
	

	

Journal of Engineering Science and Technology Review 8 (2) (2015) 152 - 156
Special Issue on Synchronization and Control of Chaos: Theory,

Methods and Applications
	

Research Article

Neural Synchronization Using Genetic Algorithm for Secure Key Establishment

 Daxing Wang*

 School of Mathematics and Finance, Chuzhou University, Chuzhou, Anhui, P.R. China.

Received 1 July 2014; Revised 1 November 2014; Accepted 14 November 2014

Abstract

Two neural networks that are trained on their mutual output synchronize to an identical time dependant weight vector.
This novel phenomenon can be used for creation of a secure cryptographic secret-key using a public channel. Neural
cryptography is a way to create shared secret key. Key generation in Tree Parity Machine neural network is done by
mutual learning. Neural networks here receive common inputs and exchange their outputs. Adjusting discrete weights
according to a suitable learning rule then leads to full synchronization in a finite number of steps and these identical
weights are the secret key needed for encryption. A faster synchronization of the neural network has been achieved by
generating the optimal weights for the sender and receiver from a genetic process. Here the best fit weight vector is
found using a genetic algorithm. In this paper the performance of the genetic algorithm has been analysed by varying the
number of hidden and input neurons.

 Keywords: Neural synchronization, neural cryptography, key exchange, genetic algorithm, tree parity machine.
 __

1. Introduction

The problem of key exchange is one of the main concern of
classical cryptography and it was extensively studied in
classical cryptography. The first published key exchange
protocol was based on number theory and it is known by
Diffie-Hellman key exchange protocol. While it depends on
the difficulties of computing discrete logarithms, it is
vulnerable to a man-in-the-middle attack [1]. Moreover, it is
computationally intensive. The man-in-the-middle attack is
solved by authentication mechanisms. Alternatively, two
networks trained on their outputs are able to achieve the
same objective by means of mutual learning bringing about
what is known as neural cryptography [2,3]. The advantage
of neural cryptography is that the algorithm used in
generating a common key is very simple and fast with the
network used in training can be a simple perception or Tree
Parity Machine (TPM). While the simple perception
manages to synchronize fast, it is insecure [4]. Therefore, it
is preferred to use the TPM due to its higher security
although it needs more time to synchronize.

In neural cryptography, both the communicating
networks receive an identical input vector, generate an
output bit and are trained on their mutual output. This leads
to synchronization by mutual learning. The synaptic weights
of the two networks converge to a common identical weight
vector [4]. Thus, the generated identical weight vectors are

shared and used as a secret cryptographic key
Synchronization of the Tree Parity Machine using genetic
algorithm is described in [5]. A best fit weight vector found
using a genetic algorithm is then taken as initial weights to
train the network using the feed forward process. Optimal
weights lead to faster convergence of the neural network
than the random weights which can be further improved by
increasing the synaptic depth D of the neural network, but
this leads to an increase in the number of iterations.
However the process of synchronization also depends on the
number of neurons in the hidden layer and the input layer. In
this paper the performance of the genetic algorithm is further
analysed by varying the number of neurons in the input and
the hidden layer.

The paper is organized as follows. Generation of secret
keys using optimal weights is described in Section 2. Section
3, describes the security attack followed by the results in
Section 4.

2. Generation of Secret Keys Using Optimal Weights

The genetic algorithm [6] offers an alternative approach for
the opponent, which is not based on optimizing the
prediction of the internal representation, but on an
evolutionary algorithm. The efficiency of the genetic attack
mostly depends on the algorithm which selects the fittest
neural networks. In the ideal case the Tree Parity Machine,
which has the same sequence of internal representations as A
is never discarded. This algorithm has been used to generate
the best fit input weight vector for the tree parity machine

Jestr
	

JOURNAL	
 OF	

Engineering	
 Science	
 and	

Technology	
 Review	

	

	
 www.jestr.org	

 * E-mail address: volos@physics.auth.gr
ISSN: 1791-2377 © 2015 Kavala Institute of Technology. All rights
reserved.
	

