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Abstract  
 

This paper presents a novel chaotic communication method using an Unscented Kalman Filter (UKF). Applying UKF, the method 
proposes the estimation of the state variables of the chaotic dynamical system and synchronization. The proposed method is then 
applied to new private secure communication. The chaotic synchronization is implemented by the UKF in the presence of processing 
noise and measurement noise. The main highlighted advantages of using UKF are increasing accuracy, efficiency and improvement 
of synchronization’s time. Encoding chaotic communication achieves a satisfactory, typical secure communication scheme. To 
illustrate the effectiveness of the proposed scheme, a numerical example based on the Lorenz dynamical system and Rössler 
dynamical system is presented and the results are compared to the Extended Kalman Filter (EKF). The results of simulation have 
shown the improvement of the function in the case of increasing the accuracy and efficiency of the synchronization, and decreasing 
its time. 

 
 Keywords:  Chaos Synchronization, Unscented Kalman Filter, Secure Communication, Masking Modulation, Encryption.  
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1. Introduction 
 
In the last three decades chaotic behavior, an attractive 
phenomenon appearing in nonlinear systems, has been 
received more attentions to study. A chaotic system is a 
nonlinear deterministic system and its behavior is complex 
and unpredictable. Two of the most important characteristics 
of a chaotic system are the sensitivity to the initial conditions 
and the variations of the system’s parameters that make the 
chaotic synchronization problems much more important. 
Pecora and Carroll [1] in their pioneering work addressed the 
synchronization of chaotic system using a drive-response 
conception. The idea is to use the output of the driving 
system to control the response system so that the trajectories 
of the response’s outputs can synchronize those of drive 
system and they oscillate in a synchronized manner. 
Heretofore, many synchronization schemes have been 
developed such as inverse system approach [2], system 
approach [3], linear and nonlinear feedback control [4-6], 
and system decomposition approach [1,7]. Recently, many 
efforts have been made to show that the synchronization 
problem of chaotic systems could be solved through observer 
design approach [8-12], in which only the input and output 

information of drive system are used to construct part or all 
of the state information of drive system, and many beneficial 
methods have been developed. For example, several kinds of 
nonlinear observer design methods are summarized and their 
adaptations to chaotic synchronizations are discussed in [9] 
and in [12] a sliding-mode adaptive observer synchronization 
method for chaotic system is developed.  

As a brief introductory and historical background, 
Extended Kalman Filter (EKF) as an optimal observer is a 
stochastic estimation scheme for estimating of nonlinear 
state and tracking applications [13]. In this method, Kalman 
filtering [14] is used to linearize the nonlinear function. The 
first order Taylor series expansions are applied to 
linearization. 

Application of EKF to synchronization of chaotic 
systems is studied in [15] and synchronization is obtained of 
transmitter and receiver dynamics in case the receiver is 
given via an extended Kalman filter driven by a noisy drive 
signal from the transmitter. However, a chief drawback of 
EKF is the error in function approximation because the EKF 
uses   first   order   Taylor   series   for   approximating  the 
nonlinearities. So, large errors may be happened when it is 
used to systems with higher order nonlinearities. For 
overcoming the drawbacks associated with the 
approximation errors, many alternatives to EKF have been 
offered. Unscented Kalman Filter (UKF), as recently 
proposed by Julier and Uhlman [16], could in theory improve 
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upon EKF for state estimation since linearization is avoided 
by an unscented transformation and at least second order 
accuracy is provided. 

This last point is achieved by carefully choosing a set of 
sigma points, which captures the true mean and covariance 
of a given distribution and then passing the means and co-
variances of estimated states through a nonlinear 
transformation. As a result, UKF is capable of estimating the 
posterior mean and co-variances accurately to a high order 
[17]. 

In this paper, the UKF is applied for the synchronization 
of the chaotic system. The chaotic synchronization is 
implemented by the UKF in the presence of processing noise 
and measurement noise, and performance according to 
estimation error is evaluated in comparison with the EKF. 

