summary of main results. 

 
 

2. A 4-D Novel Hyperchaotic Rikitake Dynamo System 
 
The frequent and irregular reversals of the Earth’s magnetic 
field inspired a number of early studies involving electrical 
currents within the Earth’s molten core. One of the first such 
models to report reversals was the Rikitake two-disk 
dynamo model [168]. 

The dynamics of the 3-D Rikitake two-disk dynamo 
system is described by 
 
!!!
!"

= −𝑎𝑥! + 𝑥!𝑥!
!!!
!"

= −𝑎𝑥! + 𝑥! 𝑥! − 𝑏
!!!
!"

= 1 − 𝑥!𝑥!

      (1) 

 
where 𝑥!, 𝑥!, 𝑥!  are the states and 𝑎, 𝑏   are constant, positive 
parameters. We note that the Rikitake dynamo system (1) 
has the same number of terms as the Lorenz chaotic system 
[2] but with an additional quadratic nonlinearity.  

The parameter 𝑎 represents resistive dissipation and the 
parameter 𝑏 represents the difference in the angular 
velocities of the two disks.  

The Rikitake dynamo system (1) depicts a chaotic 
attractor when the parameter values are taken as: 
 
𝑎 = 1   𝑏 = 1             (2) 
 

For numerical simulations, we take the initial conditions 
of the 3-D Rikitake two-disk dynamo system (1) as   
𝑥! 0 = 0.8,   𝑥! 0 = 0.2,    and   𝑥! 0 = 0.4. 

Also, for the parameter values given in (2), the 
Lyapunov exponents of the Rikitake dynamo system (1) are 
calculated as 𝐿! = 0.12829, 𝐿! = 0 and 𝐿! = −2.12736. 
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The 3-D portrait of the two-scroll chaotic attractor of the 
Rikitake dynamo system (1) for the parameter values given 
in (2) is depicted in Fig. 1.  

 
 
Fig. 1. The 2-scroll attractor of the Rikitake dynamo system in 𝑅!. 
 
 

In this work, we derive a novel 4-D hyperchaotic 
Rikitake dynamo model by adding a state feedback control 
to the 3-D Rikitake dynamo model (1) as follows. 

  
!!!
!"

= −𝑎𝑥! + 𝑥!𝑥! − 𝑝𝑥!
!!!
!"

= −𝑎𝑥! + 𝑥! 𝑥! − 𝑏 − 𝑝𝑥!
!!!
!"

= 1 − 𝑥!𝑥!
!!!
!"

= 𝑐𝑥!

     (3) 

  
where 𝑥!, 𝑥!, 𝑥!, 𝑥!  are the state variables and 𝑎, 𝑏, 𝑐, 𝑝 are 
constant, positive, parameters. 

The 4-D system (3) is hyperchaotic when the parameter 
values are taken as 

 
𝑎 = 1, 𝑏 = 1, 𝑐 = 0.7, 𝑝 = 1.7       (4) 

  
For numerical simulations, we take the initial values of 

the 4-D system (3) as 𝑥! 0 = 0.8, 𝑥! 0 = 0.2, 𝑥! 0 = 0.4 
and 𝑥! 0 = 0.6.  

The Lyapunov exponents of the 4-D system (3) are 
calculated as: 

 

 

𝐿! = 0.09136
𝐿! = 0.02198
𝐿! = 0
𝐿! = −2.11190

      (5) 

  
Thus, the 4-D system (3) has two positive Lyapunov 

exponents, which shows that the system is hyperchaotic. 
Hence, the hyperchaotic Rikitake dynamo system (3) has 
very complex dynamics. 

The Kaplan-Yorke dimension of the hyperchaotic 
Rikitake system (5) is obtained as:  
 𝐷!" = 3 + !!!!!!!!

!!
= 3.05367     (6) 

  
Figures 2-5 depict the 3-D phase portraits of the 4-D 

hyperchaotic Rikitake dynamo system (3) in 𝑥!, 𝑥!, 𝑥! , 
𝑥!, 𝑥!, 𝑥! , 𝑥!, 𝑥!, 𝑥! , and 𝑥!, 𝑥!, 𝑥!  spaces, respectively. 

