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Abstract 
 
This research work proposes an eight-term novel four-scroll chaotic system with cubic nonlinearity and analyses its 
fundamental properties such as dissipativity, equilibria, symmetry and invariance, Lyapunov exponents and Kaplan-
Yorke dimension. The phase portraits of the novel chaotic system, which are obtained in this work by using MATLAB, 
depict the four-scroll attractor of the system. For the parameter values and initial conditions chosen in this work, the 
Lyapunov exponents of the novel four-scroll chaotic system are obtained as L1 = 0.75335, L2 = 0 and L3 = −22.43304. 
Also, the Kaplan-Yorke dimension of the novel four-scroll chaotic system is obtained as DKY = 2.0336. Finally, an 
electronic circuit realization of the novel four-scroll chaotic system is presented by using SPICE to confirm the 
feasibility of the theoretical model. 
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1. Introduction 
 
Chaotic systems are nonlinear dynamical systems which are 
sensitive to initial conditions, topologically mixing and also 
with dense periodic orbits. Especially, sensitivity to initial 
conditions means that an arbitrarily small perturbation of the 
current trajectory of the dynamical system may lead to 
significantly different future behavior.  

Nonlinear dynamics occurs widely in engineering, 
physics, biology and many other scientific disciplines. There 
is great interest in chaos literature in discovering of chaos in 
nature and physical systems. Poincaré was the first, in 1880, 
to observe the possibility of chaos, in which a deterministic 
system exhibits aperiodic behavior that depends on the 
initial conditions, thereby rendering long-term prediction 
impossible [1]. In 1898 Jacques Hadamard published an 
influential study of the chaotic motion of a free particle 
gliding frictionlessly on a surface of constant negative 
curvature [2]. 

Much of the earlier theory was developed almost entirely 
by mathematicians, under the name of ergodic theory. Later 
studies, also in the topic of nonlinear differential equations, 
were carried out by Birkhoff (1927), Kolmogorov (1941), 
Cartwright and Littlewood (1945) and Stephen Smale (1960) 
[3-6].   

However, the revolution on this field was made by 
Lorenz in 1963 [7] when he found a 3-D chaotic system 

while studying weather patterns.  
The discovery of Lorenz chaotic system was followed by 

the discovery of many classical paradigms of 3-D chaotic 
systems such as Rössler system [8], Rabinovich system [9], 
Arneodo system [10], Sprott systems [11], Chen system 
[12], Lü system [13], Shaw system [14], Cai system [15], 
Tigan system [16], Colpitt’s oscillator [17], Zhou system 
[18], etc. 

Recently, many chaotic systems have been discovered 
such as Li system [19], Sundarapandian system [20], 
Sundarapandian-Pehlivan system [21], Zhu system [22], 
Vaidyanathan systems [23-27], Vaidyanathan-Madhavan 
system [28], Pehlivan-Moroz-Vaidyanathan system [29], 
Jafari system [30], Pham system [31], etc. 

Also, the last decades many famous chaotic systems, 
which are exhibited n-scroll chaotic attractors, such as 
double-scroll attractors (like the Lorenz system [7], Chen 
system [12], Lü system [13], Tigan system [16]), three-scroll 
attractors (like Wang system [32], Dadras system [33], Pan 
system [34]), and four-scroll chaotic attractors (like Lü-
Chen-Cheng system [35], Liu-Chen system [36], Pehlivan 
system [37], Liu system [38]), have been discovered. 

Nowadays, chaos theory has applications in several 
fields such as oscillators [39-41], lasers [42,43], robotics 
[44-47], chemical reactors [48,49], biology [50,51], ecology 
[52,53], neural networks [54,56], secure communications 
[57-60], cryptosystems [61-64], economics [65-67], etc. 
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This research work describes a novel four-scroll chaotic 
system and analyses its fundamental qualitative properties. 
The Lyapunov exponents and Kaplan-Yorke dimension of 
the novel chaotic system have been described. Finally, a 
circuit realization of the novel chaotic system has been made 
using SPICE simulations. 

 
 

2. A Novel Four-Scroll Chaotic System 
 
We consider the nonlinear system described by 
 

( )1
2 1 2 3

32
2 2 1 3

3
3 1 2

10 4

dx a x x bx x
dt
dx x x x x
dt
dx cx x x
dt

⎧ = − +⎪
⎪
⎪ = − − +⎨
⎪
⎪ = −⎪⎩

        (1) 

 
where x1, x2, x3 are state variables and a, b, c are positive 
constant parameters. 

We note that the system (1) is an eight-term polynomial 
system with 3 quadratic nonlinearities and a cubic 
nonlinearity. 

The system (1) exhibits a four-scroll chaotic attractor 
when the parameter values are taken as: 

 
a = 3, b = 14, c = 3.9                (2) 
 

For numerical simulations, we have used the classical 
fourth order Runge-Kutta method in MATLAB with step 
size h = 10–6 for solving the system (1) with parameter 
values as in (2) and initial conditions as: 
 
x1(0) = 0.2,  x2(0) = 0.4, x3(0) = 0.2     (3) 
 

Figure 1 shows the 3-D view of the four-scroll attractor 
of the novel chaotic system (1), while Figs. 2-4 show the          
2-D views (projections) of the four-scroll attractor on the 
three coordinate planes. 

