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Abstract 
 
Memristor-based systems and their potential applications, in which memristor is both a nonlinear element and a memory 
element, have been received significant attention recently. A memristor-based hyperchaotic system with hidden attractor 
is studied in this paper. The dynamics properties of this hyperchaotic system are discovered through equilibria, 
Lyapunov exponents, bifurcation diagram, Poincaré map and limit cycles. In addition, its anti-synchronization scheme 
via adaptive control method is also designed and MATLAB simulations are shown. Finally, an electronic circuit 
emulating the memristor-based hyperchaotic system has been designed using off-the-shelf components. 
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1. Introduction 
 
Three attractive inventions of Professor Leon O. Chua: the 
Chua’s circuit [1], the Cellular Neural/Nonlinear Networks 
(CNNs) [2,3], and the memristor [4,5] are considered as the 
major breakthroughs in the literature of the nonlinear 
science. While Chua’s circuit and CNNs have studied and 
applied in various areas, such as secure communications, 
random generators, signal processing, pattern formation of 
modelling of complex systems [6-12], studies on memristor 
[13-21] have only received significant attention recently 
after the realization of a solid-state thin film two-terminal 
memristor at Hewlett-Packard Laboratories [22].  

Memristor was proposed by L.O. Chua as the fourth 
basic circuit element beside the three conventional ones (the 
resistor, the inductor and the capacitor) [4,23]. Memristor 
presents the relationship between two fundamental circuit 
variables, the charge (q) and the flux (φ). Hence, there are 
two kinds of memristor: charge-controlled memristor and 
flux-controlled memristor. A charge-controlled memristor is 
described by 

 
𝑣! = 𝑀(𝑞)𝑖!       (1) 
 

where vM is the voltage across the memristor and iM is the 

current through the memristor. Here the memristance (M) is 
defined by 
 

( ) ( )d q
M q

dq
ϕ

=         (2) 

 
while the flux-controlled memristor is given by 
	  

( )M Mi W vϕ=          (3) 
 
where W(φ) is the memductance, which is defined by 
 

( ) ( )dq
W

d
ϕ

ϕ
ϕ

=                     (4) 

 
Moreover, by generalizing the original definition of a 

memristor [5,23], a memristive system is given as: 
 

   

!x = f x,u,t( )
y = g x,u,t( )u

⎧
⎨
⎪

⎩⎪
	   	        (5) 

 
where u, y, and x denote the input, output and state of the 
memristive system, respectively. The function f is a 
continuously differentiable (𝐶!), 𝑛-dimensional vector field 
and g is a continuous scalar function. 

The intrinsic nonlinear characteristic of memristor could 
be exploited in implementing chaotic systems with complex 
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dynamics as well as special features [24,25]. For example, a 
simple memristor-based chaotic system including only three 
elements (an inductor, a capacitor and a memristor) was 
introduced in [26]. Also, a system containing an HP 
memristor model and triangular wave sequence can generate 
multi-scroll chaotic attractors [27]. Moreover, a four-
dimensional hyperchaotic memristive system with a line 
equilibrium was also presented by Li [28]. It is worth noting 
that although a four-dimensional memristive system often 
only exhibit chaos, the presence of a memristor led Li’s 
system to a hyperchaotic system with hidden attractors.  

According to a new classification of chaotic dynamics 
[29,30], there are two kinds of attractors: self-excited 
attractors and hidden attractors. A self-excited attractor has 
a basin of attraction that is excited from unstable equilibria. 
As a result, most reported chaotic systems, viz. Lorenz 
system [31], Rössler system [32], Chen system [33], Sprott 
system [34], Sundarapandian systems [35-36], Vaidyanathan 
systems [37-44], Pehlivan system [45], etc., belong to the 
class of chaotic systems with self-excited attractors. In 
contrast, a hidden attractor cannot be discovered by using a 
numerical approach where a trajectory started from a point 
on the unstable manifold in the neighbourhood of an 
unstable equilibrium [30,46,47]. Studying systems with 
hidden attractors is a new research direction because of their 
practical and theoretical importance [48-53]. 

