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Abstract 
 
Two neural networks that are trained on their mutual output synchronize to an identical time dependant weight vector. 
This novel phenomenon can be used for creation of a secure cryptographic secret-key using a public channel. Neural 
cryptography is a way to create shared secret key. Key generation in Tree Parity Machine neural network is done by 
mutual learning. Neural networks here receive common inputs and exchange their outputs. Adjusting discrete weights 
according to a suitable learning rule then leads to full synchronization in a finite number of steps and these identical 
weights are the secret key needed for encryption. A faster synchronization of the neural network has been achieved by 
generating the optimal weights for the sender and receiver from a genetic process. Here the best fit weight vector is 
found using a genetic algorithm. In this paper the performance of the genetic algorithm has been analysed by varying the 
number of hidden and input neurons. 
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1. Introduction 
 
The problem of key exchange is one of the main concern of 
classical cryptography and it was extensively studied in 
classical cryptography. The first published key exchange 
protocol was based on number theory and it is known by 
Diffie-Hellman key exchange protocol. While it depends on 
the difficulties of computing discrete logarithms, it is 
vulnerable to a man-in-the-middle attack [1]. Moreover, it is 
computationally intensive. The man-in-the-middle attack is 
solved by authentication mechanisms. Alternatively, two 
networks trained on their outputs are able to achieve the 
same objective by means of mutual learning bringing about 
what is known as neural cryptography [2,3]. The advantage 
of neural cryptography is that the algorithm used in 
generating a common key is very simple and fast with the 
network used in training can be a simple perception or Tree 
Parity Machine (TPM). While the simple perception 
manages to synchronize fast, it is insecure [4]. Therefore, it 
is preferred to use the TPM due to its higher security 
although it needs more time to synchronize. 

In neural cryptography, both the communicating 
networks receive an identical input vector, generate an 
output bit and are trained on their mutual output.  This leads 
to synchronization by mutual learning. The synaptic weights 
of the two networks converge to a common identical weight 
vector [4]. Thus, the generated identical weight vectors are 

shared and used as a secret cryptographic key 
Synchronization of the Tree Parity Machine using genetic 
algorithm is described in [5]. A best fit weight vector found 
using a genetic algorithm is then taken as initial weights to 
train the network using the feed forward process. Optimal 
weights lead to faster convergence of the neural network 
than the random weights which can be further improved by 
increasing the synaptic depth D of the neural network, but 
this leads to an increase in the number of iterations. 
However the process of synchronization also depends on the 
number of neurons in the hidden layer and the input layer. In 
this paper the performance of the genetic algorithm is further 
analysed by varying the number of neurons in the input and 
the hidden layer.  

The paper is organized as follows. Generation of secret 
keys using optimal weights is described in Section 2. Section 
3, describes the security attack followed by the results in 
Section 4. 

 
 

2.  Generation of Secret Keys Using Optimal Weights  
 
The genetic algorithm [6] offers an alternative approach for 
the opponent, which is not based on optimizing the 
prediction of the internal representation, but on an 
evolutionary algorithm. The efficiency of the genetic attack 
mostly depends on the algorithm which selects the fittest 
neural networks. In the ideal case the Tree Parity Machine, 
which has the same sequence of internal representations as A 
is never discarded. This algorithm has been used to generate 
the best fit input weight vector for the tree parity machine 
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[7]. The generation of optimal weights is achieved as 
follows: 

To start with, the initial population weight value is taken 
as set of random numbers in the range [-D, D]. The fitness 
function  is assumed to be parabolic and is defined as,  
 
( ) sgn( ) ( )f x x D g x= ⋅ + 	
   	
   	
   	
   	
  	
  (1) 

 
    Where ( )g x  is defined as, 
 

2

0
g( )

0

x D
x x D x D

x D

< −⎧
⎪= − ≤ <⎨
⎪ ≥⎩

                                       (2) 

 
Based on the fitness value corresponding to each weight, 

the most fitted set of weights W are identified using Roulette 
Wheel selection method. Crossover and Mutation is then 
performed on the elements in W to obtain the optimal 
weights using Crossover rate (Pc = 0.8) and Mutation rate 
(Pm = 0.01).  This completes one cycle of GA process. This 
process is repeated till coincident weights are obtained in the 
successive iterations, which are used as initial weights in 
range [-D, D] for the tree parity machine shown in Fig. 1.  
Repetition of the following steps leads to the 
synchronization of the TPM (Tree Parity Machine). 

Initialize weight  values iw
r

, obtained from GA process  
in range [-D, D]. Execute the following steps until the full 
synchronization achieved.  

