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Abstract 
 

This research work proposes a seven-term 3-D novel dissipative chaotic system with four quadratic nonlinearities.  The 
Lyapunov exponents of the 3-D novel chaotic system are obtained as L1 = 11.36204, L2 = 0 and L3 = –47.80208.  Since the 
sum of the Lyapunov exponents is negative, the 3-D novel chaotic system is dissipative. Also, the Kaplan-Yorke dimension 
of the 3-D novel chaotic system is obtained as DKY = 2.23769.  The maximal Lyapunov exponent (MLE) of the novel 
chaotic system is L1 = 11.36204,  which is a large value for a polynomial chaotic system. Thus, the proposed 3-D novel 
chaotic system is highly chaotic. The phase portraits of the novel chaotic system simulated using MATLAB depict the 
highly chaotic attractor of the novel system. This research work also discusses other qualitative properties of the system. 
Next, an adaptive controller is designed to stabilize the 3-D novel chaotic system with unknown parameters. Also, an 
adaptive synchronizer is designed to achieve anti-synchronization of the identical 3-D novel chaotic systems with unknown 
parameters. The adaptive results derived in this work are established using Lyapunov stability theory. MATLAB 
simulations have been shown to illustrate and validate all the main results derived in this work. 
 

 Keywords:  Chaos, chaotic systems, dissipative systems, adaptive control, anti-synchronization. 
 __________________________________________________________________________________________ 
 
1. Introduction 
 
Chaotic systems are defined as nonlinear dynamical systems 
which are very sensitive to initial conditions, topologically 
mixing and also with dense periodic orbits [1].  

The sensitivity to initial conditions of a chaotic system is 
indicated by a positive Lyapunov exponent. A dissipative 
chaotic system is characterized by the condition that the sum 
of the Lyapunov exponents of the chaotic system is negative. 

Since Lorenz discovered a 3-D chaotic system of a 
weather model [2], great interest has been shown in the 
chaos literature in the analysis and modelling of many 3-D 
chaotic systems such as Rössler system [3], Rabinovich 
system [4], ACT system [5], Sprott systems [6], Chen 
system [7], Lü system [8], Shaw system [9], Feeny system 
[10], Shimizu system [11], Liu-Chen system [12], Cai 
system [13], Tigan system [14], Colpitt’s oscillator [15], 
WINDMI system [16], Zhou system [17], etc. 

Recently, many 3-D chaotic systems have been 
discovered such as Li system [18], Elhadj system [19], Pan 
system [20], Sundarapandian system [21], Yu-Wang system 
[22], Sundarapandian-Pehlivan system [23], Zhu system 

[24], Vaidyanathan systems [25-30], Vaidyanathan-
Madhavan system [31], Pehlivan-Moroz-Vaidyanathan 
system [32], Jafari system [33], Pham system [34], etc. 

We note that the chaotic systems [2-34] are dissipative 
systems, in which the system limit sets are ultimately 
confined into a specific limit set of zero volume and the 
asymptotic motion of the chaotic system settles onto a 
strange attractor of the system.  

 Chaos theory has many important applications in 
science and engineering such as vibration control [35-37], 
oscillators [38-40], lasers [41-43], robotics [44-47], chemical 
reactors [48-50], biology [51,52], ecology [53,54], 
cardiology [55], memristors [56-59], neural networks [60-
62], secure communications [63-66], cryptosystems [67-70], 
network design [71, 72], economics [73-76], market 
forecasting [77], etc. 

Chaos control and chaos synchronization are important 
research problems in the chaos theory. In the last three 
decades, many mathematical methods have been developed 
successfully to address these research problems. 

The study of control of a chaotic system investigates 
methods for designing feedback control laws that globally or  
locally asymptotically stabilize or regulate the outputs of a 
chaotic system.  

Many methods have been developed for the control and 
tracking of chaotic systems such as active control [78-82], 

______________ 
     *  E-mail address:  sundarvtu@gmail.com 
ISSN: 1791-2377 © 2015 Kavala Institute of Technology. All 
rights reserved.  
	  