In this paper, a memristor-based system without 
equilibrium is studied. The rest of the paper is organized as 
follows. In the next Section, the model of the memristor-
based system is described. The dynamics and qualitative 
properties of the memristor-based system are described in 
Section 3. In Section 4, an anti-synchronization  scheme for 
the identical memristor-based systems is derived via 
adaptive control theory. In Section 5, circuit implementation 
of the memristor-based system is studied detail. Finally, the 
conclusion remarks are drawn in Section 6. 

 
2. Model of Memristor-Based System 
 
In this work, a flux-controlled memristor is used. Similar to 
other published papers [54-56], its memductance is given as:  
 

( ) 21 6W ϕ ϕ= +                      (6) 

 
Based on this memristor, a four-dimensional system is 

introduced as follows: 
 

   

!x = −10x −5y −5yz

!y = −6x + 6xz + ayW ϕ( ) + b

!z = −z − 6xy
!ϕ = y

⎧

⎨
⎪
⎪

⎩
⎪
⎪

                 (7) 

 
where a, b are real parameters, and W(φ) is the 
memductance as defined in (6). 

When b = 0, the memristor-based system (7) has the line 
equilibrium E(0, 0, 0, φ). Interestingly, system (7) is 
hyperchaotic for different values of the parameter a [28]. For 
instance, when a = 0.1, b = 0 and the selected initial 
conditions are (x(0), y(0), z(0), φ(0)) = (0, 0.01, 0.01, 0), 
hyperchaos is observed. In this case, memristor-based 
system (7) is similar to the reported system in [28], hence it 
will not be discussed in next sections. 

3. Dynamics of the Memristor-Based System 
 
We consider the memristor-based system (7) when b ≠ 0. It 
is easy to derive the equilibrium for system (7) by solving        
ẋ = 0, ẏ = 0, ż = 0, and 𝜑 = 0, that is 
 
10 5 5 0x y yz− − − =        (8) 

( )26 6 1 6 0x xz ay bϕ− + + + + =       (9) 

6 0z xy− − =                    (10) 

0y =                                  (11) 
 
Solving (8), (10) and (11), we get 𝑥 = 𝑦 = 𝑧 = 0.   Thus, Eq. 
(9) reduces to 𝑏 = 0  ,  which is a contradiction. Hence there 
is no equilibrium for the memristor-based system (7). 

When a = 0.1, b = –0.001 and the selected initial 
conditions are (x(0), y(0), z(0), φ(0))=(0, 0.01, 0.01, 0), the 
Lyapunov exponents of the system (7) are λ1 = 0.1244,         
λ2 = 0.0136, λ3 = 0 and λ4 = –10.8161. Thus, the memristor-
based system (7) is a hyperchaotic system because it has 
more than one positive Lyapunov exponents [57]. Moreover, 
this memristor-based system can be classified as a 
hyperchaotic system with hidden strange attractor, a basin of 
attraction of which does not contain neighbourhoods of 
equilibria [30,58]. To the best of our knowledge there are 
only few works reporting hyperchaotic hidden strange 
attractor [28,50,59]. It is noting that system (7) has been 
proposed briefly in [59], but the behavior of such a system 
has not been investigated. The projections of the 
hyperchaotic attractor without equilibrium for this set of 
parameters are shown in Fig. 1. 

The Kaplan-Yorke fractional dimension, that presents 
the complexity of attractor [60], is defined by 

 

KY
1 1

1D
j

i
j i

j λ
λ + =

= + ∑                             (12) 

 

where j is the largest integer satisfying 
1

0
j

i
i

λ
=

≥∑  and 

1

1

0.
j

i
i

λ
+

=

<∑   

The calculated fractional dimension of  memristor-based 
system (7) when a = 0.1, b = –0.001 is KYD 3.0128 3.= >  
Thus, it indicates a strange attractor. Moreover, as it can be 
seen from the Poincaré map (Fig. 2), memristor-based 
system (7) exhibits a rich dynamical behavior. 