One of the most important applications of chaotic 
synchronization is that it can be applied to secure 
communication [11,18]. In chaotic secure communication 
schemes, a chaotic system is used as a transmitter and the 
information signal is mixed at the transmitter side to generate 
a chaotic transmitting signal. Then this signal transmitted to 
the receiver side. The receiver is also a chaotic dynamic 
system and it is able to synchronize the transmitter by 
receiving the transmitting signal and one of states that is 
passed to the receiver module to improve synchronization. 
The information signal can be recovered by the receiver, 
when synchronization is achieved. 

This work, inspired by previous works [19-21], develops 
an UKF-based approach which can reach not only chaotic 
synchronization but also can be applied to secure 
communications. For this purpose, the major part of the 
receiver section consists of an UKF for state reconstruction 
and chaos masking demodulator. In this work, the Lorenz 
chaotic system and the Rössler chaotic system are used to 
modulate sinusoid (analog) data and digital data via masking 
modulation. Additive White Gaussian Noise (AWGN) 
channel is used as a medium for transmitting the modulated 
signal. At the receiver, UKF is employed to estimate states of 
the chaotic systems. The proposed scheme uses Lorenz and 
Rössler chaotic system as chaos generators to encrypt data 
using masking modulation. 

This paper is organized as follows: In section 2, a brief 
review of chaotic systems, Kalman filtering, principles and 
algorithms of EKF and UKF is presented. The proposed 
chaotic secure communication scheme is provided in section 
3. In section 4, the results of simulation on Lorenz chaotic 
system and Rössler chaotic system with using of UKF and 
EKF and their application in proposed chaotic secure 
communication scheme are presented. Section 5 deals with 
concluding remarks. 
 
 
2. Chaotic systems and UKF synchronization 

 
In order to understand the proposed system a brief review on 
the chaotic dynamical systems and their synchronization will 
be given.  

2.1.  Chaotic Systems  
 

A chaotic system is a nonlinear deterministic system and its 
behavior is complex and unpredictable. Two of the most 
important characteristics of a chaotic system are the 

sensitivity to the initial conditions and the variations of the 
system’s parameters that make the chaotic synchronization 
problems much more important.  

The Lorenz system as a chaotic dynamical system can be 
described by the following differential equations: 

1
1 2

2
1 3 1 2

3
1 2 3

( )dx x x
dt
dx x x x x
dt
dx x x x
dt

⎧ = − −⎪
⎪
⎪ = − + −⎨
⎪
⎪ = −⎪⎩

σ

ρ

β

                                                     (1) 

 
when 10=σ , 8

3=β  and 25=ρ  the oscillator behaves 

chaotically. Rossler system can be described by the 
following set of differential equations: 
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dx ax x
dt
dx x x
dt
dx b cx x x
dt

⎧ = +⎪
⎪
⎪ = − −⎨
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                                                          (2) 

 
when 0.1a = , 0.1b =  and 14c =  system behaves 
chaotically. 
 
 
2.2.  Kalman Filter 
 
The Kalman Filter (KF) is a recursive filtering tool which 
has been developed for estimating the trajectory of a system 
from a series of noisy and/or incomplete observations of the 
system's state. It has the following specifications. First, the 
estimation process is formulated in the system's state space; 
second, the solution is obtained by recursive computation; 
third, it uses an adaptive algorithm, which can be directly 
applied to stationary and non-stationary environment. In the 
Kalman filtering algorithm, every new estimate of the state 
is retrieved from the previous one and the new input so that 
only the previous estimated result need to be stored. Thus, 
the Kalman filter is more effective in computation than those 
which use all or considerable amount of the previous data 
directly in each estimation [22]. 

If the system is nonlinear, the Kalman filter cannot be 
applied directly, but two nonlinear Kalman filtering 
methods, namely, EKF and UKF are applied for stochastic 
nonlinear system estimation. 