 
 

Fig. 2. The 3-D projection of the hyperchaotic Rikitake dynamo system 
on the (𝑥!, 𝑥!, 𝑥!) space. 

 
 

Fig. 3.  The 3-D projection of the hyperchaotic Rikitake dynamo system 
on the (𝑥!, 𝑥!, 𝑥!) space. 

 
Fig. 4. The 3-D projection of the hyperchaotic Rikitake dynamo system 
on the (𝑥!, 𝑥!, 𝑥!) space. 
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Fig. 5. The 3-D projection of the hyperchaotic Rikitake dynamo system 
on the (𝑥!, 𝑥!, 𝑥!) space. 
 
 
3. Analysis of the 4-D Hyperchaotic Rikitake System 
 
In this section, qualitative properties of the 4-D novel 
hyperchaotic system are detailed. 
 
 
3.1. Dissipativity 
 
In vector notation, we may express the system (3) as: 
 

!𝒙
!"
= 𝑓 𝒙 =   

𝑓!(𝑥!, 𝑥!, 𝑥!, 𝑥!)
𝑓!(𝑥!, 𝑥!, 𝑥!, 𝑥!)
𝑓!(𝑥!, 𝑥!, 𝑥!, 𝑥!)
𝑓!(𝑥!, 𝑥!, 𝑥!, 𝑥!)

      (7) 

 
where 
 
𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4) = −𝑎𝑥! + 𝑥!𝑥! − 𝑝𝑥!
𝑓2(𝑥1, 𝑥2, 𝑥3, 𝑥4) = −𝑎𝑥! + 𝑥! 𝑥! − 𝑏 − 𝑝𝑥!
𝑓3(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 1 − 𝑥!𝑥!
𝑓4(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑐𝑥!

    (8) 

 
We take the parameter values as in the chaotic case (4). 
Let Ω be any region in   𝑹!  with a smooth boundary and 

also Ω 𝑡 = Φ! Ω , where Φ! is the flow of 𝑓.  
Furthermore, let 𝑉(𝑡) denote the hypervolume of Ω 𝑡 . 
By Liouville’s theorem, we have 
 

!"
!"
= ∇ ∙ 𝑓 𝑑𝑥!𝑑𝑥!𝑑𝑥!𝑑𝑥!!(!)       (9) 

 
The divergence of the novel hyperchaotic Rikitake 

dynamo system (3) is easily found as: 
 

∇ ∙ 𝑓 = !!!
!!!

+ !!!
!!!

+ !!!
!!!

+ !!!
!!!

= −2𝑎 < 0    (10) 
 

Substituting (10) into (9), we obtain the first order ODE 
 

!"
!"
= −𝑎 𝑑𝑥!𝑑𝑥!𝑑𝑥!𝑑𝑥! = −𝑎𝑉!(!)     (11) 

 
Integrating (11), we obtain the unique solution as: 
 

𝑉 𝑡 = exp −𝑎𝑡 𝑉(0)     for all 𝑡 ≥ 0  (12) 

From (12), we find that 𝑉(𝑡) shrinks to zero 
exponentially as 𝑡 → ∞. 

Hence, the 4-D hyperchaotic Rikitake system (3) is 
dissipative and the asymptotic motion of the 4-D 
hyperchaotic system (3) settles exponentially onto a set of 
measure zero, i.e. a strange attractor. 
 
 
3.2.  Equilibrium Points  
 
The equilibrium points of the novel hyperchaotic system (3) 
are obtained by solving the following system of equations 
with the parameter values as in the chaotic case (4): 

  
−𝑎𝑥! + 𝑥!𝑥! − 𝑝𝑥! = 0
−𝑎𝑥! + 𝑥! 𝑥! − 𝑏 − 𝑝𝑥! = 0
1 − 𝑥!𝑥! = 0
𝑐𝑥! = 0

  (13) 

  
Since the last two equations of (13) contradict each 

other, there is no equilibrium point for the 4-D novel 
hyperchaotic Rikitake system (3). 
 