It is worth mentioning that Lyapunov exponents measure 
the exponential rates of the divergence and convergence of 
nearby trajectories in the phase space of the chaotic system 
[6,33] and for a four-dimension hyperchaotic system there 
are two positive Lyapunov exponents, one zero, and one 
negative Lyapunov exponent. Thus Lyapunov exponents of 
memristor-based system (7) have been calculated using well-
known algorithm in [61] to verify its hyperchaos. 

In our work, the parameter b is fixed as b = –0.001, 
while the parameter a indicating the strength of the 
memristor is varied.  The bifurcation diagram is presented in 
Fig. 3 by plotting the local maxima of the state variable z(t) 
when changing the value of the parameter a. The spectrum 
of the corresponding Lyapunov exponents is depicted in    
Fig. 4. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 1. The projection of the hyperchaotic attractor of memristor-based 
system (7) for a = 0.1, and b = –0.001 (a) in the  x-y phase plane, (b) in 
the  x-z phase plane and (c) in the  x-φ phase plane. 
 

 
Fig. 2. Poincaré map in the x-z-φ space plane when y = 0 for a = 0.1, 
and b = –0.001.   
 

 
Fig. 3. Bifurcation diagram of zmax with b = –0.001 and a as varying 
parameter. 
 

 
Fig. 4. Three largest Lyapunov exponents of memristor-based system 
(7) versus a for b = –0.001. 
 

Lyapunov exponents reported in Fig. 4  agree  well with 
the bifurcation diagram of  Fig. 3. As shown in Figs. 3 and 
4, there are some windows of  limits cycles, of chaotic 
behavior and of hyperchaotic behavior. For example, the 
periodic orbit of memristor-based system (7) for the 
parameter a = 0.07 is illustrated in Fig. 5.  
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(a) 

 
(b) 

 
(c) 

Fig. 5. The periodic orbit of memristor-based system (7), for a = 0.07, 
and b = –0.001 (a) in the x-y phase plane, (b) in the  x-z phase plane and 
(c) in the  x-φ phase plane. 
 
4. Adaptive Anti-Synchronization of Identical 
Memristor-Based Systems 
 
The study of anti-synchronization of chaotic systems is an 
important research problem in the chaos literature [62-65].  

The anti-synchronization of chaotic systems involves a 
pair of chaotic systems called the master or drive system and 
slave or response systems, and the design problem is to find 
an effective feedback control law so that the outputs of the 
master  and  slave  systems   are   equal   in   magnitude  and  

 

opposite in sign asymptotically. In other words, when anti-
synchronization is achieved between the master and slave 
chaotic systems, the sum of the outputs of the two systems 
will converge to zero asymptotically with time.  

This section will present the adaptive anti-
synchronization of identical memristor-based hyperchaotic 
systems with unknown parameters a and b. We use estimates 
A(t) and B(t) for the unknown parameters a and b, 
respectively.  

Adaptive control method is used to derive update laws 
for the parameter estimates and Lyapunov stability theory is 
used to establish the main anti-synchronization result of this 
section. Adaptive control method is known to be an effective 
method for the synchronization and anti-synchronization of 
chaotic systems [66-70]. 

As the master system, we consider the memristor-based 
system dynamics   
 

   

!x1 = −10x1 −5y1 −5y1z1

!y1 = −6x1 + 6x1z1 + ay1W ϕ1( ) + b

!z1 = −z1 − 6x1y1
!ϕ1 = y1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

                (13) 

 
In (13), W(φ) is the memductance as defined in (6). Also, 

x1, y1, z1, φ1 are the states of the master system (13). 
As the slave system, we consider the controlled 

memristor-based system dynamics 
 

   

!x2 = −10x2 −5y2 −5y2z2 + ux

!y2 = −6x2 + 6x2z2 + ay2W ϕ2( ) + b+ uy

!z2 = −z2 − 6x2 y2 + uz

!ϕ2 = y2 + uϕ

⎧

⎨

⎪
⎪

⎩

⎪
⎪

                (14) 

  
Here x2, y2, z2, φ2 are the states of the slave system (14) 

and ux, uy, uz, uφ are the adaptive controls to be determined 
for the anti-synchronization of the systems (13) and (14). 