Jestr 
	  
JOURNAL	  OF	  
Engineering	  Science	  and	  
Technology	  Review	  
	  

	  www.jestr.org	  

	  



S. Vaidyanathan /Journal of Engineering Science and Technology Review 8 (2) (2015) 106 -115  
	  

 
	  

107 

adaptive control [83-89], backstepping control [90-92], 
sliding mode control [93, 94], etc. 

Chaos synchronization problem deals with the 
synchronization of a couple of systems called the master or 
drive system and the slave or response system. To solve this 
problem, control laws are designed so that the output of the 
slave system tracks the output of the master system 
asymptotically with time.  

In the chaos anti-synchronization problem, control laws 
are designed so that the sum of the outputs of the master and 
slave systems is driven to zero asymptotically, i.e. the 
outputs of the two systems are asymptotically equal in 
magnitude but opposite in phase. 

Because of the butterfly effect, both synchronization and 
anti-synchronization of chaotic systems are challenging 
problems even when the initial conditions of the master and 
slave systems are nearly identical because of the exponential 
divergence of the outputs of the two systems in the absence 
of any control. The synchronization of chaotic systems has 
applications in secure communications [95-97], 
cryptosystems [98, 99], encryption [100-104], etc. 

In the chaos literature, many different methodologies 
have been also proposed for the synchronization and anti-
synchronization of chaotic systems such as PC method 
[103], active control [104-114], time-delayed feedback 
control [115,116], adaptive control [117-126], sampled-data 
feedback control [127-130], backstepping control [131-137], 
sliding mode control [138-143], etc. 

In this research work, a seven-term 3-D novel dissipative 
chaotic system with four quadratic nonlinearities is 
proposed. The Lyapunov exponents of the 3-D novel chaotic 
system are found as L1 = 11.36204, L2 = 0 and                        
L3 = –47.80208. The Kaplan-Yorke of the 3-D novel chaotic 
system is found as DKY = 2.23769. Since the maximal 
Lyapunov exponent (MLE) of the novel chaotic system has a 
large value, viz. L1 = 11.36204, it is noted that the 3-D novel 
chaotic system is highly chaotic.  

In Section 2, we describe the equations and phase 
portraits of the novel chaotic system. In Section 3, we derive 
the qualitative properties of the novel chaotic system. In 
Section 4, we derive an adaptive controller for the 
stabilization of 3-D novel chaotic system with unknown 
parameters. In Section 5, we derive an adaptive synchronizer 
for the anti-synchronization of identical 3-D novel chaotic 
systems with unknown parameters. Section 6 concludes this 
research work with a summary of main results. 

 
 

2. A Seven-Term 3-D Novel Chaotic System with Four 
Quadratic Nonlinearities 
 
The dynamics of the seven-term 3-D novel chaotic system is 
described by 
 
!!!
!"

= 𝑎 𝑥! − 𝑥! + 𝑥!𝑥!
!!!
!"

= −𝑐𝑥!𝑥! + 𝑝𝑥!!

!!!
!"

= −𝑏 + 𝑥!𝑥!

     (1) 

 
where x1, x2, x3 are the states and a, b, c, p are positive 
parameters.  

The nonlinear system (1) depicts a chaotic attractor when 
the parameter values are taken as: 
 
𝑎 = 40,   𝑏 = 26,   𝑐 = 160,  𝑝 = 0.3     (2) 

       We take the initial conditions as: 
 

𝑥! 0 = 0.8,   𝑥! 0 = 0.5, 𝑥! 0 = 0.7   (3) 
 
The 3-D portrait of the strange chaotic attractor (1) for 

the parameter values (2) and the initial conditions (3) is 
depicted in Fig. 1, and the 2-D portraits (projections on the 
three coordinate planes) are depicted in Figs. 2-4.  

 
 

Fig. 1. The chaotic attractor of the novel chaotic system in 𝑅!. 

 
 

Fig. 2. The 2-D projection of the chaotic attractor on the (x1, x2) plane. 
 

 
 

Fig. 3. The 2-D projection of the chaotic attractor on the (x2, x3) plane. 
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Fig. 4. The 2-D projection of the chaotic attractor on the (x1, x3) plane. 
 
 
3. Analysis of the 3-D Novel Chaotic System 
 
In this section, qualitative properties of the 3-D novel 
chaotic system are detailed. 
 