 
3.3. Symmetry and Invariance  
 
It is easy to check that the 4-D novel hyperchaotic Rikitake 
system (3) is invariant under the change of coordinates 
 
𝑥!, 𝑥!, 𝑥!, 𝑥! ⟼ −𝑥!,−𝑥!, 𝑥!,−𝑥!     (14) 

  
Since the transformation (14) persists for all values of 

the system parameters, it follows that the 4-D hyperchaotic 
Rikitake system (3) has rotation symmetry about the 𝑥! axis. 
Hence, any non-trivial trajectory of the system (3) must have 
a twin trajectory. 

It is also easy to check that the 𝑥! axis is invariant under 
the flow of the 4-D hyperchaotic Rikitake system (3). The 
invariant motion along the 𝑥! axis is characterized by the 
scalar dynamics 𝑥! = 1, which is unstable. 
 
 
3.4. Lyapunov Exponents and Kaplan-Yorke Dimension  
 
For the chosen parameter values (4), the Lyapunov 
exponents of the novel 4-D system (3) are obtained using 
MATLAB as: 
 

 

𝐿! = 0.09136
𝐿! = 0.02198
𝐿! = 0
𝐿! = −2.11190

    (15) 

   
Since the spectrum of Lyapunov exponents (15) has two 

positive terms   𝐿!, 𝐿!, the system (3) is hyperchaotic.  
We find that the sum of the Lyapunov exponents in (15) 

is negative, which shows that the hyperchaotic Rikitake 
dynamo system (3) is dissipative.   

Also, the Kaplan-Yorke dimension of the novel 
hyperchaotic Rikitake dynamo system (3) is calculated as: 

  
 𝐷!" = 3 + !!!!!!!!

!!
= 3.05367   (16) 

 
Fig. 5 depicts the dynamics of the Lyapunov exponents 

of the novel hyperchaotic Rikitake system (3). 
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Fig. 6. The dynamics of the Lyapunov exponents of the hyperchaotic 
Rikitake dynamo system. 

 
 

4.  Adaptive Control of the 4-D Novel Hyperchaotic 
Rikitake Dynamo System 

 
In this section, we construct an adaptive controller for 
globally stabilizing the 4-D novel hyperchaotic Rikitake 
dynamo system with unknown parameters.  

We consider the controlled hyperchaotic system 
  

!!!
!"

= −𝑎𝑥! + 𝑥!𝑥! − 𝑝𝑥! + 𝑢!
!!!
!"

= −𝑎𝑥! + 𝑥! 𝑥! − 𝑏 − 𝑝𝑥! + 𝑢!
!!!
!"

= 1 − 𝑥!𝑥! + 𝑢!
!!!
!"

= 𝑐𝑥! + 𝑢!

   (17) 

  
where 𝑥!, 𝑥!, 𝑥!, 𝑥!   are the state variables, 𝑎, 𝑏, 𝑐, 𝑝 are 
unknown, constant, parameters and 𝑢!, 𝑢!, 𝑢!, 𝑢! are 
adaptive controls to be designed using estimates 
𝑎 𝑡 , 𝑏 𝑡 , 𝑐 𝑡 , 𝑝(𝑡) of the unknown parameters 𝑎, 𝑏, 𝑐, 𝑝, 
respectively. 

We consider the adaptive controller defined by 
  

𝑢! = 𝑎(𝑡)𝑥! − 𝑥!𝑥! + 𝑝(𝑡)𝑥! − 𝑘!𝑥!
𝑢! = 𝑎(𝑡)𝑥! − 𝑥! 𝑥! − 𝑏 𝑡 + 𝑝(𝑡)𝑥! − 𝑘!𝑥!
𝑢! = −1 + 𝑥!𝑥! − 𝑘!𝑥!
𝑢! = −𝑐(𝑡)𝑥! − 𝑘!𝑥!