 
Step 1: Generate random input vector.   
 

Step 2: Compute the values of the hidden neurons. 
 

 
σ i = w

→

i x
→

i                                                                         (3) 
 
Step 3: Compute the value of the output neuron.  
 

i=τ πσ                                                                            (4) 
 
Step 4: Compare the values τ of both tree parity 
machines.  

i. Outputs are different go to Step 1 
ii. Outputs are same: one of the following  learning 

rules is applied to update  the weights.  
            Hebbian learning rule [8]:  
 

  wi = wi+σ i xiθ (σ iτ )θ (τ Aτ B )                                              
(5) 
 
           Random walk:  
 

  wi = wi + xiθ (σ iτ )θ (τ Aτ B )                                               (6) 
 

In this case, only the hidden unit iσ which is identical to 
τ changes its weights. In case the updated weights are not in 
the range [-D, D] they are redefined as follows: 

 

  
wi =

−sgn(wi )D, | wi |> D

wi , otherwise

⎧
⎨
⎪

⎩⎪
                               (7) 

 
 
When synchronization is achieved, the weights iw

r
 of 

both tree parity machines are same and they become the 
secret keys for communication between A and B. In this 
work we have shown that the process of synchronization can 
be further improved by varying the number of hidden 
neurons. 
 

	
  
 

Fig. 1. Tree Parity Machine. 
 

 
3. Security Attacks 
 
Synchronization of Tree Parity Machines by mutual learning 
only works if they receive a common sequence of input 
vectors. This effect can be used to implement an 
authentication mechanism for the neural key-exchange 
protocol. For that purpose each partner uses a separate, but 
identical pseudo-random number generator. As these devices 
are initialized with a secret seed state shared by A and B, 
they produce exactly the same sequence of bits, which is 
then used to generate the input vectors ix

r
 needed during the 

synchronization process. By doing so A and B can 
synchronize their neural networks without transmitting input 
values over the public channel. Of course, an opponent E 
does not know the secret seed state. Therefore E is unable to 
synchronize due to the lack of information about the input 
vectors. Even an active man-in-the-middle attack does not 
help in this situation, although it is always successful for 
public inputs. Consequently, reaching full synchronization 
proves that both participants know the secret seed state. 
Thus A and B can authenticate each other by performing this 
variant of the neural key exchange. The use of genetic 
algorithms can fasten the process of synchroniza-tion of 
genuine parties, so that many attacks, which are generally 
successful due to lengthy synchronization process, can be 
avoided. This makes the brute force attack very difficult. So 
in this paper we have discussed  the Regular flipping Attack 
(RFA) and Majority Flipping Attack (MFA)  strategy [9].   

In RFA the attacker imitates one of the parties, but in the 
step in which his output disagrees with the imitated party’s 
output, he negates (“flips”) the sign of one of his hidden 
units. The unit, which is most likely to be wrong, is the one 
with the minimal absolute value of the local field therefore 
that is the unit which is flipped. In the genetic algorithm 
RFA attack can be further weakened by increasing D. The 
strategy of MFA [9,10], is to use  the attackers as a group 
rather than as individuals who cooperate and work. All 
weights are updated according to the majority’s result.  This 
“team –work” approach improves the attackers performance. 
We define the attacker to be  successful if  he is able to 
guess 98% of the weights. 
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4. Results and Analysis 
 
1) Generation of keys:   
As described in generation of keys using optimal weights 
section keys are the synchronized set of weights obtained 
from the TPM network. The number of learning steps which 
required to achieve this synchronization depends on the 
parameters N, K, D. Analysis has been carried out to 
investigate the number of iterations needed for 
synchronization by varying the range of weights (D) and by 
varying the number of neurons in the hidden layer (K)  as 
well as  the input layer (N).  
 

2)  Key generation with varying weight ranges and varying 
hidden neurons:  

The above algorithm was analysed for varying weight ranges 
noted by D, and by varying number of hidden neurons K. 
The number of input neurons is kept fixed as N = 100. The 
average number of learning steps required to achieve weight 
synchronization with varying K and D by the sender and 
receiver is illustrated in Fig. 2. We could see that the number 
of learning steps is directly proportional to the weight range 
D, which would decelerate the process of synchronization 
and increase the probability of attack. However, along with 
increase in D if the number of hidden neurons (K) is also 
increased then it helps to accelerate the synchronization 
process as D is increased. Finally this brings down the 
success probability of an attack. The success probability of 
RFA and MFA with 100 attackers is shown in Fig. 3, where 
it is seen that both in RFA and MFA the success of attack 
reduces as the number of hidden neuron increases. 
 

