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Abstract

Memristorbased systems and their potential applications/hich memristor is both a nonlinear element and a memory
elementhave been received sigmifint attention recently. A memristbasedhyperchaoticsystem with hidden attractor

is studied in this papefThe dynamics properties of thisyperchaoticsystem are discovered through equilibria,
Lyapunov exponents, bifurcation diagram, Poidaaap and limit cycles. In addition, isnti-synchronization scheme
via adaptive control methot also designedand MATLAB simulations are showrFinally, an electronic circuit
emulating the memristdrasechyperchaoticsystem has been designed usingtbéshelf components.

Keywords: Memristor,hidden attractorchaos syndironization circuit.

1. Introduction currentthrough the ramristor Here thememristanc€M) is
defined by

Threeattractiveinventions of Professor Leon O. Chua: the

ChuaOs circu[tl], the CellularNeural/Nonlinear Networks (q) d’ (q

—

(CNNs)[2,3], and the memristdd,5] are consideredas the d )
major breakthroughs in the literature of the nonlinear d
science.While ChuaOs circuit and CNNs have studied and 1ile the flux-controlled memristor is given by
applied in various areasuch as secure communications,
random generators, signal processing, pattern formafion q
modelling of complex systeni§-12], studies on memristor 'M =W (/) vy ®)
[13-21] have only received significant attention recently
after the realization of a sokstate thin filmtwo-terminal ~ WhereW(!) is thememductancewhich is defined by
memristor at HewletPackard_aboratorieg§22].

Memristor was proposetly L.O. Chua as the fourth W(/): dQ(-’) 4)
basic circuit element beside the three conveatiomes the ’ d/

resistor, the inductor and the capacitpt)23]. Memristor
pre_sents theelationip between two fundamental circuit Moreover, by generalizing the original definition of a
varlab_les, the charg_sq)( and the flux (). Hence, Fhere are  memristor5,23, amemristive systeiis given as:

two kinds of memristorchargecontrolled memristorand
flux-controlled memristarA chargecontrolled memristor is |
describedy fpk— f(x,u,t)

R A ©

by (1)

wherevy, is thevoltageacross the memristor ang is the  \ynerey, y, andx denote thenput, output andstateof the
memristive system, respectively. The functidnis a
_— i i i 1E11 -di i i
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reserved. The intrinsic nonlinear characteristic of memristor could
be exploited inmplementingchaotic systems with complex
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dynamicsas well as special featwf24,25] For example, a 3. Dynamics of theM emristor-BasedSystem

simple memristebased chaotic system including only three
elemens (an inductor, a capacitcand a memristor) as
introdued in R6]. Also, a system containingan HP

We considerthe memristorbased system (7) whdn! 0. It
is easy to derive the equilibrium for system (7) by solving

memristormodel and triangular wave sequence can generate= 0:#=0,$=0,and!" | 1, thatis

multi-scroll chaotic attractorg[27]. Moreover, a four

dimensional hyperchaotic memristive system with a line! 10¢ 5y Syz C (®)

equilibrium wasalsopresented by Lig8]. It is worth noting  wgo gea af1+ @ 2)+ b= 0 )

that althougha four-dimengonal menristive sytem often

only exhibit chaos, the presence of a memristar lgs !Z 6xy 0 (10

system to a hyperchaotic system with hidden attractors -0 (11)
According to a new classification of chaotic dynamics y

[29,3Q, there are two kinds of attractor sdf-excited .

attractorsandhidden attractorsA seltexcited attractor has >°IVing (8), (10) and (11), we get! ! 1 11 ! U Thus, Eq.

a basin of attraction that iseited from unstable equilibria. (9) reduces td =! !which is a contradictionHencethere