  (18) 

  
where 𝑘!, 𝑘!, 𝑘!, 𝑘!  are positive gain constants, and  
𝑎 𝑡 , 𝑏 𝑡 ,   𝑐 𝑡 , 𝑝(𝑡) are estimates of the unknown 
parameters 𝑎, 𝑏, 𝑐, 𝑝,  respectively. 

Substituting (18) into (17), we obtain 
  

!!!
!"

= − 𝑎 − 𝑎 𝑡 𝑥! − 𝑝 − 𝑝 𝑡 𝑥! − 𝑘!𝑥!
!!!
!"

= − 𝑎 − 𝑎 𝑡 𝑥! − 𝑏 − 𝑏 𝑡 𝑥!
− 𝑝 − 𝑝 𝑡 𝑥! − 𝑘!𝑥!

!!!
!"

= −𝑘!𝑥!
!!!
!"

= 𝑐 − 𝑐 𝑡 𝑥! − 𝑘!𝑥!

    (19) 

 
The parameter estimation errors are defined by 
  

𝑒!(𝑡) = 𝑎 − 𝑎(𝑡)
𝑒!(𝑡) = 𝑏 − 𝑏(𝑡)
𝑒!(𝑡) = 𝑐 − 𝑐(𝑡)
𝑒!(𝑡) = 𝑝 − 𝑝(𝑡)

     (20) 

  
Using (20),  the closed-loop state dynamics (19) can be 

simplified as follows: 
   

!!!
!"

= −𝑒!𝑥! − 𝑒!𝑥! − 𝑘!𝑥!
!!!
!"

= −𝑒!𝑥! − 𝑒!𝑥! − 𝑒!𝑥! − 𝑘!𝑥!
!!!
!"

= −𝑘!𝑥!
!!!
!"

= 𝑒!𝑥! − 𝑘!𝑥!

     (21) 

  
Differentiating (22) with respect to 𝑡, we get 
  

!!!
!"

= − !!
!"

!!!
!"

= − !!
!"

!!!
!"

= − !!
!"

!!!
!"

= − !!
!"

       (22) 

  
Next, we use Lyapunov stability theory for finding an 

update law for the parameter estimates.  
Consider the quadratic Lyapunov function defined by 
  

𝑉 = !
!
𝑥!! + 𝑥!! + 𝑥!! + 𝑥!!+𝑒!! + 𝑒!! + 𝑒!! + 𝑒!! ,  (23) 

 
which is positive definite on 𝑅!. 

Differentiating 𝑉 along the trajectories of (21) and (22), 
we get 

  
!"
!"

= −𝑘!𝑥!! − 𝑘!𝑥!! − 𝑘!𝑥!! − 𝑘!𝑥!!

+𝑒! −𝑥!! − 𝑥!! −
!!
!"

+𝑒! −𝑥!𝑥! −
!!
!"

+ 𝑒! 𝑥!𝑥! −
!!
!"

+𝑒! −𝑥!(𝑥! + 𝑥!) −
!!
!"

  (24) 

  
In view of (24), we take the parameter update law as 
  

!!
!"

= −𝑥!! − 𝑥!!

!!
!"

= −𝑥!𝑥!
!!
!"

= 𝑥!𝑥!
!!
!"

= −𝑥!(𝑥! + 𝑥!)

     (25) 

  
Next, we state and prove the main result of this section. 
 

Theorem 1. The novel hyperchaotic Rikitake dynamo system 
(17) is globally and exponentially stabilized by the adaptive 
control law (18) and the parameter update law (25)  for all 
initial conditions, where 𝑘!, 𝑘!, 𝑘!, 𝑘!   are positive gain 
constants. 

 
Proof. We prove this result using Lyapunov stability theory.  