 
 

Fig. 2. The average synchronization steps with different K and D. 
 
3)  Key generation with varying weight ranges and varying 

Input neurons:  
Tree Parity Machines, which are used by partners and 
attackers in neural cryptography, are multilayer feed-forward 
networks. Their general structure is shown in Fig. 1. As in 
other neural networks the weighted sum over the current 
input values is used to determine the output of the hidden 
units. The tree parity machine was also analysed by varying 
the weight range D and the input neurons represented by N. 
Here the number of hidden neurons K is kept fixed as 4. The 
average learning steps for sender and receiver to achieve 
weight synchronization with varying N and D is illustrated in 
Fig. 4. It is seen that the number of learning steps 
considerably  increase  as   N  increases,   due  to  which   the  
 

probability of  success of MFA and RFA  increases as seen 
in Figs. 5(a) & (b).   
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 3. (a) Success rate of MFA for M = 10 attackers and (b) Success  
probability of   RFA for M = 100 attackers. 
 

    

Fig. 4. The average synchronization steps with different N and D. 
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Figure 5a: Success probability of MFA for M=100 attackers 

 
Fig. 5. (a) Success probability of MFA for M = 100 attackers and (b) 
Success probability of RFA for M = 100 attackers. 
 

From the above results it shows that increasing the 
hidden neurons brings faster convergence and more security. 

  
4)  Security analysis: 
The above results of experiment show that majority flipping 
attack failed when the keys are generated using a genetic 
algorithm. From Figs. 2 & 4 it can be seen that the 
performance of genetic algorithm can be further enhanced to 
get a secure key by increasing either the number of hidden 
neurons or the input neurons. But if we also need to obtain 
faster convergence then increasing the number of hidden 
neurons gives better results. The success probability of RFA 
and MFA with 10 or 100 attackers is shown in Fig. 3, where 
it is seen that both in RFA and MFA the success of attack 
reduces as the number of hidden neuron increases.  

Figure 5 shows that increasing the hidden neurons bring 
faster convergence and more security. Figure 6 shows the 
success probability of MFA with and without GA (that is 
using random weights) [10]. For K = 3, N = 100 and             
M = 100 attackers. A considerable decrease in the 
probabilities is indicated here. 
 

5)  Key Stream Generation: 
In cryptography, a key stream is a series of flow combined 
with the encryption and decryption of data flowed with the 
plaintext data. Key stream generator is designed by a short 

random key (also known as the actual key or seed key) to 
generate a long key stream. Once the key stream is generated 
an XOR operation is performed with the keys and the 
encoded plain text to obtain the encrypted text. Stream 
cipher is a symmetric key encryption where each bit of data 
is encrypted with each bit of key. The Crypto key used for 
encryption is changed dynamically so that the cipher text 
produced is secure and difficult to crack.   

The above algorithm can be implemented with the 
feedback mechanism [11] to generate the key stream of 
desired length. Here the synchronized weights of the 
previous iteration would become the input vector which is 
defined as follows:  

 
1, 0
1, 0i

W
x

W
− <⎧

= ⎨ >⎩
                                                        (8) 

 
New set of optimal weights W are generated using 

genetic algorithm. The TPM is synchronized for this new set 
of inputs and weights and a fresh set of synchronized 
weights is obtained which is appended to the previous set of 
synchronized weights to obtain a key of desired length. 
Thus, the process will terminate after generating the final 
key stream. 
 

 
 

Fig. 6. Success probability of MFA with and without GA. 
 
 
5. Conclusion 
 
Compared to the other methods the genetic attack is in a 
certain way different. First, it is especially successful, if  D 
is small. Second, the genetic attack is a rather complicated 
algorithm with a lot of parameters. it is necessary to compare 
all known attack methods in order to estimate the level of 
security achieved by a certain set of parameters. In this paper 
the synchronization of the TPM’s has been shown to 
improve by increasing the number of hidden/input neurons. 
This also helps to bring down the probability of success of 
both RFA and MFA attack. Neural cryptography therefore 
promises to revolutionize secure communication by 
providing security based on the neural networks. 

Yet sophisticated attackers which use ensembles of 
cooperating attackers have a good chance to synchronize. 
However, advanced algorithms for synchronization, which 
involve different types of chaotic synchronization seem to be 
more secure. Such models are subjects of active research, 
and only the future will tell whether the security of neural 
network cryptography can compete with number theoretical 
methods. 
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