The system parameters 𝑎 and 𝑏 are unknown and hence, 
we use estimates A(t) and B(t) for a and b,  respectively.  

The anti-synchronization error between the memristor-
based systems (13) and (14) is defined as follows: 
 

1 2

1 2

1 2

1 2

x

y

z

e x x
e y y

e z z
eϕ ϕ ϕ

= +⎧
⎪ = +⎪
⎨ = +⎪
⎪ = +⎩

     (15) 

 
Thus, the anti-synchronization error dynamics is got as: 

 

   

!ex = −10ex −5ey −5( y1z1 + y2z2 )+ ux

!ey = −6ex + 6(x1z1 + x2z2 )+

       +a y1W (ϕ1)+ y2W (ϕ2 )⎡⎣ ⎤⎦ + 2b+ uy

!ez = −ez − 6(x1y1 + x2 y2 )+ uz

!eϕ = ey + uϕ

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

          (16) 

 
As an adaptive feedback control law to stabilize the 

system (16), we take 
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ux = 10ex +5ey +5( y1z1 + y2z2 )− kxex

uy = 6ex − 6(x1z1 + x2z2 )+

       − A(t) y1W (ϕ1)+ y2W (ϕ2 )⎡⎣ ⎤⎦ − 2B(t)− kyey

uz = ez + 6(x1y1 + x2 y2 )− kzez

!eϕ = −ey − kϕeϕ

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

          (17) 

 
In (17), A(t) and B(t) are estimates for the unknown 

system parameters a and b, respectively. Also, kx, ky, kz and 
kφ are assumed to be positive gain constants. 

Substituting (17) into (16), we get the closed-loop error 
dynamics as: 
 

   

!ex = −kxex

!ey = a − A(t)( ) y1W (ϕ1)+ y2W (ϕ2 )⎡⎣ ⎤⎦ +

       +2 b− B(t)( )− kyey

!ez = −kzez

!eϕ = −kϕeϕ

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

    (18) 

  
We define the parameter estimation errors as: 
 
( ) ( )
( ) ( )
a

b

e t a A t
e t b B t

= −⎧
⎨ = −⎩

                   (19) 

  
Differentiating (19) with respect to t, we get 

 

   

!ea (t) = − !A(t)
!eb(t) = − !B(t)

⎧
⎨
⎪

⎩⎪
      (20) 

  
Substituting (19) into (18), we get the error dynamics as: 

 

   

!ex = −kxex

!ey = ea y1W (ϕ1)+ y2W (ϕ2 )⎡⎣ ⎤⎦ + 2eb − kyey

!ez = −kzez

!eϕ = −kϕeϕ

⎧

⎨

⎪
⎪

⎩

⎪
⎪

   (21) 

  
We consider the quadratic Lyapunov function 

 

( )2 2 2 2 21
2 x y z a bV e e e e e= + + + +                   (22) 

  
Clearly, V is a positive definite function on 𝑅!. 
Differentiating V along the trajectories of (18) and (20), 

we get  
 

   

!V = −kxex
2 − kyey

2 − kzez
2 − kϕeϕ

2 +

       +ea ey y1W (ϕ1)+ y2W (ϕ2 )⎡⎣ ⎤⎦ − !Α⎡⎣ ⎤⎦ +

       +eb 2ey − !B⎡⎣ ⎤⎦

                       (23) 

  
In view of (23), we define an update law for the 

parameter estimates as: 
 

 

   

!A = ey y1W (ϕ1)+ y2W (ϕ2 )⎡⎣ ⎤⎦
!B = 2ey

⎧
⎨
⎪

⎩⎪
   (24) 

 
Theorem 1. The identical memristor-based systems (13) 

and (14) with unknown parameters a and b are exponentially 
and globally anti-synchronized by the adaptive control law 
(17) and the parameter update law (24), where the gain 
constants kx, ky, kz,kφ are positive and A(t), B(t) are estimates 
for a and b, respectively. 

 
Proof.  The result is proved via Lyapunov stability 

theory. For this purpose, we consider the quadratic 
Lyapunov function V defined by (22), which is positive 
definite on 𝑅!.  