For this purpose, we consider the quadratic Lyapunov  
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function 𝑉 defined by (23), which is positive definite on 𝑅!.  
Substituting the parameter update law (25) into (24), we 

obtain the time derivative of 𝑉as: 
  

!"
!"
= −𝑘!𝑥!! − 𝑘!𝑥!! − 𝑘!𝑥!  ! − 𝑘!𝑥!!,   (26) 
  

which is a negative semi-definite function on 𝑅!. 
Thus, we can conclude that the state vector 𝑥(𝑡) and the 

parameter estimation error are globally bounded. 
We define 𝑘 = min 𝑘!, 𝑘!, 𝑘!, 𝑘!, . Then we get 
 

!"
!"
≤ −𝑘 𝑥 !  or   𝑘 𝑥 ! ≤ − !"

!"
    (27) 

  
Integrating the inequality (27) from 0 to 𝑡, we get 
  

𝑘 𝑥(𝜏) !𝑑𝜏 ≤ 𝑉 0 − 𝑉(𝑡)!
!      (28) 
  
From (28), it follows that 𝑥 𝑡 ∈ 𝐿!. Using (21), we can 

conclude that 𝑥 ∈ 𝐿!. 
Thus, using Barbalat’s lemma [177], we conclude that 

𝑥(𝑡) → 0 exponentially as 𝑡 → ∞ for all initial conditions 
𝑥 0 ∈ 𝑅!.  

This completes the proof. n 
 
For numerical simulations, the parameter values of the 

novel hyperchaotic Rikitake dynamo system (17) are taken 
as in the hyperchaotic case, viz.   𝑎 = 1, 𝑏 = 1,   𝑐 = 0.7 and 
𝑝 = 1.7.  We take the gain constants as 
𝑘! = 5 for 𝑖 = 1,2,3,4. 

The initial conditions of the hyperchaotic Rikitake 
dynamo system (17) are taken as 𝑥! 0 = 3.5, 𝑥! 0 = 1.7, 
𝑥! 0 = −4.5,  and 𝑥! 0 = 2.8. 

The initial conditions of the parameter estimates are 
taken as  𝑎 0 = 7,  𝑏 0 = 10,  𝑐 0 = 22 and  𝑝 0 = 18. 
Figure 7 describes the time-history of the state 𝑥 𝑡 . 

 

 
 

Fig. 7. Time-history of the controlled states 𝑥!, 𝑥!, 𝑥!, 𝑥!   of the 
hyperchaotic Rikitake dynamo system. 
 
 
5. Adaptive Synchronization of Identical 4-D Novel 
Hyperchaotic Rikitake Dynamo Systems 
 
In this section, we construct an adaptive synchronizer for 
global synchronization of identical 4-D novel hyperchaotic 
Rikitake dynamo systems. The adaptive synchronizer design 
is carried out using Lyapunov stability theory. 

As the master system, we take the hyperchaotic Rikitake 
dynamo system 

 
!!!
!"

= −𝑎𝑥! + 𝑥!𝑥! − 𝑝𝑥!
!!!
!"

= −𝑎𝑥! + 𝑥! 𝑥! − 𝑏 − 𝑝𝑥!
!!!
!"

= 1 − 𝑥!𝑥!
!!!
!"

= 𝑐𝑥!

   (29) 

  
where 𝑥!, 𝑥!, 𝑥!, 𝑥!    are state variables and 𝑎, 𝑏, 𝑐, 𝑝 are 
unknown, constant, parameters. 

As the slave system, we take the novel hyperchaotic 
Rikitake dynamo system 

 
!!!
!"

= −𝑎𝑦! + 𝑦!𝑦! − 𝑝𝑦! + 𝑢!
!!!
!"

= −𝑎𝑦! + 𝑦! 𝑦! − 𝑏 − 𝑝𝑦! + 𝑢!
!!!
!"

= 1 − 𝑦!𝑦! + 𝑢!
!!!
!"

= 𝑐𝑦! + 𝑢!

   (30) 

 
where 𝑦!, 𝑦!, 𝑦!, 𝑦! are state variables and 𝑢!, 𝑢!, 𝑢!, 𝑢! are 
adaptive controls. 

