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Abstract 
 
This paper is concerned with bifurcation and chaos control in a new chaotic system recently introduced by Bao et al [9]. 
First a condition that the system has a Hopf bifurcation is derived. Then by applying delayed feedback controller, the 
chaotic system is forced to have a stable periodic orbit extracting from chaotic attractor. This is done by making Hopf 
bifurcation value of the open loop and the closed loop systems identical. Also by suitable tuning of the controller 
parameters, unstable equilibrium points become stable. Numerical simulations verify the results.  
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1. Introduction 
 
After three decades, chaos control remains an interesting and 
applied field in nonlinear control literatures yet; see for 
example [1,2]. Delayed feedback control (DFC) [3] is a 
simple tool to stabilize Unstable Periodic Orbits (UPOs) 
embedded in the strange attractors of chaotic systems. The 
method is reference free; it makes use of a control signal 
obtained from the difference between the current state of the 
system and the state of the system delayed by one period of 
the UPO. Successful implementation of this algorithm has 
been attained in diverse experimental systems [4] and 
references therein. 

The task of stability analysis of DFC is not easy. 
Nevertheless, a full analytical eigenmode expansion of the 
linear delayed systems and a weakly nonlinear analysis has 
been given in [5]. In [6,7] local Hopf bifurcation of scalar 
delayed model and its control under DFC is considered. 
Authors in [8] have chosen feedback gain by trial and error 
and delay is tuned by the energy of input signal obtained in 
simulations. Recently, similar methods have been used in 
[9,10] to tune DFC parameters to control of chaos.  

In 2008, a new system was introduced which could be 
displayed one-scroll and double-scroll chaotic attractors with 
only two equilibrium points and can be found to be robust 
chaotic in a very wide parameter domain [11]. In this paper 
we analyze this system for finding Hopf bifurcation values. 
Then we apply DFC to this model. The controller parameters 
are determined to stabilize UPOs. To tune the controller 
parameters delay and gain, we use this fact that the period of 
periodic orbits (stable or unstable) born at bifurcation values, 

depends on the roots of characteristic equation at bifurcation 
points. Consequently delay is tuned such that the root of 
characteristic equation of the closed loop system becomes 
the root of characteristic equation of the open loop system. 
Since the stability of periodic solution born from this Hopf 
bifurcation, is dependent on the gain of the controller, by a 
suitable choice of gain, the UPO may become stable. 

The rest of the paper is organized as follows. In Section 
2, the robust chaotic system is revisited and Hopf bifurcation 
of this system is analyzed. In Section 3, the closed loop 
system under DFC is studied and the controller parameters 
are determined based on Hopf bifurcation. The results of 
simulations are presented in section 4 to verify the 
effectiveness of method to tune the parameters of DFC. The 
conclusion is given in section 5. 
 
 
2. Revision of the System and Hopf Bifurcation Analysis  
 
In this section the chaotic system, equilibrium points and the 
characteristic equation are given from [11]. Then we study 
the Hopf bifurcation of the system analytically. Consider the 
following chaotic system: 
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where µ	  and c are parameters of  the system. In Fig. 1 the 
chaotic attractor in the phase space (x, y, z) has been shown 
for 0=c  and  µ = 5. 	    ______________ 
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Fig. 1. Chaotic attractor of (1) for c = 0 and µ = 5. 
 
 
 For 1µ > , the equilibrium points of the system are 
 

1,2 ( ln , ln , / ln )S cµ µ µ= ± ± m           (2) 

 
and the characteristic equations at equilibrium points are 
 

3 2
ln

( ) ( ln ) 2 ln 0c
µ

λ λ λ µ µ λ µ µΔ = + + ± + =       (3) 

 
Let c be the bifurcation parameter and µ be constant. To find 
values of c at which Hopf bifurcations are occurred, let 

0iλ ω=  be a root of (3), then  
3 2 2

0 0 0 0ln
(i ) i i( ln ) , 2 ln 0c

µ
ω ω ω µ µ ω µ µΔ = − − + ± + = .      

Separating the real and imaginary parts, we have 
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which implies that 
3
2

1,2 (ln )c µ µ∗ = ±  are candidates for Hopf 
bifurcation at bifurcation points 

)ln,ln,ln(2,1 µµµµ ∓±±=∗S   

Note that  ∗
2,1S  are symmetric with respect to the z axis [11]. 