Substituting the parameter update law (24) into (23), we 
obtain 𝑉 as: 
 

   
!V = −kxex

2 − kyey
2 − kzez

2 − kϕeϕ
2     (25) 

 
Clearly, 𝑉 is a negative semi-definite function on 𝑅!. 
Thus, we can conclude that the anti-synchronization error 

e(t) and the parameter estimation error [ea(t) eb(t)]T are 
globally bounded.  

We define k = min{kx, ky, kz, kφ}. 
Then it is clear from (25) that  

 

   
!V ≤ −k e

2
 or k e

2
≤ − !V .                             (26) 

  
Integrating the inequality (26) from 0 to t, we get 

 

   
k e(τ )

0

t

∫
2

dτ ≤ − !V
0

t

∫ (τ )dτ =V (0)−V (t)                        (27) 

  
Therefore, we can conclude that 𝑒 𝑡 ∈ 𝐿!.  
Using (21), we can conclude that 𝑒 𝑡 ∈ 𝐿!. 
Using Barbalat’s lemma [71], 𝑒(𝑡) → 0 exponentially as 

𝑡 → ∞  for all initial conditions 𝑒 0 ∈ 𝑅!. n 
 
For numerical simulations, the classical fourth-order 

Runge-Kutta method with step size h = 10-8 is used to solve 
the systems of differential equations (13), (14) and (24), 
when the adaptive control law (17) is applied.  

The parameter values of the memristor system are taken 
as in the hyperchaotic case, viz. a = 0.07 and b = –0.001. 

The gain constants are taken as: kx = ky = kz = kφ = 5. As 
initial conditions of the master system (13), we take x1(0) = 
7.4, y1(0) = –3.5, z1(0) = 3.4, φ1(0) = –1.7, while as initial 
conditions of the slave system (14), we take x2(0) = 4.3, y2(0) 
= –1.2, z2(0) = 2.8, φ2(0) = –2.4. Furthermore, as initial 
conditions of the estimates A(t) and B(t), we take A(0) = 1.2 
and B(0) = 2.5. 

In Figs. 6-9, the anti-synchronization of the states of the 
master system (13) and the slave system (14) is depicted. 
Fig. 6 depicts the anti-synchronization of the states x1 and x2 
of the systems (13) and (14). Fig. 7 depicts the anti-
synchronization of the states y1 and y2 of the systems (13) 
and (14). Fig. 8 depicts the anti-synchronization of the states 
z1 and z2 of the systems (13) and (14). Fig. 8 depicts the anti-
synchronization of the states φ1 and φ2 of the systems (13) 
and (14). In Fig. 10, the time-history of the anti-
synchronization errors ex(t), ey(t), ez(t), eφ(t) is depicted. 
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Fig. 6.  Anti-synchronization of the states x1 and x2. 

  

 
 
Fig. 7. Anti-synchronization of the states y1 and y2. 
 
  

 
 
 
Fig. 8. Anti-synchronization of the states z1 and z2. 
 

  

 
 
Fig. 9. Anti-synchronization of the states φ1 and φ2. 
 

 
 Fig 10. Time-history of the anti-synchronization errors. 

 
 

5. Circuital Design of the Memristor-Based System 
 
Using electronic circuits emulating chaotic/hyperchaotic 
systems is an effective approach for investigating dynamics 
of such systems [6,7,72]. Some advantages of this physical 
approach can be listed as avoiding the uncertainties arising 
from systematic and statistical errors in numerical 
simulations, reducing long simulation time or displaying 
attractors on the oscilloscope easily [7,73]. From the point of 
view of practical applications, the realization of chaotic 
electronic circuits based on theoretical models is a vital 
topic. Such circuits are main parts in diverse chaos-based 
applications such as image encryption scheme, path planning 
generator for autonomous mobile robots, or random bit 
generator [74-80]. 