 
 

2.2.1.  Extended Kalman Filter 
 

The Extended Kalman Filter (EKF) is a set of mathematical 
equations which uses an underlying process model to make 
an estimate of the current state of a system and then corrects 
the estimate using any available sensor measurements. Using 
this predictor-corrector mechanism, it approximates an 
optimal estimate due to the linearization of the process and 
measurement models [23]. The representation of all the 
details of the EKF is beyond the scope of this paper. 
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Therefore, we omit some theoretical considerations and 
present a more algorithmic description. 

To illustrate the principle behind the EKF, Let a 
nonlinear system be represented by the following standard 
discrete time equations: 

 
1 ( )k k k

k k k k

x f x w
y H x v

+ = +
= +

                                                             (3)  

 
where, k N∈  is discrete time and N denotes the set of 
natural numbers. 1L

kx R ×∈  is the state, and 1M
ky R ×∈  is 

the measurement. The nonlinear mapping ( )f ⋅  is assumed 
to be continuously differentiable with respect to kx  and kH  

is a measurement matrix. Moreover, 1L
kw R ×∈  and 

1M
kv R ×∈  are uncorrelated zero-mean Gaussian white 

sequences and their co- variances are as follows: 
                                            

, , 0T T T
k j k kj k j k kj k jE w w Q E v v R E w v⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦δ δ      (4) 

 
To estimate signal, the error covariance matrix can be 

expressed as: 
                                                                    

{ }ˆ ˆ( | ) T
k k k kP k k E x x x x= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                                    (5)  

 
where kx , is the true value of the states and ˆkx  is its 
estimation.  

Using the method of optimal linearization, the 
propagation of the error covariance matrix and the Kalman 
gain K  can be expressed as: 
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where 
1

1
ˆ

( )

k

k
x x

f xF
x

−

−
=

∂=
∂

 is the Jacobian matrix and 

| 1 1| 1ˆ ˆ( )k k k kx f x− − −= . 
Fig. 1(a) illustrates that how the Extended Kalman Filter 

linearizes a nonlinear function around the mean of a 
Gaussian distribution, and then propagates the mean and 
covariance through this linearized model.  

 
 

2.2.2. Unscented Kalman Filter 
 

The problem of propagating Gaussian random variables 
through a nonlinear function can also be approached using 
another technique, namely the unscented transform (UT). 
Instead  of  linearization  required   by   the   EKF,   a   new  
approximate method UT is used in the UKF [16]. 

A set of weighted sigma points is deterministically 
chosen so that the sample mean and sample covariance of 
these points match those of a priori distribution. The 
nonlinear function is applied to each of these points in turn to 

yield transformed samples, and the predicted mean and 
covariance are calculated from the transformed samples as 
shown in Fig. 1(b). This strategy typically does both 
decrease the computational complexity, while at the same 
time increasing estimate accuracy, yielding faster, more 
accurate results. 

The fundamental difference between EKF and UKF lies 
in the way that the Gaussian Random Variables (GRV) are 
represented in the process of propagating through the system 
dynamics. Basically, the UKF captures the posterior mean 
and co-variance of the GRV accurately to the third order (in 
terms of Taylor series expansion) for any form of 
nonlinearity, whereas the EKF only achieves first-order 
accuracy. Moreover, since no explicit Jacobian or Hession 
calculations are necessary in the UKF algorithm, the 
computational complexity of UKF is comparable to EKF. 

 

 
 

Fig. 1. The principle propagating Gaussian random variables through a 
nonlinear function. (a) Propagating the mean and covariance through 
this linearized model (EKF). (b) The propagating of sigma points 
through a nonlinear function (UKF) [24]. 