First we study the behaviour of the system around ∗
1S . The 

other root of (3) is 1−=λ . We proceed to calculate the real 
part of 

dc
dλ i.e. ))(Re(λdc

d , evaluated at ∗= 1cc  as mentioned 

in [12]. By differentiating (3) implicitly with respect to c and 
then simplify, we obtain   
 

)ln21(ln2
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Hence, the eigenvalues cross from the right half-plane 

(RHP) to the left half-plane (LHP) as c is increased. 1S
∗ is 

unstable for 1c c ∗< 	   and is asymptotically stable for 1c c ∗> . 

Similarly, The bifurcation point 2S
∗  is asymptotically stable 

for 2c c ∗<  and is unstable for	   2c c ∗> . In Fig. 2 bifurcation 

diagram for x versus c is shown for 5.2=µ  and bifurcation 
values 1 2 2 2,c .∗ ≈ ± . 
  

 
Fig. 2. Bifurcation diagram x versus c for µ =2.5,	   1 2 2 2,c .∗ ≈ ± . 
 
 
3. DFC Based on Hopf Bifurcation 
 
In order to improve the performance of a dynamic system or 
to avoid the chaotic phenomena, we need to control chaotic 
system to a regular target trajectory embedded in the chaotic 
attractor which is beneficial for working with a particular 
condition. In this paper we focus on DFC with the following 
control law: 
 
( ) ( ( ) ( ))u t k s t T s t= − −             (6) 

 
where s(t) could be a linear or nonlinear function of the 
states variables and control input u(t) could be applied to 
each of the system equations. For system (1) we assume that 
s(t) = y(t) and the dynamic of y(t) is affected by u(t). So the 
closed loop model is obtained as: 
 

   

!x = y − z
!y = xz + c + k( y(t −T )− y(t)
!z ="−exp(xy)

⎧

⎨
⎪

⎩
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            (7) 

 
Now we tune the parameters of the controller: feedback gain 
k and delay time T. 
 
 
3.1 Stabilizing UPO 
 
To achieve the structure of unstable periodic orbit embedded 
in chaotic attractor, T must be set as the period of that orbit. 
From Hopf bifurcation theory [10], we know that the period 
of orbits near the Hopf bifurcation point is approximately 

02π ω . So we set 02Τ π ω= . Now k must be determined 
such that after a Hopf bifurcation, period doubling routes to 
chaos is not occurred. To do this, we linearize the closed 
loop system around the equilibrium points. 
  
The characteristic equation at 1 2,S

∗  is 
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For 0λ iω=  and	   02Τ π ω= , equations (3) and (8) are 
identical. Hence, similar to the open loop case, Hopf 
bifurcations are occurred for the closed loop system (7) at 

3
2

1 2,c µ(ln µ )∗ = ± 	  for all k. From Fig. 2, one can find that for 

some	   2 1c ( c ,c )∗ ∗∈ , chaos is appeared. To stabilize chaos, we 
have to move the roots of characteristic equation to the left 
by choosing a suitable k. 

Since k may be determined in terms of µ and c, to 
characterize the effect of k on the stability of periodic orbits, 
we study the variations d

dc (Re( λ ))	   and d
dµ (Re( λ )) at Hopf 

bifurcation  values	   1 2,c
∗ .  

 In Fig. 3(a), d
dc (Re( λ )) is plotted versus (k, µ). It is 

shown that near Hopf bifurcation values Re( λ )  is not 
changed with respect to the parameter c for all values of k 
and µ in an interval. In Fig. 3(b), d

dµ (Re( λ )) is plotted versus 

(k, µ). It shows that for some values of k and µ in a region 
)Re(λ  is increasing and 0d

dµ (Re( λ ))> 	   is decreasing in 

another region. To see the regions, the contour 
0d

dµ (Re( λ ))= of Fig. 3(b) is shown in Fig. 3(c). It shows 

that for values of k and µ in gray region, the roots of the 
characteristic polynomial (8) lie on RHP and they increase 
with increasing µ. In this case Hopf bifurcation is occurred. 
To achieve a period one orbit, the real part of the rightmost 
root of characteristic polynomial (8) must be in RHP and 
near the imaginary axis. That is for a known µ, the value of k 
in the gray region must be near the boundary curve which 
separates the gray and white regions. So by decreasing k for 
a fixed µ, periodic orbits with higher periods are obtained. 
For values of k and µ on the boundary curve between gray 
and white region, the roots lie on the imaginary axis and for 
those values of k and µ  in the white region the roots are on 
LHP, i.e., where 0d

dµ (Re( λ ))< . 

