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Abstract 
 
In this paper, in order to show some interesting phenomena of three dimensional autonomous ordinary differential 
equations, the chaotic behavior as a function of a variable control parameter, has been studied. The initial study in this 
paper is to analyze the phase portraits, the Lyapunov exponents, the Poincaré maps and the bifurcation diagrams. 
Moreover, some appropriate comparisons are made to contrast some of the existing results. Finally, the effectiveness of 
the bidirectional coupling  scheme  between  two  identical  Jerk  circuits  in  a  secure  communication  system  is  
presented in  details. Finally, the simulation results are shown to demonstrate that the proposed method is correct and 
feasible 
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1. Introduction 
 
Chaotic phenomena are fascinating to many researchers in 
various field such as  biology [1], robotics [2,3], bits 
generators [4], psychology [5], ecology [6,7] and economy 
[8,9]. Deterministic chaotic systems have the property of 
being sensitive to initial conditions. Trajectories of a chaotic 
system starting from very near initial conditions in phase 
space tend to diverge exponentially. Nevertheless it was 
demonstrated that certain chaotic systems can be connected 
such that their chaotic movements are synchronized [10-13]. 

The first who study the topic of chaotic synchronization 
were Yamada and Fujisaka in 1983 [14] and Afraimovich et 
al. in 1986 [15]. However, it was not until 1990, when 
Pecora and Carroll (PC) introduced their method of chaotic 
synchronization [16] and suggested application to secure 
communications, that the topic started to arouse major 
interest [17-19]. Many researchers demonstrated, using 
simulation, that chaos can be synchronized and applied to 
secure communication schemes, such us, in secure fiber-
optical communication scheme using chaos [20], in secure 
communication based on chaotic cipher [21],  in secure 
communication with chaotic lasers [22] and wireless 
communication with chaos [23]. 

The paper is organized as follows. In section 2, the 
details of the proposed autonomous Jerk circuit’s simulation 

using MATLAB 2010 and MultiSIM 10.0, are presented. In 
Section 3, the bidirectional coupling method is applied in 
order to synchronize two identical autonomous Jerk circuits. 
The chaotic masking communication scheme by using the 
above mentioned synchronization technique is presented in 
Section 4. Finally, in Section 5, the concluding remarks are 
given. 
 
 
2. Jerk Circuit  
 

Sprott found the functional form of three-dimensional 
dynamical systems which exhibit chaos. Jerk equation has a 
simple nonlinear function, which can be implemented with 
an autonomous electronic circuit [24]. Furthermore, Alpana 
Pandey modifies the system of Jerk equations into a system 
of simple quadratic equations. In this work, the Jerk circuit, 
which was firstly presented by Alpana Pandey in 2013 
[25,26], is used. This is a three-dimensional autonomous 
nonlinear system that is described by the following system 
of ordinary differential equations: 

 

   

!x = y
!y = z

!z = −x − y − az − bx2

⎫

⎬
⎪

⎭
⎪

                   (1) 

 
The new system has one quadratic term and two positive 

real constants a and b. The parameters and initial conditions 
of the Jerk system (1) are chosen as: a = 0.5, b = 0.125 and 
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(x0, y0, z0) = (0.001, 0.010, 0.100), so that the system shows 
the expected chaotic behavior. 
2.1 Numerical Simulations  
 
In this section, we present the numerical simulation to 
illustrate the dynamical behavior of Jerk circuit of system 
(1). For numerical simulation of chaotic system defined by a 
set of differential equation such as Jerk circuit, different 
integration techniques can be used. In the MATLAB 2010 
numerical simulation, ODE45 solver yielding a fourth-order 
Runge-Kutta integration solution has been used. Figures 
1(a)-(c) show the projections of the phase space orbit on to 
the x–y plane, the y–z plane and the x–z plane, respectively. 
As it is shown, for the chosen set of parameters and initial 
conditions, the Jerk system presents chaotic attractors of 
Rössler type. Also, it is known from the nonlinear theory, 
that the spectrum of Lyapunov exponents provides 
additional useful information about system’s behavior. In a 
three dimensional system, like this, there has been three 
Lyapunov exponents (λ1, λ2, λ3). In more details, for a 3D 
continuous dissipative system the values of the Lyapunov 
exponents are useful for distinguishing among the various 
types of orbits. So, the possible spectra of attractors, of this 
class of dynamical systems, can be classified in four groups, 
based on Lyapunov exponents [27-30]. 