 
3.1. Dissipativity 
 
In vector notation, we may express the system (1) as: 
 

!𝒙
!"
= 𝑓 𝒙 =   

𝑓!(𝑥!, 𝑥!, 𝑥!)
𝑓!(𝑥!, 𝑥!, 𝑥!)
𝑓!(𝑥!, 𝑥!, 𝑥!)

     (4) 

 
where 
 
𝑓! 𝑥!, 𝑥!, 𝑥! = 𝑎 𝑥! − 𝑥! + 𝑥!𝑥!
𝑓! 𝑥!, 𝑥!, 𝑥! = −𝑐𝑥!𝑥! + 𝑝𝑥!!
𝑓! 𝑥!, 𝑥!, 𝑥! = −𝑏 + 𝑥!𝑥!

     (5) 

 
We take the parameter values as in the chaotic case (2). 
Let Ω be any region in   𝑹!  with a smooth boundary and 

also Ω(t) = Φt(Ω), where Φt ιs the flow of f.  
Furthermore, let V(t) denote the volume of Ω(t). 
By Liouville’s theorem, we have 
 

!"
!"
= ∇ ∙ 𝑓 𝑑𝑥!𝑑𝑥!𝑑𝑥!!(!)     (6) 

 
The divergence of the novel chaotic system (1) is easily 

found as: 
 

∇ ∙ 𝑓 = !!!
!!!

+ !!!
!!!

+ !!!
!!!

= −𝑎 < 0       (7) 
 

Substituting (7) into (6), we obtain the first order ODE. 
 

!"
!"
= −𝑎 𝑑𝑥!𝑑𝑥!𝑑𝑥! = −𝑎𝑉!(!)        (8) 

 
Integrating (8), we obtain the unique solution as: 
 

𝑉 𝑡 = exp −𝑎𝑡 𝑉(0)     for all 𝑡 ≥ 0    (9) 
 

From (9), we find that 𝑉(𝑡) shrinks to zero exponentially 
as t → ∞. 

Hence, the 3-D system (1) is dissipative and the 
asymptotic motion of the 3-D system (1) settles 
exponentially onto a set of measure zero, i.e. a strange 
attractor. 
 
 
3.2.  Equilibrium Points  
 
The equilibrium points of the novel chaotic system (1) are 
obtained by solving the following system of equations with 
the parameter values as in the chaotic case (2): 

  
𝑎 𝑥! − 𝑥! + 𝑥!𝑥! = 0
−𝑐𝑥!𝑥! + 𝑝𝑥!! = 0
−𝑏 + 𝑥!𝑥! = 0

    (10) 

  
Solving (10), we obtain two equilibrium points of the 

system (1), viz. 
 

𝐸! =
5.0996
5.0984
0.0096

, 𝐸! =
−5.0984
−5.0996
−0.0096

     (11) 

  
The Jacobian matrix of the system (1) is obtained as 
  

 𝐽 𝑥 =
−𝑎 𝑎 + 𝑥! 𝑥!
−𝑐𝑥! 2𝑝𝑥! −𝑐𝑥!
𝑥! 𝑥! 0

    (12) 

  
Thus, the Jacobian matrix at E1 is obtained as: 
 

𝐽 𝐸! =
−40.0000 40.0096 5.0984
−1.5360 3.0590 −815.9360
5.0984 5.0996 0

  (13) 

 
which has the eigenvalues 
 
𝜆! = −60.5268,   𝜆!,! = 11.7929 ± 73.2294𝑖   (14) 
 

This shows that the equilibrium E1 is a saddle-focus. 
Also, the Jacobian matrix at E2 is obtained as:  
  

𝐽 𝐸! =
−40.0000 39.9904 −5.0996

1.5360 −3.0598   815.7440
−5.0996 −5.0984 0

   (15) 

  
which has the eigenvalues 

  
 𝜆! = −61.9776,   𝜆!,! = 9.4589 ± 72.6427𝑖   (16) 

  
This shows that the equilibrium E2 is also a saddle-focus. 
Hence, both equilibrium points E1 and E2 are unstable. 