	  
The algorithm for implementing the UKF can be 

summarized as follows [25]. Consider the nonlinear discrete-
time system represented by 

                                                                                 
1 ( )k k k

k k k k

x f x w
y H x v

+ = +
= +

                                                                (7) 

 
Similar to previous part, k N∈  is discrete time and N 

denotes the set of natural numbers. 1L
kx R ×∈  is the state, 

and 1M
ky R ×∈  is the measurement. The nonlinear mapping 

( )f ⋅  is assumed to be continuously differentiable with 
respect to kx  and kH  is a measurement matrix. Moreover, 

1L
kw R ×∈  and 1M

kv R ×∈  are uncorrelated zero-mean 
Gaussian white sequences and have the following 
characteristics: 
                                                            

, , 0T T T
k j k kj k j k kj k jE w w Q E v v R E w v⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦δ δ          (8) 

 
Step 1: The L-dimensional random variable 1kx −  with mean 

1ˆkx −  and covariance 1k̂P −  is approximated by sigma points 
which are computed with the following equations: 

( )
( )

, 1 1

, 1 1 1

, 1 1 1
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−

⎧
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χ

χ

χ

              (9) 
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where a R∈  is a tuning parameter denoting the spread of the 

sigma points around 1ˆkx −  and 1
ˆ( )k ia LP −  is the thi  column 

of the matrix square root of 1k̂LP − . The  parameter is often 
set to a small positive value. 
Step 2: Prediction. Each point is instantiated through the 
process model to yield a set of transformed samples as (10). 

                                                

, | 1 , 1( ), 0,  1,  ...,  2i k k i kf i L− −= =χ χ                                 (10) 
 

The predicted mean and covariance are computed as: 
 

2

| 1 , | 1
0

ˆ
L

k k i i k k
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x w− −
=

=∑ χ                                                        (11)   

                                       
2
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i i k k k k i k k k k kk k
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⎡ ⎤= − − +⎣ ⎦∑ χ χ  (12) 
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2

2

11 , 0
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2

i

i

w i
a

w i L
La

⎧ = − =⎪⎪
⎨
⎪ = =
⎪⎩

                                              (13) 

 
Step 3: Update. As the measurement equation is linear, 
measurement update can be performed with the same 
equations as the classical Kalman filter as (14). 
 

  

ŷk = Hk x̂k|k−1

P̂yy = Hk P̂k|k−1Hk
T + Rk

P̂xy = P̂k|k−1Hk
T

K = P̂xy P̂yy
−1

x̂k = x̂k k−1 + K( yk − ŷk )

P̂k = P̂k k−1 − KP̂xy
T

                                                          (14) 

 
Step 4: Repeat steps 1 to 3 for the next sample. Clearly, the 
implementation of the UKF is extremely convenient, because 
Jacobian matrix is not needed to be evaluated which is 
necessary in the EKF. 

 
 

3. Proposed Chaotic Secure Communication Scheme 
 
By using a chaotic oscillator as a broadband pseudo-random 
signal generator and masking the message with this signal, to 
produce an unintelligible signal, the encrypted data can be 
transmitted through the unsecure communication noisy 
channel. At receiver, by regenerating the pseudo-random 
signal using of synchronization and combining it with the 
received signal (encrypted data) through the inverse 
operation, the original message is recovered [21].  

In proposed scheme, the synchronization is achieved by 
the UKF acting as the state estimator in the presence of noise 
and we have enhanced the accuracy of the recovered signal 
by using the UKF instead of the EKF. The block diagram of 
the proposed scheme for secure communication is shown in 
Fig. 2. This scheme does not need to know the initial 
condition of the chaotic signals between the receiver and the 

transmitter. The system consists of a transmitter module 
(consists of a chaotic system and an encryption mechanism), 
a communication channel, and a receiver module. In this 
system, the chaotic signal is generated by using the Lorenz 
chaotic system that is described by (1) and process noise is 
considered in chaos states.  