 
•  For a fixed point: λ1, λ2, λ3 < 0.  
•  For a limit point: λ1 = 0, λ2, λ3 < 0. 
•  For a two-torus: λ1, λ2 = 0, λ3 < 0. 
•  For a strange attractor: λ1 > 0, λ2 = 0, λ3 < 0. 
 
 So, in Figs.2(a) & 2(b) the dynamics of the proposed 
system’s Lyapunov exponents for the variation of the 
parameter a∈ [0.49, 0.65] is shown. For 0.49 ≤  a ≤  0.57 a 
strange attractor is displayed as the system has one positive 
Lyapunov exponent, while for values of  0.57 <  a ≤  0.65 
is a transition to limit point behavior as the system has two 
negative Lyapunov exponents. 

Also, the word bifurcation denotes a situation in which 
the solutions of a nonlinear system of differential equations 
alter their character with a change of a parameter on which 
the solutions depend. Bifurcation theory studies these 
changes (e.g. appearance and disappearance of the stationary 
points, dependence of their stability on the parameter etc). A 
MATLAB program was written to obtain the bifurcation 
diagrams for Jerk circuit of Figs.3(a) & 3(b). So, in this 
diagram a possible bifurcation diagram for system (1), in the 
range of 0.4 ≤ a ≤ 0.65, is shown. For the chosen value of 
0.49 ≤ a < 0.554 the system displays the expected chaotic 
behavior. Also, for 0.554 ≤ a < 0.65, a reverse period 
doubling route is presented. 

A Poincaré section is often used to reduce a three-
dimensional continuous system to a lower-dimensional 
discrete map. The strength behinds this tool is that these 
sections have the same topological properties as their 
continuous counterparts [31]. In the chaotic state the phase 
portrait is very dense, in the sense that the trajectories of the 
motion are very close to each other. It can be only indicative 
of the minima and maxima of the motion. Any other 
characterization of the motion is difficult to be interpreted. 
So, one way to capture the qualitative features of the strange 
attractor is to obtain the Poincaré map [32,33]. Figures 4(a)-
(c) shows the Poincaré section map by using MATLAB, for 
a = 0.5 and b = 1.25. 
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Fig.1. Numerical simulation results using MATLAB 2010, for a = 0.5, 
b = 0.125, in (a) x-y plane, (b) y-z plane, (c) x-z plane. 
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	   	   	   	  (a) 
 

	  	  	  	   	  
	   	   	   	  	  	  (b) 
 
Fig. 2. Nonlinear dynamics of system  (1) for specific values set  
b=0.125. (a) Lyapunov exponents versus the parameter control                    
a∈ [0.49-0.57] (b) Lyapunov exponents versus the parameter control 
a∈ [0.56-0.65], with MATLAB 2010. 
 
 
2.2 Analog Circuit Simulation Using MultiSIM  

 
A simple electronic circuit is designed that can be used 

to study chaotic phenomena. The circuit employs simple 
electronic elements, such as resistors, capacitors, multiplier 
and operational amplifiers. In Fig. 5, the voltages of  C1, C2, 
C3 are used as x, y and  z, respectively. The nonlinear term of 
system (1) are implemented with the analog multiplier. The 
corresponding circuit equation can be described as: 
 

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

−−−−=

=

=

2

103938373

42

11

10
1111

1

1

x
RC

z
RC

y
RC

x
RC

z

z
RC

y

y
RC

x

!