 
 
3.4. Lyapunov Exponents and Kaplan-Yorke Dimension  
 
For the chosen parameter values (2), the Lyapunov 
exponents of the novel chaotic system (1) are obtained using 
MATLAB as: 

  
𝐿! = 11.36204, 𝐿! = 0, 𝐿! = −47.80208   (17) 

 
Since the spectrum of Lyapunov exponents (17) has a 

positive term L1, the system (1) is chaotic.  
Since the sum of the Lyapunov exponents is zero, the 

novel chaotic system (1) is dissipative. 
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The maximal Lyapunov exponent (MLE) of the novel 
chaotic system (1) is L1 =11.36204, which is a large value. 

This shows that the 3-D novel system (1) is a highly 
chaotic system. 

Also, the Kaplan-Yorke dimension of the novel chaotic 
system (1) is calculated as: 

  
 𝐷!" = 2 + !!!!!

!!
= 2.23769   (18) 

  
Fig. 5 depicts the dynamics of the Lyapunov exponents 

of the novel chaotic system (1). 
 

 

 
 

Fig. 5. Dynamics of the Lyapunov exponents of the novel system. 
 
 
4. Adaptive Control of the 3-D Novel Chaotic System 
 
In this section, we construct an adaptive controller for 
globally stabilizing the unstable 3-D novel chaotic system 
with unknown parameters. The adaptive controller design is 
carried out using Lyapunov stability theory. 

We consider the controlled chaotic system 
  

!!!
!"

= 𝑎 𝑥! − 𝑥! + 𝑥!𝑥! + 𝑢!
!!!
!"

= −𝑐𝑥!𝑥! + 𝑝𝑥!! + 𝑢!
!!!
!"

= −𝑏 + 𝑥!𝑥! + 𝑢!

    (19) 

  
where x1, x2, x3 are state variables and a, b, c, p are unknown, 
constant, parameters and u1, u2, u3 are adaptive controls to be 
designed using estimates 𝑎 𝑡 ,   𝑏 𝑡 , 𝑐 𝑡 ,   𝑝(𝑡) of the 
unknown parameters a, b, c, p, respectively. 

We consider the adaptive controller defined by 
  

𝑢! = −𝑎 𝑡 𝑥! − 𝑥! − 𝑥!𝑥! − 𝑘!𝑥!
𝑢! = 𝑐 𝑡 𝑥!𝑥! − 𝑝 𝑡 𝑥!! − 𝑘!𝑥!
𝑢! = 𝑏(𝑡) − 𝑥!𝑥! − 𝑘!𝑥!

   (20) 

  
where k1, k2, k3 are positive gain constants, and 𝑎 𝑡 ,   𝑏 𝑡 ,   
𝑐 𝑡 ,   𝑝(𝑡) are estimates of the unknown parameters a, b, c, 
p,  respectively. 

Substituting (20) into (19), we get the closed-loop 
system as: 

  

!!!
!"

= 𝑎 − 𝑎 𝑡 𝑥! − 𝑥! − 𝑘!𝑥!
!!!
!"

= − 𝑐 − 𝑐 𝑡 𝑥!𝑥! + 𝑝 − 𝑝 𝑡 𝑥!!

−𝑘!𝑥!
!!!
!"

= − 𝑏 − 𝑏 𝑡 − 𝑘!𝑥!

    (21) 

 
The parameter estimation errors are defined by 
  

𝑒!(𝑡) = 𝑎 − 𝑎(𝑡)
𝑒!(𝑡) = 𝑏 − 𝑏(𝑡)
𝑒!(𝑡) = 𝑐 − 𝑐(𝑡)
𝑒!(𝑡) = 𝑝 − 𝑝(𝑡)

     (22) 

  
Substituting (22) into the state dynamics (21), we get 
   

 

!!!
!"

= 𝑒! 𝑥! − 𝑥! − 𝑘!𝑥!
!!!
!"

= −𝑒!𝑥!𝑥! + 𝑒!𝑥!! − 𝑘!𝑥!
!!!
!"

= −𝑒! − 𝑘!𝑥!

     (23) 

  
Differentiating (22) with respect to t, we get 
  

!!!
!"

= − !!
!"

!!!
!"

= − !!
!"

!!!
!"

= − !!
!"

!!!
!"

= − !!
!"