The complete synchronization error between the systems 
(29) and (30) is defined as: 

 
𝑒! = 𝑦! − 𝑥!
𝑒! = 𝑦! − 𝑥!
𝑒! = 𝑦! − 𝑥!
𝑒! = 𝑦! − 𝑥!

      (31) 

 
The error dynamics is easily obtained as: 
 

!!!
!"

= −𝑎𝑒! − 𝑝𝑒! + 𝑦!𝑦! − 𝑥!𝑥! + 𝑢!
!!!
!"

= −𝑎𝑒! − 𝑝𝑒! − 𝑏𝑒! + 𝑦!𝑦! − 𝑥!𝑥! + 𝑢!
!!!
!"

= −𝑦!𝑦! + 𝑥!𝑥! + 𝑢!
!!!
!"

= 𝑐𝑒! + 𝑢!

  (32) 

 
We consider the adaptive controller defined by 
  

𝑢1 = 𝑎 𝑡 𝑒1 + 𝑝 𝑡 𝑒4 − 𝑦2𝑦3 + 𝑥2𝑥3 − 𝑘1𝑒1
𝑢2 = 𝑎 𝑡 𝑒2 + 𝑝 𝑡 𝑒4 + 𝑏(𝑡)𝑒1

−𝑦1𝑦3 + 𝑥1𝑥3 − 𝑘2𝑒2
𝑢3 = 𝑦1𝑦2 − 𝑥1𝑥2 − 𝑘3𝑒3
𝑢4 = −𝑐 𝑡 𝑒2 − 𝑘4𝑒4

  (33) 

  
where 𝑘!, 𝑘!, 𝑘!, 𝑘! are positive gain constants, and  
𝑎 𝑡 , 𝑏 𝑡 ,   𝑐 𝑡 , 𝑝(𝑡) are estimates of the unknown 
parameters 𝑎, 𝑏, 𝑐, 𝑝,  respectively. 

Substituting (35) into (34), we get   
 

 

!!!
!"

= − 𝑎 − 𝑎 𝑡 𝑒! − 𝑝 − 𝑝 𝑡 𝑒! − 𝑘!𝑒!
!!!
!"

= − 𝑎 − 𝑎 𝑡 𝑒! − 𝑝 − 𝑝 𝑡 𝑒!
−(𝑏 − 𝑏 𝑡 )𝑒! − 𝑘!𝑒!

!!!
!"

= −𝑘!𝑒!
!!!
!"

= 𝑐 − 𝑐 𝑡 𝑒! − 𝑘!𝑒!

    (34) 
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The parameter estimation errors are defined by 
  

𝑒!(𝑡) = 𝑎 − 𝑎(𝑡)
𝑒!(𝑡) = 𝑏 − 𝑏(𝑡)
𝑒!(𝑡) = 𝑐 − 𝑐(𝑡)
𝑒!(𝑡) = 𝑝 − 𝑝(𝑡)

     (35) 

  
Substituting (35) into the error dynamics (34), we get 
   

  

!!!
!"

= −𝑒!𝑒! − 𝑒!𝑒! − 𝑘!𝑒!
!!!
!"

= −𝑒!𝑒! − 𝑒!𝑒! − 𝑒!𝑒! − 𝑘!𝑒!
!!!
!"

= −𝑘!𝑒!
!!!
!"

= 𝑒!𝑒! − 𝑘!𝑒!

    (36) 

  
Differentiating (35) with respect to 𝑡, we get 
  

!!!
!"

= − !!
!"

!!!
!"

= − !!
!"

!!!
!"

= − !!
!"

!!!
!"

= − !!
!"

       (37) 

  
Consider the quadratic Lyapunov function defined by 
  

𝑉 = !
!
𝑒!! + 𝑒!! + 𝑒!! + 𝑒!!  +  𝑒!! + 𝑒!! + 𝑒!! + 𝑒!! ,  (38) 

 
which is positive definite on 𝑅!. 

Differentiating 𝑉 along the trajectories of (36) and (37), 
we get 

  
!"
!"

= −𝑘!𝑒!! − 𝑘!𝑒!! − 𝑘!𝑒!! − 𝑘!𝑒!!