 
Fig. 1. The four-scroll attractor of the novel chaotic system. 

 
 

 
Fig. 2. 2-D projection of the novel chaotic system in (x1, x2) - plane. 
 
 

 
Fig. 3. 2-D projection of the novel chaotic system in (x2, x3) - plane. 
 

 
Fig. 4. 2-D projection of the novel chaotic system in (x1, x3) - plane. 
 
 
3. Properties of the Novel Four-Scroll Chaotic System 
 
In this section, we analyse the novel four-scroll chaotic 
system (1) and detail its fundamental properties like 
dissipativity, symmetry and invariance, equilibria, Lyapunov 
exponents and Kaplan-Yorke dimension. 
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3.1. Dissipativity 
 
In vector notation, we may express the system (1) as: 
 

( )
( )
( )

1 1 2 3

2 1 2 3

3 1 2 3

, ,

( ) , ,

, ,

f x x x
dx f x f x x x
dt

f x x x

⎡ ⎤
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎣ ⎦

        (4) 

 
where 
 

( ) ( )
( )
( )

1 1 2 3 2 1 2 3
3

2 1 2 3 2 2 1 3

3 1 2 3 3 1 2

, ,

, , 10 4

, ,

f x x x a x x bx x

f x x x x x x x

f x x x cx x x

⎧ = − +
⎪⎪ = − − +⎨
⎪ = −⎪⎩

       (5) 

 
We take the parameter values as in the chaotic case, viz. 

a = 3, b = 14 and c = 3.9.   
Let Ω be any region in   𝑹!  with a smooth boundary and 

also Ω 𝑡 = Φ! Ω , where Φ! is the flow of 𝑓. Furthermore, 
let 𝑉(𝑡) denote the volume of Ω 𝑡 . 

By Liouville’s theorem, we have 
 

( ) 1 2 3
( )t

dV f dx dx dx
dt Ω

= ∇⋅∫           (6) 

 
The divergence of the novel system (1) is easily found 

as: 
 

 1 2 3

1 2 3
1 0.1f f ff a c

x x x
∂ ∂ ∂∇ ⋅ = + + = − − + = −
∂ ∂ ∂

      (7) 

 
Substituting (7) into (6), we obtain the first order ODE 
 

0.1 ( )dV V t
dt

= −        (8) 

 
Integrating (8), we obtain the unique solution as: 
 
( ) exp( 0.1 ) (0)V t t V= −       (9) 

 
It is evident from equation (9) that V(t) → 0 

exponentially as t → ∞. This shows that the novel chaotic 
system (1) is dissipative. 

Hence, the system limit sets are ultimately confined into 
a specific limit set of zero volume, and the asymptotic 
motion of the novel chaotic system (1) settles onto a strange 
attractor of the system. 
 
 
3.2. Symmetry and Invariance  
 
The novel chaotic system (1) is invariant under the change 
of coordinates 
 
(x1, x2, x3) → (–x1, –x2, x3)     (10) 
 

The transformation (10) persists for all values of the 
system parameters. Thus, the novel chaotic system (1) has a 
rotation symmetry about the x3-axis. Hence, it follows that 
any nontrivial trajectory of the novel chaotic system must 
have a twin trajectory.  

3.3. Equilibrium Points  
 
The equilibrium points of the novel chaotic system (1) are 
obtained by solving the following system of equations (with 
a = 3, b = 14, c = 3.9.   

  
( )2 1 2 3

3
2 2 1 3

3 1 2

 0

10 4 0
              0

a x x bx x

x x x x
cx x x

− + =⎧
⎪⎪− − + =⎨
⎪ − =⎪⎩

 `    (11) 

  
A simple calculation yields the five equilibrium points 
  

𝐸! =
0
0
0
,                 𝐸! =

0.2595
0.7670
0.5095

,                 𝐸! =
−0.2595
−0.7670
      0.5095

, 

                                                                              (12) 
    

𝐸! =
      3.4089
−1.0449
−0.9134

,               𝐸! =
−3.4089
      1.0449
−0.9134

 

  
The Jacobian matrix of the system (1) at x is given by 
  

 𝐽 𝑥 =
−𝑎 𝑎 + 𝑏𝑥! 𝑏𝑥!
4𝑥! −30𝑥!! − 1 4𝑥!
−𝑥! −𝑥! 𝑐

   (13) 

 
 The Jacobian matrix at the equilibrium E0 is obtained as: 
  

𝐽! = 𝐽 𝐸! =
−3       3         0  
      0 −1       0
      0       0 3.9

    (14) 

  
Since 𝐽! is a triangular matrix, its eigenvalues are given 

by its diagonal entries, i.e. 
  