       (24) 

  
Next, we use Lyapunov stability theory for finding an 

update law for the parameter estimates.  
Consider the quadratic Lyapunov function defined by 
  

𝑉 = !
!
𝑥!! + 𝑥!! + 𝑥!! + 𝑒!! + 𝑒!! + 𝑒!! + 𝑒!! ,   (25) 

 
which is positive definite on 𝑅!. 

Differentiating 𝑉 along the trajectories of (23) and (24), 
we get 

  
!"
!"

= −𝑘!𝑥!! − 𝑘!𝑥!! − 𝑘!𝑥!!

+𝑒! 𝑥!(𝑥! − 𝑥!) −
!!
!"

+𝑒! −𝑥! −
!!
!"

+ 𝑒! −𝑥!𝑥!𝑥! −
!!
!"

+𝑒! 𝑥!! −
!!
!"

  (26) 

  
In view of (26), we take the parameter update law as: 
  

!!
!"

= 𝑥!(𝑥! − 𝑥!)
!!
!"

= −𝑥!
!!
!"

= −𝑥!𝑥!𝑥!
!!
!"

= 𝑥!!

     (27) 

  
Next, we state and prove the main result of this section. 
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Theorem 1. The novel chaotic system (19) is globally and 
exponentially stabilized by the adaptive control law (20) and 
the parameter update law (27) for all initial conditions, 
where k1, k2, k3 are positive constants. 
 
Proof. We prove this result using Lyapunov stability theory.  

For this purpose, we consider the quadratic Lyapunov 
function 𝑉 defined by (25), which is positive definite on 𝑅!.  

Substituting the parameter update law (27) into (26), we 
obtain the time derivative of V as: 

  
 !"
!"
= −𝑘!𝑥!! − 𝑘!𝑥!! − 𝑘!𝑥!!    (28) 
  

which is a negative semi-definite function on 𝑅!. 
Thus, we can conclude that the state vector x(t) and the 

parameter estimation error are globally bounded. 
We define k = min{k1, k2, k3}. Then we get 
 

!"
!"
≤ −𝑘 𝑥 !  or   𝑘 𝑥 ! ≤ − !"

!"
    (29) 

  
Integrating the inequality (29) from 0 to t, we get 
  

𝑘 𝑥(𝜏) !𝑑𝜏 ≤ 𝑉 0 − 𝑉(𝑡)!
!      (30) 
  
From (30), it follows that x(t) ∈ 𝐿!. Using (23), we can 

conclude that 𝑥 ∈ 𝐿!. 
Thus, using Barbalat’s lemma [145], we conclude that 

x(t) → 0 exponentially as t → ∞ for all initial conditions        
x(0) ∈ 𝑅!.  

This completes the proof. n 
 
For numerical simulations, the parameter values of the 

novel chaotic system (19) are taken as in the chaotic case, 
viz. a = 40, b = 26, c = 160 and p = 0.3.  We take the gain 
constants as k1 = 6, k2 = 6 and k3 = 30. 

The initial conditions of the chaotic system (19) are 
taken as x1(0) = 1.3, x2(0) = 2.7 and x3(0) = –3.5.   

The initial conditions of the parameter estimates are 
taken as  𝑎 0 = 21,  𝑏 0 = 30, 𝑐 0 = 25 and 𝑝 0 =3. 

Fig. 6 describes the time-history of the state x(t) . 
 

 
 

Fig. 6. Time-history of the controlled states x1, x2, x3 of the chaotic 
system 
 
 

5. Adaptive Anti-Synchronization of Identical 3-D Novel 
Chaotic Systems 
 
In this section, we construct an adaptive synchronizer for 
global anti-synchronization of identical 3-D novel chaotic 
systems. The adaptive synchronizer design is carried out 
using Lyapunov stability theory. 

As the master system, we take the novel chaotic system 
  

!!!
!"

= 𝑎 𝑥! − 𝑥! + 𝑥!𝑥!
!!!
!"

= −𝑐𝑥!𝑥! + 𝑝𝑥!!

!!!
!"

= −𝑏 + 𝑥!𝑥!

    (31) 

  
where x1, x2, x3 are state variables and a, b, c, p are unknown, 
constant, parameters. 

As the slave system, we take the novel chaotic system 
 

!!!
!"