!

!
    (2) 

 
 
 

We choose R1 = R2 = R3 = R4 = R5 = R6 = R7 = R8 =                
100 kΩ, R10 = 80 kΩ. C1 = C2 = C3 C4 = 1 nF. The circuit has 
three integrators (by using Op-amp TL082CD) in a feedback 
loop and a multiplier (IC AD633). The supplies of all active 
devices are ±9 V. With MultiSIM 10.0, we obtain the 
experimental observations of system (1) as shown in Fig.6. 
As compared with Fig.1 a good qualitative agreement 
between the numerical simulation and the MultiSIM 10.0 
results of the Jerk circuit is confirmed. The parameter 
variable a of system (1) is changed by adjusting the resistor 
R9, and obeys the following relation: 

 

3 9

1a
C R

=                                                                      (3) 

 

	  	   	  
	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (a) 
 

	  	  	   	  
	   	   	   	  	  (b) 
 
Fig.3. Nonlinear dynamics of system (1) for specific values set                
b = 0.125. (a) Bifurcation diagram of z vs. the control parameter                
a∈ [0.49-0.57], (b) Bifurcation diagram of z vs. the control parameter a 
a∈ [0.56-0.65],, with MATLAB 2010. 
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Fig. 4. A gallery of Poincare maps for system (1), for a = 0.5, b =0. 125. 
The plots give the maxima of (a) x(n + 1) versus those of x(n);                 
(b) y(n + 1) versus those of y(n); (c) z(n + 1) versus those of z(n), 
obtained with MATLAB 2010. 
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Fig. 6. Various projections of the chaotic attractor using MultiSIM 10.0, 
for a = 0.5, b = 0.125  (a) x-y plane (b) y-z plane (c) x-z plane. 
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Fig. 5. Schematic of the proposed Jerk circuit by using MultiSIM 10.0. 

 

3. Bidirectional Coupling Scheme of Jerk Circuits  
 

Synchronization between coupled chaotic systems has 
received considerable attention and led to communication 
applications. With coupling and synchronizing identical 
chaotic systems method, a message signal sent by a 
transmitter system can be reproduced at a receiver under the 
influence of a single chaotic signal through synchronization. 
This work presents the study of numerical simulation of 
chaos synchronization of coupled chaotic Jerk circuits. 

Synchronization of chaotic motions among coupled 
dynamical systems is an important generalization from the 
phenomenon of the synchronization of linear systems, which 
is useful and indispensable in communications. The idea of 
the method is to reproduce all the signals at the receiver 
under the influence of a single chaotic signal from the driver. 
Therefore, chaos synchronization provides potential 
application to communications and signal processing. 
However, for the realization of secure communication 
systems, some other important factors, need to be considered 
[33]. 

The following bidirectional coupling configuration, is 
described below: 

 

   

!x1 = y1

!y1 = z1 + gc ( y2 − y1)

!z1 = −x1 − y1 − az1 − bx1
2

!x2 = y2

!y2 = z2 + gc ( y1 − y2 )

!z2 = −x2 − y2 − az2 − bx2
2

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  (4)	  

 
The coupling coefficient  gc is  present  in  the equations  

of  both  systems,  since  the  coupling between them is 
mutual. 

Numerical simulations of system (4), by using the 
fourth-order Runge-Kutta method, are used to describe the 
dynamics of chaotic synchronization of bidirectionally 
coupled Jerk circuits. In bidirectional (mutual) coupling, 
both coupled systems are connected in such a way that they 
mutually influence each other’s behavior. Synchronization 
numerically appears for a coupling factor gc ≥ 0.3 as shown 
in Figs.6(a) & (c), with error 1 2e 0x x x= − → , which 
implies the complete synchronization, in contrary to Figs. 
6(b) & (d). 
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Fig. 6. Phase portrait of x2 vs. x1 and error x1 – x2 in the case of 
bidirectionally coupled Jerk circuits, for (a) gc = 0.3 (full 
synchronization),  (b) gc  =  0.2  (full desynchronization),                              
(c) synchronization eror (x2 – x1) for gc = 0.3 and (d) synchronization 
eror (x2 – x1) for gc = 0.2. 
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4.  Application to Secure Communication Systems 
 