Daxing Wang /Journal of Engineering Science and Technology Review 8 (2) (2015) 152 - 156
	

	

153

[7]. The generation of optimal weights is achieved as
follows:

To start with, the initial population weight value is taken
as set of random numbers in the range [-D, D]. The fitness
function is assumed to be parabolic and is defined as,

() sgn() ()f x x D g x= ⋅ + 	
 	
 	
 	
 	
 	
 (1)

 Where ()g x is defined as,

2

0
g()

0

x D
x x D x D

x D

< −⎧
⎪= − ≤ <⎨
⎪ ≥⎩

 (2)

Based on the fitness value corresponding to each weight,

the most fitted set of weights W are identified using Roulette
Wheel selection method. Crossover and Mutation is then
performed on the elements in W to obtain the optimal
weights using Crossover rate (Pc = 0.8) and Mutation rate
(Pm = 0.01). This completes one cycle of GA process. This
process is repeated till coincident weights are obtained in the
successive iterations, which are used as initial weights in
range [-D, D] for the tree parity machine shown in Fig. 1.
Repetition of the following steps leads to the
synchronization of the TPM (Tree Parity Machine).

Initialize weight values iw
r

, obtained from GA process
in range [-D, D]. Execute the following steps until the full
synchronization achieved.

Step 1: Generate random input vector.

Step 2: Compute the values of the hidden neurons.

σ i = w

→

i x
→

i (3)

Step 3: Compute the value of the output neuron.

i=τ πσ (4)

Step 4: Compare the values τ of both tree parity
machines.

i. Outputs are different go to Step 1
ii. Outputs are same: one of the following learning

rules is applied to update the weights.
 Hebbian learning rule [8]:

 wi = wi+σ i xiθ (σ iτ)θ (τ Aτ B)
(5)

 Random walk:

 wi = wi + xiθ (σ iτ)θ (τ Aτ B) (6)

In this case, only the hidden unit iσ which is identical to
τ changes its weights. In case the updated weights are not in
the range [-D, D] they are redefined as follows:

wi =

−sgn(wi)D, | wi |> D

wi , otherwise

⎧
⎨
⎪

⎩⎪
 (7)

When synchronization is achieved, the weights iw

r
 of

both tree parity machines are same and they become the
secret keys for communication between A and B. In this
work we have shown that the process of synchronization can
be further improved by varying the number of hidden
neurons.

	

Fig. 1. Tree Parity Machine.

3. Security Attacks

Synchronization of Tree Parity Machines by mutual learning
only works if they receive a common sequence of input
vectors. This effect can be used to implement an
authentication mechanism for the neural key-exchange
protocol. For that purpose each partner uses a separate, but
identical pseudo-random number generator. As these devices
are initialized with a secret seed state shared by A and B,
they produce exactly the same sequence of bits, which is
then used to generate the input vectors ix

r
 needed during the

synchronization process. By doing so A and B can
synchronize their neural networks without transmitting input
values over the public channel. Of course, an opponent E
does not know the secret seed state. Therefore E is unable to
synchronize due to the lack of information about the input
vectors. Even an active man-in-the-middle attack does not
help in this situation, although it is always successful for
public inputs. Consequently, reaching full synchronization
proves that both participants know the secret seed state.
Thus A and B can authenticate each other by performing this
variant of the neural key exchange. The use of genetic
algorithms can fasten the process of synchroniza-tion of
genuine parties, so that many attacks, which are generally
successful due to lengthy synchronization process, can be
avoided. This makes the brute force attack very difficult. So
in this paper we have discussed the Regular flipping Attack
(RFA) and Majority Flipping Attack (MFA) strategy [9].

In RFA the attacker imitates one of the parties, but in the
step in which his output disagrees with the imitated party’s
output, he negates (“flips”) the sign of one of his hidden
units. The unit, which is most likely to be wrong, is the one
with the minimal absolute value of the local field therefore
that is the unit which is flipped. In the genetic algorithm
RFA attack can be further weakened by increasing D. The
strategy of MFA [9,10], is to use the attackers as a group
rather than as individuals who cooperate and work. All
weights are updated according to the majority’s result. This
“team –work” approach improves the attackers performance.
We define the attacker to be successful if he is able to
guess 98% of the weights.

Daxing Wang /Journal of Engineering Science and Technology Review 8 (2) (2015) 152 - 156
	

	

154

4. Results and Analysis

1) Generation of keys:
As described in generation of keys using optimal weights
section keys are the synchronized set of weights obtained
from the TPM network. The number of learning steps which
required to achieve this synchronization depends on the
parameters N, K, D. Analysis has been carried out to
investigate the number of iterations needed for
synchronization by varying the range of weights (D) and by
varying the number of neurons in the hidden layer (K) as
well as the input layer (N).