In this Section, an electronic circuit is designed to 
implement memristor-based system (7). The circuit in Fig. 
11 has been designed following a general approach based on 
operational amplifiers [7]. The variables x, y, z, φ of system 
(7) are the voltages across the capacitor C1, C2, C3, and C4, 
respectively. As shown in Fig. 11 the memristor is realized 
by common electronic components. Indeed the sub-circuit of 
memristor in Fig. 11 only emulates the memristor because 
there are not any commercial off-the-shelf memristors in the 
market yet. By applying Kirchhoff’s circuit laws, the 
corresponding circuital equations of circuit can be written 
as: 
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1
1 2 2 3

2
1 1 3

2 4

3
3 1 2

4
2

1 1 2 1 3 1

4 2 5 2 7 2

211 11

6 2 12 13

8 3 9 3

10 4

1 1 1
10

1 1 1
10

1             +
100

1 1
10

1

⎧
= − − −⎪

⎪
⎪
⎪ = − + − +
⎪
⎪

⎛ ⎞⎪ +⎨ ⎜ ⎟
⎝ ⎠⎪

⎪
⎪ = − −
⎪
⎪
⎪ =⎪⎩

C
C C C C

C
C C C b

C C

C
C C C

C
C

dv
v v v v

dt R C R C R C
dv

v v v V
dt R C R C R C

R Rv v
R C R R

dv
v v v

dt R C R C
dv

v
dt R C

            (28) 

 

where, 
6 2

1a
R C

=  and 
7 2

1
bb V

R C
= .  

The operational amplifiers in this paper’s circuit are 
TL084 ones, of which power supplies are ±15 Volts. We set 
the values of components as follows: R1 = R3 = 1.8 kΩ,       
R2 = 3.6 kΩ, R4 = 3 kΩ, R5 = R9 = 1.5 kΩ, R6 = 180 kΩ,      
R7 = 90 kΩ, R8 = R10 = R11 = R12 = R = 18 kΩ, R13 = 0.75 kΩ, 
C1 = C2 = C3 = C4 = 10 nF, and Vb = 1 mVDC.  

The design circuit is implemented in the electronic 
simulation package Multisim. Obtained results are presented 
in Figs. 12 & 13. Obviously, theoretical attractors (see Fig. 
1) look similar with the circuital ones shown in Fig. 12. In 
order to investigate the dynamics of the designed memristor-
based circuit in Fig.11 with respect to the strength of the 
memristor, the value of resistor R6 can be varied by using a 
trimmer. For instance, when R6 = 257.14 kΩ the behavior of 
the circuit is a periodic limit cycle (see Fig. 13) 
corresponding to an implemented value of a = 0.07, which 
can be compared to the model behavior reported in Fig. 5

 
 

 

 
 
Fig 11. Schematic of the circuit which emulating memristor-based system (7). 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 12. Hyperchaotic attractor of the designed circuit obtained from 
Multisim (a) in the  vC1-vC2 phase plane, (b) in the  vC1-vC3 phase plane 
and (c) in the  vC1-vC4 phase plane. 
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(b) 

 

 
(c) 

Fig. 13. Periodic orbit of the designed circuit obtained from Multisim, 
for a = 0.07 and b = -0.001, (a) in the  vC1-vC2 phase plane, (b) in the    
vC1-vC3 phase plane and (c) in the vC1-vC4 phase plane.
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6. Conclusion 
 
In this paper, a memristor-based system has been studied. 
This memristor-based system displays  rich dynamical 
behavior as confirmed by numerical simulations and 
circuital implementation. Moreover, the possibility of anti-
synchronization scheme of memristor-based systems has 
been designed via adaptive control method and MATLAB 
simulations are shown to illustrate the anti-synchronization 
results. It is worth noting that the presence of the memristor 
creates some special and unusual features. For example, 
such memristor-based systems can exhibit chaos although it 
possesses no equilibrium points. We have shown that our 
memristor-based system can exhibit hyperchaotic attractors. 

It is well known that hyperchaotic system, which is 
characterized by more than one positive Lyapunov exponent, 
presents a higher level of complexity with respect to a 
conventional chaotic system. Hence, we can apply this 
memristor-based hyperchaotic system in practical 
applications like cryptosystems, encryption, neural networks 
and secure communications.  
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