The mechanism of encryption is based on masking 
modulator. The algorithm of encryption process can be 
described as follows [20]: 

The information signal ( )s t  is added to the second state 
and then the encrypted signal ( )Ms t  that is the sum of ( )s t  
and 2( ),x t  passes through an AWGN channel. The first state 
of Lorenz chaotic system, 1( ),x t  is also passed to the 
receiver module to synchronization. The major part of the 
receiver side consists of an UKF for state reconstruction and 
chaos masking demodulator. The Lorenz chaotic states are 
estimated by the UKF. It should be noted that the first state 
of the Lorenz is used for chaotic synchronization. In the 
receiver, the 1( )x t  goes to the UKF and other states are 
estimated. 
 

 
 

Fig. 2. Block diagram of the proposed chaotic secure communication 
scheme. 

 
The performance of synchronization method and the 
proposed scheme will be studied. The Lorenz chaotic system 
is used to illustrate the effectiveness of the proposed 
methods.  The initial conditions for this chaotic system, the 
EKF and UKF are as follows: 

                                                        

( )
( )

(0) 1.0032 2.3545 0.087

ˆ(0) 20 15 15

T

T

x

x

⎧ = − −⎪
⎨
⎪ =⎩

                             (15) 

 
The characteristics of the process and channel noise used 

in the EKF and UKF are as follows: 
                                      
1 1 1 , 1, 0.2, 0.18T

k kR QΓ = Λ = = =⎡ ⎤⎣ ⎦           (16) 

 
The employed analog information signal for evaluating 

the performance of the proposed system is cited underneath: 
                                                    
( ) 5 (2 ), 2s t Sin ft f Hz= ⋅ =π                                         (17) 

The chaotic system is not restricted to Lorenz and other 
types of chaotic dynamics in order to be used for the 
proposed scheme. Another chaos generator which can be 
used in the proposed system is Rössler dynamical system 
which has been described by the system model of differential 
Eq. (2). The initial conditions for the Rössler dynamical 
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system and also EKF and UKF values are the same as those 
for the Lorenz system. 

 
 

4. Simulation Results 
 
In this section, the performance of synchronization method 
and the proposed communication scheme will be analyzed. 
The Euler method for numerical simulation in MATLAB is 
used by 0.001 as the sampling time. In Fig. 3, the attractor of 
the chaotic Lorenz system is illustrated, Fig. 4-6 show the 
three states of the Lorenz system and their estimations in the 
time interval between 0 and 50 by the use of the UKF. The 
estimations have been synchronized to the original states 
after a short while. The convergence times of the three states 
of Lorenz system by the use of the UKF and the EKF have 
been shown in Table 1. The maximum of the three values by 
the UKF is considered as the convergence time of the system 
which is 0.899 second. This value for the EKF is 0.979 
second. For comparing the UKF and the EKF, we have 
included plots of absolute estimation errors for the three 
states using these methods in Fig. 7-9. The results show 
absolute estimation errors of the three states in the UKF are 
clearly less than the EKF. To illustrate this more, we have 
calculated the mean squared error (MSE) for the three states 
by the use of the UKF and the EKF. The MSE in state 
estimation is as follows: 
                                                     

( )2
0

1 ˆ( ) ( ) , 1,  2,  3
N

k k
i

MSE x i x i k
N

=

= − =∑                     (18) 

 
where ( )kx i  and ˆ ( )kx i are the thk  state variable and its 

estimate at instant of  i respectively. As it can be observed in 
Table 2, the UKF method has more accuracy than the EKF. 
	  

 
Fig. 3. Attractor of Lorenz dynamical system. 

 

	  
Fig. 4. First state of Lorenz system and its estimate. 

 

	  
Fig. 5. Second state of Lorenz system and its estimate. 

	  

	  
Fig. 6. Third state of Lorenz system and its estimate. 
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Fig. 7. Absolute error in estimation of the first state (Lorenz). 

 

 
 

Fig. 8. Absolute error in estimation of the second state (Lorenz). 
 

 
 

Fig. 9. Absolute error in estimation of the third state (Lorenz). 
 