2) Key generation with varying weight ranges and varying
hidden neurons:

The above algorithm was analysed for varying weight ranges
noted by D, and by varying number of hidden neurons K.
The number of input neurons is kept fixed as N = 100. The
average number of learning steps required to achieve weight
synchronization with varying K and D by the sender and
receiver is illustrated in Fig. 2. We could see that the number
of learning steps is directly proportional to the weight range
D, which would decelerate the process of synchronization
and increase the probability of attack. However, along with
increase in D if the number of hidden neurons (K) is also
increased then it helps to accelerate the synchronization
process as D is increased. Finally this brings down the
success probability of an attack. The success probability of
RFA and MFA with 100 attackers is shown in Fig. 3, where
it is seen that both in RFA and MFA the success of attack
reduces as the number of hidden neuron increases.

Fig. 2. The average synchronization steps with different K and D.

3) Key generation with varying weight ranges and varying

Input neurons:
Tree Parity Machines, which are used by partners and
attackers in neural cryptography, are multilayer feed-forward
networks. Their general structure is shown in Fig. 1. As in
other neural networks the weighted sum over the current
input values is used to determine the output of the hidden
units. The tree parity machine was also analysed by varying
the weight range D and the input neurons represented by N.
Here the number of hidden neurons K is kept fixed as 4. The
average learning steps for sender and receiver to achieve
weight synchronization with varying N and D is illustrated in
Fig. 4. It is seen that the number of learning steps
considerably increase as N increases, due to which the

probability of success of MFA and RFA increases as seen
in Figs. 5(a) & (b).

(a)

(b)

Fig. 3. (a) Success rate of MFA for M = 10 attackers and (b) Success
probability of RFA for M = 100 attackers.

Fig. 4. The average synchronization steps with different N and D.

4 5 6 7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight Range

S
u
c
c
e
s
s
 p

ro
b
a
b
il
ti
y

K=3
K=4
K=5

4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Weight Range

S
u
c
c
e
s
s
 p

ro
b
a
b
il
it
y

K=3
K=4
K=5

4 5 6 7
0

200

400

600

800

1000

1200

1400

Weight Ranges

L
e
a
r
n

in
g

 S
te

p
s

N=100,K=4
N=200
N=300
N=400

Daxing Wang /Journal of Engineering Science and Technology Review 8 (2) (2015) 152 - 156
	

	

155

Figure 5a: Success probability of MFA for M=100 attackers

Fig. 5. (a) Success probability of MFA for M = 100 attackers and (b)
Success probability of RFA for M = 100 attackers.

From the above results it shows that increasing the
hidden neurons brings faster convergence and more security.

4) Security analysis:
The above results of experiment show that majority flipping
attack failed when the keys are generated using a genetic
algorithm. From Figs. 2 & 4 it can be seen that the
performance of genetic algorithm can be further enhanced to
get a secure key by increasing either the number of hidden
neurons or the input neurons. But if we also need to obtain
faster convergence then increasing the number of hidden
neurons gives better results. The success probability of RFA
and MFA with 10 or 100 attackers is shown in Fig. 3, where
it is seen that both in RFA and MFA the success of attack
reduces as the number of hidden neuron increases.

Figure 5 shows that increasing the hidden neurons bring
faster convergence and more security. Figure 6 shows the
success probability of MFA with and without GA (that is
using random weights) [10]. For K = 3, N = 100 and
M = 100 attackers. A considerable decrease in the
probabilities is indicated here.

5) Key Stream Generation:
In cryptography, a key stream is a series of flow combined
with the encryption and decryption of data flowed with the
plaintext data. Key stream generator is designed by a short

random key (also known as the actual key or seed key) to
generate a long key stream. Once the key stream is generated
an XOR operation is performed with the keys and the
encoded plain text to obtain the encrypted text. Stream
cipher is a symmetric key encryption where each bit of data
is encrypted with each bit of key. The Crypto key used for
encryption is changed dynamically so that the cipher text
produced is secure and difficult to crack.