 Two fundamental characteristics of chaos in physical 
systems are the complexity of the dynamics and the 
sensitivity of the time evolution to small perturbations. The 
sensitivity of chaos to small perturbations has been seen for 
a long time as merely a barrier to prediction, and not as a 
useful property. Major developments in the area of 
controlling chaos using small perturbations have proved 
otherwise:  the sensitivity to small perturbations exhibited by 
chaotic systems allows to control them using electrical 
signals with a power far below the one produced by the 
chaotic system itself. Thus, the complexity of chaos and its 
sensitivity to small perturbations can be combined 
harmoniously by using the sensitivity to control (and take 
advantage of) the complexity. As a consequence, it is 
currently recognized by many engineers that the fact that 
chaos provides complex behavior from simple systems can 
be exploited to obtain technological advantages over 
conventional means for information transmission [34]. 
 To study the effectiveness of signal masking approach in 
the Jerk system, we first set the information-bearing signal 
ms(t) in the form of sinusoidal wave: 

 
ms(t)= A sin (2πf)t                                            (5) 

where A and f  are the amplitude and the frequency of the 
sinusoidal wave signal respectively. 
 The sum of the signal ms(t) and the chaotic signal 
mJerk_circuit(t), produced by the Jerk circuit, is the new 
encryption signal mencryption, which is given by Eq.(6). 

 
s Jerk _ circuit( ) ( ) ( )encryptionm t m t m t= + 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  (6)    

The signal mJerk_circuit(t) is one of the parameters of equation 
(1). After finishing the encryption process the original signal 
can be recovered with the following procedure. 
 
New _Signal encryption Jerk _ circuit( ) = ( ) ( )m t m t m t− 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (7) 

	   So, mNew_Signal(t) is the original signal and must be the 
same with ms(t). Due to the fact that the input signal can be 
recovered from the output signal, it turns out that it is 
possible to implement a secure communication system using 
the proposed chaotic system. 

Information signal is added to the chaotic signal at 
transmitter and at receiver the masking signal is regenerated 
and subtracted from the receiver signal. For synchronization 
of transmitter and receiver, bidirectional coupling method of 
full synchronization technique is used. Figures 8(a) - (c) 
show the MATLAB 2010 numerical simulation results for 
the proposed chaotic masking communication scheme. 

Also, in the proposed masking scheme, the sinusoidal 
wave signal of amplitude 1V and frequency 4 KHz is added 
to the synchronizing driving chaotic signal in order to 
regenerate the original driving signal at the receiver. Thus, 
as it can be shown from Fig.8(c), the message signal has 
been perfectly recovered by using the signal masking 
approach through the synchronization of chaotic Jerk 
circuits. Furthermore, simulation results with MATLAB 
2010 have shown that the performance of chaotic Jerk 
circuits in chaotic masking and message recovery is very 
satisfactory. 
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Fig. 8. MATLAB 2010 simulation of Jerk circuit masking 
communication system when amplitude is 1V and frequency 1KHz:                
(a) Information signal, (b) Chaotic masking transmitted signal and (c) 
Retrieved signal. 
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3. Conclusion 
 

In this paper we have demonstrated how two identical 
chaotic systems can be synchronized using bidirectional 
coupling. Chaos synchronization and chaos masking were  

 
 
 

realized by using MATLAB 2010. The performance of 
the proposed method was demonstrated by using a Jerk 
system. We conclude that the suggested scheme can be 
effectively used in secure communications. 
 
 

_____________________________ 
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