 
 
 
 

 

                 Synchronization   Method 	  
UKF                                  EKF 
0.006	  	  	  	  	  	      	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   0.006 	          1x 

0.650	  	  	       	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	    	     	  	  	  0.979 	  2x 	  

0.899	    	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	        0.966	   	  3x 

	  	  	  0.979	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.899	  	  Maximum (sec)  
	  

Tab. 1.	  Convergence time (sec) in state estimation of Lorenz system. 
 

 

Tab. 2. MSE (0 – 50 sec) for three state variables of Lorenz system. 

 
In Fig. 10, the data that is encrypted by masking 

modulation can be seen in the case of using Lorenz system in 
time domain. In this case, the data is masked by the first state 
of Lorenz system for encryption. This makes the signal 
complicated and secure that we cannot understand the 
content of the message when looking at this signal. It is 
obvious that the analog data is completely hidden in the 
frequency content of the chaotic state and filtering 
techniques cannot recover the information which is 
modulated by masking modulation. Figure 11 presents the 
original sinusoid data and the recovered data that are 
simulated in the same coordinate. We can see that the 
recovered data is nearly the same as the original data. As 
indicated in Fig. 11 and Table 5 after 1.071 seconds, the data 
is recovered and converged nearly to the original data. By 
using our proposed secure chaotic communication scheme in 
the presence of channel noise and processing noise, the data 
can be precisely recovered. The noise performance of this 
system is related to the use of the UKF for state 
synchronization.  

For evaluating the performance of the proposed system in 
a digital case, a pulse input is also used. Figure 12 shows the 
digital data encrypted with masking modulation. Figure 13 
shows the original digital data and the recovered digital data 
in the same coordination. As indicated in Table 5, after 1.099 
seconds the digital data is recovered and converged to the 
original digital data. 

Simulations show that the proposed method also works 
well with other types of chaotic systems. Figure 14 shows 
the attractor of Rössler dynamical system. The convergence 
times of three states of Rössler system by use of the UKF 
and the EKF have been shown in Table 3. The maximum of 
the three values by the UKF is considered as the 
convergence time of the system which is 5.734 seconds. This 
value for the EKF is 6.874 seconds. We have calculated the 
mean squared error (MSE) for the three states by the use of 
the UKF and the EKF (Table 4). The results, show absolute 
estimation errors of the three states in the UKF, are clearly 
less than those in the EKF.  

 

                 Synchronization   Method 
	   UKF                                  EKF 

	  	  	  	  	  0.0097	  	  	  	  	  	    	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	    0.0107 	  1x 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.2905	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   0.2891	  2x 	  

	  	  	  	  	  	  	  	  	  	  	  	  	  0.7974  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	    	         0.7528	  3x 
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Fig. 10. Analog data encrypted with chaos masking modulation 
(Lorenz). 
 
 

 
Fig. 11. Original sinusoid (analog) data and the recovered data 
(Lorenz). 
 
 

 
Fig. 12. Digital data encrypted with chaos masking modulation 
(Lorenz). 

 

 
Fig. 13. Original digital data and the recovered data (Lorenz). 

 
Figure 15 shows the data encrypted with masking 

modulation in the case of Rössler system. In this case, the 
modulated signal is unintelligible and the intruder cannot 
understand the message as that in the previous case. It is 
obvious that, in this case also the analog data is completely 
hidden in the frequency content of the chaos and filtering 
techniques cannot recover the information. In Fig. 16, the 
original analog data and the recovered data can be seen in a 
single plot. It is clear that the data is recovered with such 
precision. As indicated in Table 5, after 3.868 seconds the 
data is recovered and converged to the original data. 

In the case of digital data, Fig.17 shows the digital data 
encrypted with masking modulation. The original digital data 
and the recovered digital data can be seen in Fig. 18 in the 
same coordinate. As indicated in Table 5, after 5.325 
seconds, the digital data is recovered and converged to the 
original digital data. 