 
 
3.2 Stabilizing Unstable Equilibrium Points 
 
Those values of k for which	   0d

dµ (Re( λ ))< , are suitable for 

stabilizing the equilibrium points. In this case the roots of 
characteristic equation are moved from RHP to LHP by 
increasing the parameters. From Fig. 3(c) it is clear that the 
condition 0d

dµ (Re( λ ))<  is held for large µ in a small 

interval and feedback gain k is increased. To have an upper 
bound for k, we consider the effect of delay time T on the 
stability of equilibrium points. Simply we find that 

0d
dT (Re( λ ))<  at bifurcation values. Therefore if T is 

decreased, then the real part λ is decreased and it implies the 
stability of equilibrium points. So for 02T π ω<  and 
suitable feedback gain k, equilibrium points become stable. 
 
 
 
4. Simulation Results 
 
In this section, we illustrate DFC with parameters that are 
adjusted by the method in Section 3, can stabilize many 
periodic solutions embedded in chaotic attractors. For all 
simulations we assume c = 0, µ = 5 and the initial condition 

is [1, -1, 0.5]T. The periodic orbits are plotted after transient 
time.  
 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. The variations of (a) ( ( ))d
dc Re λ , (b) ( ( ))d

dµ Re λ and                         

(c) the contour of b where the gray regions indicates ( ( )) 0d
dµ Re λ >  

versus (k, µ). 
  
 
First from (4) we have	   0 10 5 4 0118ω ln .= ≈ , therefore we 
choose	   02 1 566T π / ω .= ≈ . We choose	   1 18k .> , which 
implies  that  the  roots  of  characteristic  equation are in the  
 
 
RHP and near the imaginary axis. The results of simulations 
are presented in Fig. 4 for some values of k. It is shown that 
for k = 1.7, the periodic orbits which arise from a Hopf 
bifurcation become stable. By decreasing k from	   1 18k .< . 
periodic orbits with higher period embedded in the chaotic 
attractor become stable. 
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Fig. 4. Stabilizing periodic orbits by DFC for T = 1.566 and for some 
values of feedback gain: k = 1.7 (period one); k = 1.13 (period two);              
k = 0.9 (period four) and k = 0.745 (higher period). 
 
 Also, by the results obtained in the previous section, 
decreasing T implies the characteristic eignvalues goes to 
LHP and the stability of equilibrium points is attained. This 
is shown in Fig. 5 for T = 1.466 and k = 1.7, then             

1S
∗ = [1.6094, 1.6094, 0]T is stabilized. 

 
 

 
Fig. 5. Stabilizing equilibrium point S*1 by DFC for T=1.466 and k=1.7. 
 
In Fig. 6 bifurcation diagram of the closed loop system is 
plotted versus the parameter c. It shows that DFC is robust 
with respect to the variations of the parameter c, and period 
one orbit remains stable for a wide range of the parameter. It 
can be compared with the bifurcation diagram of the open 
loop system in Fig. 2. 
 

 
Fig. 6. Bifurcation diagram of the closed loop system for µ = 2.5,              
T = 2.9355 and k = 1.7. 
 
 
5. Conclusion 
 
In this paper first we studied Hopf bifurcation of a chaotic 
system. Points at which the system undergoes Hopf 
bifurcation are obtained. By analyzing the eigenvalues of the 
Jacobian matrix at bifurcation points, the stability of the 
equilibrium points and the periodic orbits were determined. 
Based on the results of Hopf bifurcation, DFC was 
investigated to stabilize UPOs and unstable equilibrium 
points of the chaotic system. Tuning the parameters 
containing feedback gain and delay time of the controller 
obtained. At last we showed the simulation results of DFC 
for some parameters. 
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