As a result, most reported chaotic systemig, Lorenz 'S MO equilibriumfor the memristobased system (7)

system[31], R&ssler systeni32], Chen systeni33], Sprott When a = 0.1, b = £0.001 and the selected initial

system[34], Sundarapandiasystens [35-36], Vaidyanathan conditionsare (x(0), y(0), z0), ! (0))=(0, 0.01, 0.01, 0), the
sysems [37-44], Pehlivan system B, etc., belong tthe ~ Lyapunov exponents ofhe system (7) are% = 0.1244,
class of chaotic systems with setfxcited attractors.In 2= 0.0136,% = 0 and% = B10.8161.Thus, the memrister
contrast,a hidden attractor cannot be discoseby using a 2ased system (7) is a hyperchaotic system because it has
numerical approach where a trajectory started from a poiff'ore than one positive Lyapunov exponest.[Moreover,
on the unstable manifold in the neighbourhood of arfliS memristoased system can be classified as a
unstable equilibrium 3046,47. Studying ystems with hyperchaotic system with hidden strange attractor, a basin of
hidden attractorss a new research direction because of thei@ttraction of which does mocontain neighbourhoods of
practical andHeoretical importancetg-53). equilibria [3058]. To the best of our knowledge there are

In this paper, a memristoased system without only few works repgrting_ hyperchaotic hidden strange
equilibrium is studiedThe rest of thepaperis organized as attractor P850,59]. It is noting that system (7) bebeen
follows. In the nextSection,the model of the memristor Proposedbriefly in [59], but the behavior of suca system
based systenis described.The dynamics and qualitative N@ not been investigated. The projections of the
properties of the memristdrased system are describied hyperdaotic attractor \_Nlth_out equilibrium for this set of
Section 3 In Section 4an antisynchronizationscheme for ~Parameters are shown in Fig. 1. _
the identical memristorbased system is derived via The KaplanYorke fractional dimension, that presents
adaptive control theory. In Section dtcuit implementation  the complexity of attractolpl, is defined by
of the memristorbasedsystem isstudieddetail Finally, the .
conclusion remarks are drawn in Sectén . 1 ..J

DKY =] +/_ '/i (12)
|' j+| i=1

2. Model of Memristor -Based System j

where j is the largest integer satisfyin# /;" 0 and
In this work, a fluxcontrolled memristor is used. Similar to i=1
other published pape[54-56], its memductance is given:as  j+1

W(/)=1+6 2 6) =
The calculated fractional dimension of memridtased
Based on this memristor, a fedimensional system is system (7) whem = 0.1,b = £0.001is Dy, =3.0128> 3
introduced as follows Thus, it indicates a strge attractorMoreover, as it can be
seen from the PoincarZ map (Fig. 2), memristsed
#=110x! 5vi 5 syste_m ) exhibits a ric_:h dynamicddehavior
N y: oyz It is worth mentioning that Lyapunov exponents measure
0/3/: I 6x+6xz+ ay\N(”)+b the exponential rates of the divergence and convergence of
() nearby trajectories in the phase space of the chaotic system
K [6,33 and for a fowdimensionhyperchaotic system there
éq- =y are two positive Lyapunov exponents, one zero, and one
negative Lyapunov exponerithus Lyapunov exponents
where a, b are real parameters, ani(!) is the Mmemristorbasedsystem(7) havebeen calculated using well
memductance as defined in (6). known algorithm in §1] to verify its hyperchaos
Whenb = 0, the memristebased system (7) has the line N our work, the parametes is fixed asb = £0.001
equilibrium E(0, 0, 0,!). Interestingly, system (7) is While the parametera indicating the strength of the
hyperchaotic for different values of the parametf28]. For ~ memristor is varied.The bifurcation diagram is presented in
instance, whema = 0.1, b = 0 and the selected initial Fig- 3 by plotting the local maxima of the state variab(y
conditionsare (x(0), y(0), z0), ! (0)) = (0, 0.01, 0.01, 0), when changing th_e value of the parameteﬂ'h_e spectrum
hyperchaos is observed. In this case, memsased Of the coresponding Lyapunov exponents depicted in
system (7) is similar to the reported system2@,[hence it Fig. 4.
will not be discussed inextsections.