 In the proposed chaos masking modulation technique, 
the information signal is masked by the chaotic signal and 
the information is completely disguised in the chaotic signal 
and this scheme spreads the signal in frequency domain as 
well as encrypting the signal in time domain. Some papers 
have offered some methods in order to break schemes of 
secure chaotic communication that their application is 
straightforward if low-dimensional chaos with a simple 
return map is used in communication. However, the reveal of 
information is difficult in the more complicated the return 
map of the transmitted signal [21,26].  

In cryptography, infinitely broad and flat spectrum is a 
fundamental requirement of the pseudo-random noise and 
the power density much higher than the signal to be 
concealed. In other words, the plaintext power spectrum 
should be effectively buried into the pseudo-random noise 
power spectrum. 

On the contrary, the spectrum of the signal generated by 
the Lorenz or Rössler oscillator is of narrow band, decaying 
very fast with increasing frequency, showing a power 
density much lower than the plaintext at plaintext 
frequencies. The existing methods and high-pass filtering are 
not able to break the proposed chaos masking method. 
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Fig. 14. Attractor of Rossler dynamical system. 

 
Chaotic systems are highly dependent on initial 

condition and also parameters. As it is shown, the dynamical 
systems which can be used in the proposed scheme are 
three-dimensional chaotic systems that there are three initial 
conditions and three parameters. With these three initial 
conditions and also three parameters, a large key-space can 
be produced that makes the proposed scheme highly secure. 
 

 
 

Fig. 15. Analog data encrypted with chaos masking modulation 
(Rossler). 

 

 

Tab. 3. Convergence time (sec) in state estimation of Rössler system. 
 

 
 

Fig. 16. Original sinusoid (analog) data and the recovered data 
(Rossler). 
 

 
 

Fig. 17. Digital data encrypted with chaos masking modulation 
(Rossler). 
 

 
 

Fig. 18. Original digital data and the recovered data (Rossler). 

                 Synchronization   Method 	  
UKF                                  EKF 
0.009	  	  	  	  	  	      	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   0.009 	          1x 

5.734	  	  	       	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	    	     	  	  	  6.874 	  2x 	  

2.034	    	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	        5.730	   	  3x 

	  	  	  6.874	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  5.734	  	  Maximum (sec)  
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Tab. 4:  MSE (0 – 50 sec) for three state variables of Rössler system 
 

 

Tab.. 5.	  Convergence time (sec) in data recovery. 
 
 
5. Conclusion 
 
In this paper, we proposed the UKF based synchronization 
design scheme and its application to secure communications 
of chaotic systems. The synchronization of the state 
variables has been done with high accuracy and high speed.  
The UKF method has been compared with the EKF method 
to show the improvement of synchronization act and its 

growth in the performance in regard to accuracy in 
decreasing state variable estimation error. The calculation of 
absolute estimation error value for each state variable 
showed that its value in the UKF method is less than the 
EKF method. For more comparison, the mean square error 
(MSE) of two methods has been calculated and compared. 
Simulation results indicated that the UKF method is more 
accurate than EKF because of the lower MSE in the UKF 
method. 
Then, for the first time, we implemented the UKF in a 
simple chaotic masking method to illustrate the increasing of 
security in communication. The chaos masking modulation 
is used to encrypt data and the receiver is based on the UKF 
that does not require knowing the initial condition of the 
transmitter. The proposed method is possible to apply to 
different kinds of chaotic systems and it can be used for both 
analog and digital data. The noise performance of the 
proposed scheme is related to the use of the UKF. Due to 
employing different chaos states for the synchronization and 
the encryption, the proposed chaotic communication scheme 
is totally different from the traditional cryptosystems. 
It is also shown that it is difficult to break the proposed 
secure communication scheme with the existing methods 
such as high-pass filtering. From the simulation results, the 
performance of the proposed systems seems to be 
satisfactory for secure communication applications and 
therefore be used effectively for ensuring security and 
privacy in commercial consumer electronics products. 

 
 

_____________________________ 
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