= 𝑎 𝑦! − 𝑦! + 𝑦!𝑦! + 𝑢!
!!!
!"

= −𝑐𝑦!𝑦! + 𝑝𝑦!! + 𝑢!
!!!
!"

= −𝑏 + 𝑦!𝑦! + 𝑢!

     (32) 

 
where y1, y2, y3 are state variables and u1, u2, u3 are adaptive 
controls to be designed using estimates 𝑎 𝑡 , 𝑏 𝑡 , 𝑐 𝑡 , 𝑝(𝑡) 
of the unknown parameters a, b, c, p, respectively. 

The anti-synchronization error between the systems (31) 
and (32) is defined as: 

 
𝑒! = 𝑦! + 𝑥!
𝑒! = 𝑦! + 𝑥!
𝑒! = 𝑦! + 𝑥!

      (33) 

 
The error dynamics is easily obtained as: 
 

!!!
!"

= 𝑎 𝑒! − 𝑒! + 𝑦!𝑦! + 𝑥!𝑥! + 𝑢!
!!!
!"

= −𝑐 𝑦!𝑦! + 𝑥!𝑥! + 𝑝 𝑦!! + 𝑥!!

!!!
!"

= −2𝑏 + 𝑦!𝑦! + 𝑥!𝑥! + 𝑢!

+ 𝑢!   (34) 

 
We consider the adaptive controller defined by 
  

𝑢! = −𝑎 𝑡 𝑒! − 𝑒! − 𝑦!𝑦! − 𝑥!𝑥! − 𝑘!𝑒!
𝑢! = 𝑐 𝑡 𝑦!𝑦! + 𝑥!𝑥! − 𝑝 𝑡 𝑦!! + 𝑥!!

−𝑘!𝑒!
𝑢! = 2𝑏(𝑡) − 𝑦!𝑦! − 𝑥!𝑥! − 𝑘!𝑒!

  (35) 

  
where k1, k2, k3 are positive gain constants and  𝑎 𝑡 , 𝑏 𝑡 ,   
𝑐 𝑡 , 𝑝(𝑡) are estimates of the unknown parameters a, b, c, 
p,  respectively. 

Substituting (35) into (34), we get the closed-loop error 
dynamics as: 

  
!!!
!"

= 𝑎 − 𝑎 𝑡 𝑒! − 𝑒! − 𝑘!𝑒!
!!!
!"

= − 𝑐 − 𝑐 𝑡 𝑦!𝑦! + 𝑥!𝑥!
+ 𝑝 − 𝑝 𝑡 𝑦!! + 𝑥!!   − 𝑘!𝑒!

!!!
!"

= −2 𝑏 − 𝑏 𝑡 − 𝑘!𝑒!

     (36) 
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The parameter estimation errors are defined by 
  

𝑒!(𝑡) = 𝑎 − 𝑎(𝑡)
𝑒!(𝑡) = 𝑏 − 𝑏(𝑡)
𝑒!(𝑡) = 𝑐 − 𝑐(𝑡)
𝑒!(𝑡) = 𝑝 − 𝑝(𝑡)

     (37) 

  
Substituting (37) into the error dynamics (36), we get 
   

 

!!!
!"

= 𝑒! 𝑒! − 𝑒! − 𝑘!𝑒!
!!!
!"

= −𝑒! 𝑦!𝑦! + 𝑥!𝑥! + 𝑒! 𝑦!! + 𝑥!!   − 𝑘!𝑒!
!!!
!"

= −2𝑒! − 𝑘!𝑒!

    (38) 

  
Differentiating (37) with respect to 𝑡, we get 
  

!!!
!"

= − !!
!"

!!!
!"

= − !!
!"

!!!
!"

= − !!
!"

!!!
!"

= − !!
!"

       (39) 

  
Consider the quadratic Lyapunov function defined by 
  

𝑉 = !
!
𝑒!! + 𝑒!! + 𝑒!! + 𝑒!! + 𝑒!! + 𝑒!! + 𝑒!! ,   (40) 

 
which is positive definite on 𝑅!. 

Differentiating V along the trajectories of (38) and (39), 
we get 

  
!"
!"

= −𝑘!𝑒!! − 𝑘!𝑒!! − 𝑘!𝑒!!