20€
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Fig. 1. The projection of the hyperchaotic attractor of memribsed
system (7) forma = 0.1, ancb = £0.001(a) in the x-y phase plangb) in
the x-zphase planand (c)in the x-! phase plane
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Fig. 2. PoincarZ map in thez! space plane whep= 0 fora = 0.1,

andb = £0.001.
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Fig. 3. Bifurcation diagram ofz,.« with b = £0.001 anda as varying
parameter.
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Fig. 4. Three largest Lyapunov exponents of memribased system
(7) versusa for b =£0.001.

Lyapunov expaents reported in Fig. 4 agreeell with
the bifurcation diagram ofFig. 3. As shown in Figs. 3 and
4, there are some windows ofimits cycles, of chaotic
behaviorand of hyperchaotibehavior For example, the
periodic orbit of memristorbagd system (7) for the
parameten = 0.07is illustrated in Fig. 5.
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oppositein sign asymptotically. In other words, when anti

1.5 synchronization is achieved between the master and slave
chaotic systems, the sum of the outputs of the two systems
1r will converge to zero asymptotically with time.
This section will present the adaptive anti-
0.5+ synchronization of identical memristbased hyperchaotic
systems with unknown parameterandb. We use estimates
> 0 A(t) and B(t) for the unknown parametersa and b,
respectively.
-05 Adaptive control method is used to derive update laws
for the parameter estimates and Lyapunov stability theory is
At used to establish the maamti-synchronizatiomresult of this
section.Adaptive control method is known to be an effective
15 . . . method for the sychronization and arsiynchronization of
=2 -1 0 1 2 chaotic systems [680].
X As the mastersystem, we consider the memristased
@ system dynamics
25
#x,=110x ! 5y, ! 5y,2/
%
ol )l g(ylz ! 6x1+6x121+ay1W("1)+b (13)
=!G
+ R (73
15 &1™%
N
1t ] In (13),W(!) is the memductance as defined in (6). Also,
X1, Y1, Z1, ! 1 are the states of the master system (13).
05l | As the slave system, we consider the controlled
’ memristorbased system dynamics
95 4 w05 0 05 1 15 o =110 5y, ! 5y,3, 44,
X W, =! 6%, +6x,2, +ayW(",)+b+u
b) 2 2 TOXZ, +ay, ( 2) y (14)
%,=!2,! Oy, +U,
1.5 %
g 2= YotU
1 L
0.5 ) Herex,, ¥», 2, ! , are the states of the slave system (14)
’ andu, uy, U, u are the adaptive controls to be determined
ot _ for the antisynchronizatia of the systems (13) and (14).
Iy The system parametersand! are unknown and hence,
-0.5¢ 1 we use estimate&(t) andB(t) for aandb! respectively.
The antisynchronization error betweehe memristor
-1r ] based systems (13) and (14) is defined as fotlows
-1.5¢ .
#ex =XxtX%
35 4 05 0 05 1 15 R (15)
X #:,=34% 2

(© —
Fig. 5. The periodic orbit of memristdvased system (7jor a = 0.07, ﬁﬁ’ =lh¥
andb = £0.001(a) in thex-y phase plangp) in the x-z phase planand

(c)in the x-! phase plane Thus, the antsynchronization error dynamics is got as

4. Adaptive  Anti-Synchronization of Identical Ca
M emristor-BasedSystems )éx =1108 ! 5o, ! X(y,7, +Y,2,) +U,
=16 +6( + X )+
The study of antsynchronization of chaotic systems is an iéy & 17‘121 222”
important research problem in the chaos literatures2 ) gy W (") +yW(" )@ 2b+u, (16)
The antisynchronization of chaotic systems involves als —1 41 g " +u
pair of chaotic systems called the master or drive system and 2 &' B0y tX5Y,) +u,
slave or response systems, and the design problem is to figd =€, +U.
an effective feedback control law so that the outputs of the
masterand slave systems are equal in magnitudeand

As an adaptive feedback control law to stabilize the
system (16), we take

20€
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U, =108, +5e, +5(y,2, + ¥,2,) - K&,
u, =68, —60x,2, +X,2)) +
- AL YW(p)) + Y W(9,) |- 2B(t) - ke,
u, =€, +6(x Y, +X,¥,) - ke,

érp =& - kwerp

(17)

In (17), A(t) and B(t) are estimates for the unknown
system parametegsand b! respectively Also, k,, k,, k, and
k, are assumed to be positive gain constants.