+𝑒! −𝑒!! − 𝑒!! −
!!
!"

+ 𝑒! −𝑒!𝑒! −
!!
!"

+𝑒! 𝑒!𝑒! −
!!
!"

+ 𝑒! −(𝑒! + 𝑒!)𝑒! −
!!
!"

  (39) 

  
In view of (39), we take the parameter update law as: 
  

!!
!"

= −𝑒!! − 𝑒!!

!!
!"

= −𝑒!𝑒!
!!
!"

= 𝑒!𝑒!
!!
!"

= − 𝑒! + 𝑒! 𝑒!

     (40) 

  
Next, we shall establish the main result of this section, 

viz. the adaptive synchronization of the identical 
hyperchaotic Rikitake dynamo systems (29) and (30). We 
have used Lyapunov stability theory to establish this result. 
 
Theorem 2. The novel hyperchaotic Rikitake dynamo 
systems (29) and (30) are globally and exponentially  
synchronized by the adaptive control law (33) and the 
parameter update law (40)  for all initial conditions, where 
𝑘!, 𝑘!, 𝑘!, 𝑘! are positive gain constants. 
 
Proof. We prove this result using Lyapunov stability theory.  

For this purpose, we consider the quadratic Lyapunov  
function 𝑉 defined by (40), which is positive definite on 𝑅!.  

Substituting the parameter update law (40) into (39), we 
obtain the time derivative of 𝑉as: 

  
!"
!"
= −𝑘!𝑒!! − 𝑘!𝑒!! − 𝑘!𝑒!! − 𝑘!𝑒!!    (41) 
  
Since !"

!"
 is a negative semi-definite function on 𝑅!, we 

can conclude that the anti-synchronization vector 𝑒(𝑡) and 
the parameter estimation error are globally bounded. 

We define 𝑘 = min 𝑘!, 𝑘!, 𝑘!, 𝑘! .  
Then we get 
 
!"
!"
≤ −𝑘 𝑒 !  or   𝑘 𝑒 ! ≤ − !"

!"
   (42) 

  
Integrating the inequality (42) from 0 to 𝑡, we get 
  
𝑘 𝑒(𝜏) !𝑑𝜏 ≤ 𝑉 0 − 𝑉(𝑡)!

!     (43) 
  
From (43), it follows that 𝑒 𝑡 ∈ 𝐿!. Using (36), we can 

conclude that 𝑒 ∈ 𝐿!. 
Thus, using Barbalat’s lemma [177], we conclude that 

𝑒(𝑡) → 0 exponentially as 𝑡 → ∞ for all initial conditions 
𝑒 0 ∈ 𝑅!.  This completes the proof. n 

 
For numerical simulations, the parameter values of the 

novel hyperchaotic Rikitake dynamo systems are taken as in 
the hyperchaotic case, viz.   𝑎 = 1, 𝑏 = 1, 𝑐 = 0.7    and  
𝑝 = 1.7.    

We take the gain constants as 𝑘! = 5 for 𝑖 = 1, 2, 3, 4. 
The initial conditions of the master system (29) are taken 

as 𝑥! 0 = 3.4, 𝑥! 0 = 1.8,  𝑥! 0 = 1.2  and 𝑥! = −1.6. 
The initial conditions of the slave system (30) are taken 

as 𝑦! 0 = 1.2, 𝑦! 0 = 6.2,  𝑦! 0 = −2.7 and 𝑦! = 4.5. 
The initial conditions of the parameter estimates are 

taken as  𝑎 0 = 6,  𝑏 0 = 12,  𝑐 0 = 21 and  𝑝 0 = 14. 
Figures 8-11 describe the complete synchronization of 

the states of the novel hyperchaotic Rikitake dynamo 
systems (29) and (30). 

Figure 12 describes the time-history of the 
synchronization error 𝑒 𝑡 . 

 

 
 

Fig. 8. The synchronization of the states 𝑥! and 𝑦!. 
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Fig. 9. The synchronization of the states 𝑥! and 𝑦!. 
 