λ1 = –3, λ2 =  –1, λ3 = 3.9       (15) 
 
Thus, the equilibrium 𝐸! is a saddle point. 
Next, the Jacobian matrix at the equilibrium point 𝐸!    is 

obtained as: 
  

  𝐽! = 𝐽 𝐸! =
−3.0000       10.1330 10.7380
      2.0380 −18.6487 10.3620
−0.7670     −2.5905   3.9000

  (16) 

  
The eigenvalues of the matrix 𝐽!  are obtained as: 
  

λ1 = –19.1228, λ2,3 = 0.6871 ± 3.4276 i  (17) 
  
Thus, the equilibrium 𝐸! is a saddle-focus point. 
Using a similar calculation, we can easily show that the 

other equilibrium points E2, E3, E4 are also saddle-foci.  
Hence, all the five equilibrium points of the novel 

chaotic system (1) are unstable. 
 
 
3.4. Lyapunov Exponents and Kaplan-Yorke Dimension  
 
For the chosen parameter values (2) and initial conditions 
(3), the Lyapunov exponents of the novel chaotic system (1) 
are obtained using MATLAB as: 
 
L1 = 0.75535, L2 = 0, L3 = –22.43304   (18) 
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The maximal Lyapunov exponent (MLE) of the novel 

chaotic system (1) is L1 = 0.75535. Since the sum of the 
Lyapunov exponents is negative, it follows that the novel 
chaotic system (1) is dissipative.  

Also, the Kaplan-Yorke dimension of the novel chaotic 
system (1) is calculated as: 

  

 1 2

3
2 2.0336KY
L LD
L
+= + =    (19) 

  
which is fractional. Figure 5 depicts the dynamics of the 
Lyapunov exponents of the novel chaotic system (1). 
 
 

 
 
Fig. 5. Dynamics of the Lyapunov Exponents of the Novel System. 

4. Circuit Realization of the Novel Chaotic System 
 
An analogue circuit has been designed to realize the novel 
four-scroll chaotic system. It is noted that in order to obtain 
chaotic attractors in the dynamical range of operational 
amplifiers, the state variable x3 of system (1) is scaled down. 
As a result, the novel chaotic system (1) can be represented 
as: 
 

1
2 1 2 3

32
2 2 1 3

3
3 1 2

5 5

10 20

5

dX a bX aX X X
dt
dX X X X X
dt
dX cX X X
dt

⎧ = − +⎪
⎪
⎪ = − − +⎨
⎪
⎪ = −⎪⎩

   (20) 

 

in which 1
1 5
xX = , 2 2X x=  and 3 3X x= . The schematic 

of the proposed circuit is shown in Fig. 6.  
By applying Kirchhoff’s laws to this circuit, its dynamics are 
described by the following circuital equations: 
 

1
2 1 2 3

2
2 2 1 3

3
3 1 2

1 1 2 1 3 1

3

4 2 5 2 6 2

7 3 8 3

1 1 1
10

1 1 1
100 10

1 1
10

C
C C C C

C
C C C C

C
C C C

dv
v v v v

dt R C R C R C
dv

v v v v
dt R C R C R C
dv

v v v
dt R C R C

⎧
= − +⎪

⎪
⎪⎪ = − − +⎨
⎪
⎪
⎪ = −
⎪⎩

 (21) 

 

 

Fig. 6. Circuit realization of the novel four-scroll chaotic system (20). 

where 𝑣!! , 𝑣!! , 𝑣!!  are the voltages across the capacitors C1, 

C2 and C3, respectively. Here each variable of system (20), 
i.e. X1, X2, X3 is implemented as the voltage across the 
corresponding capacitors C1, C2 and C3, respectively.  

The values of the electronic components in Fig. 6 are 
selected in order to match known parameters of system (20): 
R1 = 500 kΩ, R2 = 100 kΩ, R3 = 10.714 kΩ, R4 = 0.3 kΩ,             
R5 = 300 kΩ, R6 = 1.5 kΩ, R7 = 76.923 kΩ, R8 = 6 Ω,            
R9 = R10 = R11 = R12 = 300 kΩ and C1 = C2 = C3 = 1 nF. The 
power supplies of all active devices are ±15 Volts. 

The designed circuit has been implemented by using the 
electronic simulation package Multisim. The obtained phase 
portraits are shown in Figs. 7-9. Obviously, these SPICE 
phase portraits are similar to the theoretical ones (see Figs. 
2-4). 

 
Fig. 7. Chaotic attractor exhibited by the circuit in Fig. 6 in 𝑣!! − 𝑣!!  
phase portrait. 
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Fig. 8. Chaotic attractor exhibited by the proposed circuit, in 𝑣!! − 𝑣!!  
phase portrait. 

 
Fig. 9. Chaotic attractor exhibited by the proposed circuit, in 𝑣!! − 𝑣!!  
phase portrait. 

 
5. Conclusion 
 
In this paper, an eight-term novel four-scroll chaotic system 
with a cubic nonlinearity has been introduced. Its complex 
dynamics characteristics such as dissipativity, symmetry, 
invariance, equilibrium points, Lyapunov exponents and 
Kaplan-Yorke fractional dimension are analysed. 
Furthermore, the feasibility of the theoretical model is also 
confirmed by an electronic circuitry.  
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