Substituting (17) into (16), wget the closedoop error
dynamics as

& =lkeg

& = (! AW ) +yW(" )%
2(b! BN))! ke,

é

Z=! kZeZ
& =tke

(18)

N e e\ e e

We define the parameter estimation errors as

"e()=al A9

fa(h=b! B (19)

Differentiating (19) with respect tibwe get

%éa(t) =1 A®)

g6, =" B(Y) @0

Substituting (19) into (18), we get the error dynamics as

')é& =ke&,
)éay = a§y1W("1) +Y W(",) % 26! kyey 1)
)&= ke,
lé. =lk.e

We consider the quadratic Lyapunov function
v:%(e§+gj+§+§+ o) 22)

Clearly,V is a positive definite function oR'!
Differentiating V along the trajectories of (18) and (20),
we get
V=1ke! ke! kel ke +
8, V() YW( )% " &
o e ! BY

In view of (23), we define an update law for the
parameter estimates:as

(23)

20¢

FA= & BN ) + YW )8 o
i B= 2ey
Theorem 1 The identical memristebased systems (13)

and (14) with unknown parameteagndb are exponentially
and globally antisynchronized by the adaptive control law
(17) and the parameter update law (24), where the gain
constantsk,, ky, k,k are positive and\(t), B(t) are estimates
for a andb! respectively.

Proof. The result is proved via Lyapunov stability
theory. For this purpose, we consider the quadratic
Lyapunov functionV defined by (22), which is positive
definite on! '!

Substituting the parameter update law (24) into (23), we
obtain!" as

V=1ke! k! kel ke (25)

Clearly,!" is a negative sendefinite function ori '!

Thus, we can conclude that the asythchronization error
e(t) and the parameter estimation erfa(t) ey(t)]" are
globally bounded.

We definek = min{k,, ky, k, ki }.

Then it is clear from (25) that

Vi kldf ok V- (26)
Integrating the inequality (26) frointo t! we get
k";“e(-’ )||2d-’ #$";V(-’)d-’ =V(0)$V(t) 27)

Therefore, we can conclude thdgt) ! !,!
Using (21), we can conclude tHett) ! !,!
Using BarbalatOs lemrfi#l], e(!! ! ! exponentially as

111 Ifor all initial conditions! (1) ! "1

For numerical simulations, the classical foudider
RungeKutta method with step size= 10° is used to solve
the systems of differential equations (13), (14) and (24),
when the adaptive control law (17) is applied.

The parameter values of the memristgstem are taken
as in the hyperchaotic casgz. a = 0.07 and = £0.001

The gain constants are taken lgs= k, =k, = k =5.As
initial conditions of the master system (13), we taK6) =
7.4,y,(0) = £8.5,(0) = 3.4,! 1(0) = BL.7, while asinitial
conditions of the slave system (14), we tai{@) =4.3,y,(0)
= Bl1.2, z(0) = 2.8 !,(0) = E2.4. Furthermore as initial
conditions of the estimate(t) andB(t)! we tale A(0) = 1.2
and B(0) = 2.5.

In Figs. 69, the antisynchronization of the states of the
master system (13) and the slave system (14) is depicted.
Fig. 6 depicts the aniynchronization of the stategsandx,
of the systems (13) and (14). Fig. 7 depicts the-anti
synchronization ofhe statesy; andy, of the systems (13)
and (14). Fig. 8 depicts the astinchronization of the states
z, andz, of the systems (13) and (14). Fig. 8 depicts the anti
synchronization of the statés and!, of the systems (13)
and (14). In Fig. 10, the time-history of the anti
synchronization errorg(t), g(t), et), e (t) is depicted.
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Fig. 6. Anti-synchronization of the statgsandx..
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CR 5
Time (sec)

Fig. 7. Anti-synchronization of the statgsandys.

s 4 5
Time (sec)

Fig. 8. Anti-synchronization of thetatesz; andz.
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21C

25 1 L L
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Fig. 9. Anti-synchronization of the statésand! ,.