The above algorithm can be implemented with the
feedback mechanism [11] to generate the key stream of
desired length. Here the synchronized weights of the
previous iteration would become the input vector which is
defined as follows:

1, 0
1, 0i

W
x

W
− <⎧

= ⎨ >⎩
 (8)

New set of optimal weights W are generated using

genetic algorithm. The TPM is synchronized for this new set
of inputs and weights and a fresh set of synchronized
weights is obtained which is appended to the previous set of
synchronized weights to obtain a key of desired length.
Thus, the process will terminate after generating the final
key stream.

Fig. 6. Success probability of MFA with and without GA.

5. Conclusion

Compared to the other methods the genetic attack is in a
certain way different. First, it is especially successful, if D
is small. Second, the genetic attack is a rather complicated
algorithm with a lot of parameters. it is necessary to compare
all known attack methods in order to estimate the level of
security achieved by a certain set of parameters. In this paper
the synchronization of the TPM’s has been shown to
improve by increasing the number of hidden/input neurons.
This also helps to bring down the probability of success of
both RFA and MFA attack. Neural cryptography therefore
promises to revolutionize secure communication by
providing security based on the neural networks.

Yet sophisticated attackers which use ensembles of
cooperating attackers have a good chance to synchronize.
However, advanced algorithms for synchronization, which
involve different types of chaotic synchronization seem to be
more secure. Such models are subjects of active research,
and only the future will tell whether the security of neural
network cryptography can compete with number theoretical
methods.

4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight range

S
u
c
c
e
s
s
 p

ro
b
a
b
il
ti
y

N=100
N=200
N=300

4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Weight Range

S
u
c
c
e
s
s
 P

ro
b
a
b
il
it
y

N=300
N=200
N=100

4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight	
 range

S
uc
ce
ss
	
 r
at
e

MFA(GA)
MFA(Rand)

Daxing Wang /Journal of Engineering Science and Technology Review 8 (2) (2015) 152 - 156
	

	

156

Acknowledgments

Supported by the Natural Science Research Project of
Education Office of Anhui Province (KJ2013B185), the
Natural Science Research Project of Chuzhou University
(2012kj001Z).

We want to thank the members of our research group, who
provided a lot of helpful advice for this paper.

References

	

1. W. Stallings, Cryptography and network security, 3rd Edition,

Prentice Hall (2003).
2. T. Godhavari, N.R. Alamelu, and R.Soundararajan,

Cryptography using neural network, In Proc. of 2005 Annual
IEEE INDICON, pp. 258-261 (2005).

3. E. Volna, M. Kotyrba, and V. Kocian, Cryptography based on
neural network, ECMS, pp. 386-391 (2012).

4. E. Klein, R. Mislovaty, I. Kanter, A. Ruttor, and W. Kinzel,
Synchronization of neural networks by mutual learning and its
application to cryptography, In Advances in Neural Information
Processing Systems, pp. 689-696 (2004).

5. I. Kanter, W. Kinzel, and E. Kanter, Secure exchange of
information by synchronization of neural networks, Europhysics
Letters, vol. 57(1), p.141 (2002).

6. D.E. Goldberg and J.H. Holland, Genetic algorithms and
machine learning, Machine Learning, vol. 3(2), pp.95-99 (1988).

7. A.M. Allam, H.M. Abbas, M.W. El-Kharashi, Authenticated key
exchange protocol using neural cryptography with secret
boundaries, In Proc. of the IEEE International Joint Conference
on Neural Networks (IJCNN), pp. 1-8 (2013).

8. N. Caporale and Y. Dan, Spike timing-dependent plasticity: A
Hebbian learning rule, Annu. Rev. Neurosci., vol. 31, pp. 25-46
(2008).

9. A. Klimov, A. Mityagin, and A. Shamir, Analysis of neural
cryptography, In Advances in Cryptology - ASIACRYPT,
Springer Berlin Heidelberg. pp. 288-298 (2002).

10. L.N. Shacham, E. Klein, R. Mislovaty, I. Kanter, and W. Kinzel,
Cooperating attackers in neural cryptography, Physical Review
E, vol. 69(6), pp. 066137 (2004).

11. S. Chakraborty, J. Dalal, and B.Sarkar, Neural synchronization
based secret key exchange over public channels: A survey, In
Proc. of IEEE International Conference on Signal Propagation
and Computer Technology (ICSPCT), pp. 368-375 (2014).