+𝑒! 𝑒!(𝑒! − 𝑒!) −
!!
!"

+𝑒! −2𝑒! −
!!
!"

+𝑒! −𝑒! 𝑦!𝑦! + 𝑥!𝑥! − !!
!"

+𝑒! 𝑒! 𝑦!! + 𝑥!! − !!
!"

   (41) 

  
In view of (41), we take the parameter update law as: 
  

!!
!"

= 𝑒!(𝑒! − 𝑒!)
!!
!"

= −2𝑒!
!!
!"

= −𝑒! 𝑦!𝑦! + 𝑥!𝑥!
!!
!"

= 𝑒! 𝑦!! + 𝑥!!

    (42) 

  
Theorem 2. The novel chaotic systems (31) and (32) are 
globally and exponentially anti-synchronized by the adaptive 
control law (35) and the parameter update law (42) for all 
initial conditions, where k1, k2, k3 are positive constants. 

 
Proof. We prove this result using Lyapunov stability theory. 
For this purpose, we consider the quadratic Lyapunov 
function V defined by (40), which is positive definite on 𝑅!. 
Substituting the parameter update law (42) into (41), we 
obtain the time derivative of V as: 

  
!"
!"
= −𝑘!𝑒!! − 𝑘!𝑒!! − 𝑘!𝑒!!     (43) 
  

Since !"
!"

 is a negative semi-definite function on 𝑅!, we 
can conclude that the anti-synchronization vector e(t) and 
the parameter estimation error are globally bounded. 

We define k = min{k1, k2, k3}. Then we get 
 
!"
!"
≤ −𝑘 𝑒 !  or   𝑘 𝑒 ! ≤ − !"

!"
    (44) 

  
Integrating the inequality (44) from 0 to t, we get 
  
𝑘 𝑒(𝜏) !𝑑𝜏 ≤ 𝑉 0 − 𝑉(𝑡)!

!      (45) 
  
From (45), it follows that e(t) ∈ 𝐿!. Using (38), we can 

conclude that 𝑒 ∈ 𝐿!. 
Thus, using Barbalat’s lemma [145], we conclude that 

e(t) → 0 exponentially as t → ∞ for all initial conditions    
e(0) ∈ 𝑅!.   

This completes the proof. n 
 
For numerical simulations, the parameter values of the 

novel chaotic systems  are taken as in the chaotic case, viz.      
a = 40, b = 26, c = 160 and p = 0.3.  We take the gain 
constants as as k1 = 20, k2 = 20 and k3 = 30.  

The initial conditions of the master system (31) are taken 
as x1(0) = 0.4, x2(0) = 2.3 and x3(0) = –0.5 

The initial conditions of the slave system (32) are taken 
as y1(0) = 1.7, y2(0) = 1.2 and y3(0) = –2.8.   

The initial conditions of the parameter estimates are 
taken as  𝑎 0 = 15,  𝑏 0 = 22,  𝑐 0 = 11 and  𝑝 0 = 4. 

Figure 7 describes the time-history of the anti-
synchronization error e(t). 

 
 

Fig. 7. Time-history of the anti-synchronization error. 
 
 

6. Conclusion 
 
In this research work, we have proposed a seven-term 3-D 
novel chaotic system with four quadratic nonlinearities.   The 
Lyapunov exponents of the 3-D novel chaotic system have 
been found as L1 = 11.36204, L2 = 0 and L3 = –47.80208. 
The Kaplan-Yorke of the 3-D novel chaotic system has been 
found as DKY = 2.23769. Since the maximal Lyapunov 
exponent (MLE) of the novel chaotic system has a large 
value, viz. L1 = 11.36204, the 3-D novel chaotic system is a 
highly chaotic system and it has potential applications in 
encryption  and  secure  communication  systems.   We  have  
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also designed control laws for adaptive stabilization and 
adaptive anti-synchronization of the 3-D novel chaotic 
system with unknown system parameters. The main adaptive 
results   derived   in   this    work    were    established   using  

Lyapunov stability theory. MATLAB simulations have been 
shown to illustrate the phase portraits of the highly chaotic 
system and also the adaptive stabilization and anti-
synchronization results derived in this work. 
 

______________________________ 
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