" Time (seé)

Fig 10. Time-history of the antsynchronization errors

5. Circuital Design of theM emristor-BasedSystem

Using electronic iccuits emulating chaotic/hypehnaotic
systemsds an effective approach for investigating dynamics
of such system[6,7,72]. Some advantages of this physical
approachcan be listed as avoiding the uncertainties arising
from systematic and statistical errors in numerical
simulations, reducing long simulation time or displaying
attractors on the oscilloscope ea$iy73]. From the point of
view of practical applicationsthe realization of chaotic
electronic circuits based on theoretical models is a vital
topic. Such circuits are main parts in diverse cHaased
applicationssuch as image encryption scherpath planning
generator for autonomous mobile robots, or randoitn
generator 74-80].

In this Section, an electronic circuit is designed to
implement memristebased system (7). The circuit in Fig.
11 has been designed following a general approach based on
operational amplifiers7]. The variablesq y, z, ! of system
(7) are the voltages across the capadiigrC,, Cs, andC,,
respectively. As shown in Fid.1 the memristor is realized
by common electronic components. Indeed theatduit of
memristorin Fig. 11 only emulates the memristor because
there @ae not any commercial cthe-shelf memristors in the
market yet. By applying Kirchhoff®s circuit laws, the
corresponding circuital equations of circuit can be written
as
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!“chl:.. 1 L1

H

#
#dVCZ —n 1 Vq+ 1 VCLVC;' 1 Vb+
ﬁ a  RG ™ 10RG RG

0
AT L TR Y
# ReC ™) Ro 100R;
ﬁdvC3 _. 1

1

Ve " Ve V
#dt  RGC =® 10RG * =
#deA_ 1
¥ r.c G
Tdt ReGy

1

where,a = 1 andb= V.
ReC2

R, G,

" 1
it RGC RG® 10RGC®

(28)

The operational amplifiers in this paperOs circuit are
TLO84 ones, of which power supplies are +15 Volts. We set
the values of components as follow’; = R; = 1.8 k",

R, =36k , Rg=3k", Rs= Ry=15k", Rg = 180 k" ,
R7 = 90k" y Rg = Rj_O: R11: R12: R=18 k" y R13: 0.75k" y
Cl = Cz = Cg = C4 =10 nF, and/b =1 mVDC.

The design circuit is implemented in the electronic
simulation package MultisimObtained results are presented
in Figs. 12 & 13. Obviously, theoretical attractors (see Fig.
1) look similar with the circuital ones shown in Fig. 12.
order to investigate thdynamicsof thedesigned memrister
based circuit in Fig.1lwvith respect tothe strength of the
memristor the value of resistdRs can be variedy using a
trimmer. Forinstance, wheRs = 257.14k" the behavior of
the circuit is a periodic limit cycle (see Figl3)
corresponding to an implemented valueacf 0.07, which
can becompared to the model behavior reported in Big.

Fig 11. Schematic of the circuit which emulating memrigbased system (7)

211
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6. Conclusion

It is well known that hypehaotic system, whichs
characterized by more than one positiy@punov exponent,

In this paper a memristotbased system has been studied.presentsa higher level ofcomplexity with respect toa

This memristorbased system displays rich dynamical
behavior as confirmed by numerical simulat®nand
circuital implemetetion. Moreover, the possibility o&nti
synchronizationscheme of memristorbased systems has

been designedia adaptive control method and MATLAB

simulations are shown to illustrate the ayhchronization

conventional chatic system. Hence, we can appllis
memristorbased hyperchaotic system in  practical
applications like cryptosystemancryption,neural netwrks
andsecure communications

results.It is worth noting that the presence of the memristorAcknowledgements

creats some speciakbnd unusualfeatures For example
such memritr-basel systens canexhibit chaosalthough it
possesses no equilibrium poinid/e have shown thabur
memristorbasa system camxhibit hyperchaotic attractors.

This research is funded by Vietnam National Foundation for
Science and Technology Development (NAFOSTED) under
grant number 102.992013.06.
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