 
 
Fig. 10. The synchronization of the states 𝑥! and 𝑦!. 
 

 
 
Fig. 11. The synchronization of the states 𝑥! and 𝑦!. 
 
 
6. Circuit Simulation 
 
In this Section, an electronic circuit is constructed to 
implement hyperchaotic system without equilibrium (3). The 
circuit in Fig. 13 has been designed using a general approach 
based on operational amplifiers [30,35,36]. 
 

 
 

Fig. 12. Time-history of the synchronization error. 
 
 

 

 
 
Fig. 13. Schematic of the circuit realizing the novel 4-D hyperchaotic 
Rikitake dynamo model (3). 
 
 By applying Kirchhoff’s laws to the electronic circuit in 
Fig. 13, its nonlinear equations are given as 
 
!!!!
!"

= − !
!!!!

𝑣!! +
!

!"!!!!
𝑣!!𝑣!! −

!
!!!!

𝑣!!
!!!!
!"

= − !
!!!!

𝑣!! +
!

!"!!!!
𝑣!!𝑣!! −

!
!!!!

𝑣!! −
!

!!!!
𝑣!!

!!!!
!"

= !
!!!!

𝑉! −
!

!"!!!!
𝑣!!𝑣!!

!!!!
!"

= !!"
!!"!!!!!

𝑣!!

   

(44) 
where 𝑣!! , 𝑣!! , 𝑣!! , 𝑣!!  are the voltages across the 
capacitors 𝐶!, 𝐶!, 𝐶! and 𝐶!, respectively. It is noting that 
the state variables  𝑥!  , 𝑥!  , 𝑥!  , 𝑥! of 4-D hyperchaotic 
Rikitake dynamo model (3) are the voltages 𝑣!! , 𝑣!! , 𝑣!! , 
𝑣!!   respectively. 
 The values of the electronic components in Fig. 13 are 
chosen to match parameters of 4-D hyperchaotic Rikitake 
dynamo model (3) as follows: R1 = R4 = R6 = R8 = R11 = R12 = 
10kΩ, R2 = R5 = R9 = 1kΩ, R3 = R7 = 5.882kΩ, R10 = 
14.286kΩ, C1 = C2 = C3 =  C4 = 10nF, and Ve = −1VDC. The 
power supplies of all active devices are ±15Volts. 



S. Vaidyanathan, et al. /Journal of Engineering Science and Technology Review 8 (2) (2015) 232 – 244  
	
  

 
	
  

240 

 The designed circuit is implemented by using the 
electronic simulation package Cadence OrCAD and obtained 
phase portraits are presented in Figs. 14-16. 
 

 
 

Fig. 14. Hyperchaotic attractor obtained from the proposed circuit in 
𝑣!! , 𝑣!! -plane 

 

 
 
Fig. 15. Hyperchaotic attractor obtained from the proposed circuit in 
𝑣!! , 𝑣!! -plane 

 
 

Fig. 16. Hyperchaotic attractor obtained from the proposed circuit in 
𝑣!! , 𝑣!! -plane 

 
 
7. Conclusion 
 
In this paper, a new 4-D Rikitake dynamo model has been 
investigated. It is interesting that such Rikitake dynamo 
model can exhibit hyperchaos although it possesses no 
equilibrium points. As the result, this system can be 
classified as a hyperchaotic system with hidden strange 
attractor. Qualitative properties of the 4-D novel 
hyperchaotic system  are studied. In addition, an adaptive 
controller and an adaptive synchronizer for such system 
have been proposed. Moreover, an electronic circuit 
modeling this new hyperchaotic system has been designed 
using off-the-shelf components to confirm the feasibility of 
theoretical model. 
 Recently, discovering systems with hidden attractors has 
come a new attractive research topic because of their 
practical and theoretical importance. Especially there are 
only few works reporting hyperchaotic hidden strange 
attractor. Hence this Rikitake dynamo model should be 
further studied in future works. 

______________________________ 
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