
	
  
	
  

Journal of Engineering Science and Technology Review 8 (2) (2015) 74 - 82 
Special Issue on Synchronization and Control of Chaos: Theory, 

Methods and Applications 
	
  

Research Article 
 

Adaptive Backstepping Controller Design for the Anti-Synchronization of Identical 
WINDMI Chaotic Systems with Unknown Parameters and its SPICE Implementation 

 
 

 S. Vaidyanathan1, Ch. K. Volos*, 2, K. Rajagopal3, I. M. Kyprianidis2 and I. N. Stouboulos2 
 

1Research and Development Centre, Vel Tech University, Avadi, Chennai-600062, Tamil Nadu, India. 
2Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece. 

3Department of Communication Engineering, Defence Engineering College, DebreZeit, Ethiopia. 
 

Received 2 September 2014; Revised 24 October 2014; Accepted 5 November 2014 
___________________________________________________________________________________________ 
 
Abstract 
 
This paper derives new results for the adaptive backstepping controller design for the anti-synchronization of identical 
WINDMI systems (Wind-Magnetosphere-Ionosphere models) with unknown parameters and also details the SPICE 
implementation of the proposed adaptive backstepping controller. In the anti-synchronization of chaotic systems, the 
sum of the outputs of master and slave systems is made to converge asymptotically to zero with time. The adaptive 
controller design for the anti-synchronization of identical WINDMI systems with unknown parameters has been 
established by applying Lyapunov stability theory. MATLAB simulations have been shown for the illustration of the 
adaptive anti-synchronizing backstepping controller for identical WINDMI chaotic systems. Finally, the proposed 
controller has been implemented using SPICE and circuit simulation results have been detailed. 
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1. Introduction 
 
Chaotic systems can be defined as nonlinear dynamical 
systems which are sensitive to initial conditions, 
topologically mixing and also with dense periodic orbits [1]. 
The sensitivity to initial conditions of a chaotic system is 
indicated by a positive Lyapunov exponent. A dissipative 
chaotic system is characterized by the condition that the sum 
of the Lyapunov exponents of the chaotic system is negative. 

A great breakthrough in chaos theory occurred when 
Lorenz discovered a 3-D chaotic system, while he was 
studying weather patterns [2]. There are many paradigms of 
3-D chaotic systems in the literature, such as Rössler system 
[3], Rabinovich system [4], ACT system [5], Sprott systems 
[6], Chen system [7], Lü system [8], Shaw system [9], Feeny 
system [10], Shimizu system [11], Liu-Chen system [12], 
Cai system [13], Tigan system [14], Colpitt’s oscillator [15], 
WINDMI system [16], Zhou system [17], etc. 

Recently, many 3-D chaotic systems have been 
discovered such as Li system [18], Elhadj system [19], Pan 
system [20], Sundarapandian system [21], Yu-Wang system 
[22], Sundarapandian-Pehlivan system [23], Zhu system 
[24], Vaidyanathan systems [25-31], Vaidyanathan-
Madhavan system [32], Pehlivan-Moroz-Vaidyanathan 
system [33], Jafari system [34], Pham system [35], etc. 

The study of chaos theory in the last few decades had a 
big impact on the foundations of Science and Engineering 
and has found several engineering applications.  

Some important applications of chaos theory can be cited 
as oscillators [36-38], lasers [39,40], robotics [41-43], 
chemical reactors [44,45], biology [46,47], ecology [48,49], 
neural networks [50-52], secure communications [53-56], 
cryptosystems [57-61], economics [62-64], etc. 

The phenomenon of anti-synchronization of chaotic 
systems can be stated as follows. If a particular chaotic 
system is called the master system and another chaotic 
system is called the slave system, then the idea of anti-
synchronization is to use the output of the master system to 
control the output of the slave system so that the outputs of 
the master and slave systems have the same amplitude but 
opposite signs asymptotically. Thus, in the anti-
synchronization of chaotic systems, the sums of the states of 
the master and slave systems are expected to converge to 
zero asymptotically with time. This is an important research 
problem with several applications in engineering [65]. 

In the chaos literature, many different methodologies 
have been proposed for the control of chaotic systems such 
as active control method [66-79], adaptive control method 
[70-76], backstepping control method [77-79], sliding mode 
control [80-81], etc. 

In the chaos literature, many different methodologies 
have been also proposed for the synchronization and anti-
synchronization of chaotic systems such as PC method [82], 
active control [83-93], time-delayed feedback control 
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[94,95], adaptive control [96-107], sampled-data feedback 
control [108-111], backstepping control [112-118], sliding 
mode control [119-124], etc. 

In this research paper, we design an adaptive 
backstepping controller for the anti-synchronization of 
identical WINDMI chaotic systems with unknown 
parameters. WINDMI chaotic systems and Wind-
Magnetosphere-Ionosphere models [16], which describe the 
energy flow through the solar wind-magnetosphere-
ionosphere system.  

We apply Lyapunov stability theory to establish the main 
result for the adaptive backstepping controller for the anti-
synchronization of identical WINDMI chaotic systems with 
unknown parameters. MATLAB simulations have been 
depicted to validate and illustrate the main results of this 
research work. Finally, we detail SPICE implementation of 
the adaptive backstepping controller proposed in this 
research work for the anti-synchronization of identical 
WINDMI chaotic systems with unknown parameters. 
 
 
2. Analysis on WINDMI Chaotic System 
 
WINDMI chaotic system is one of the paradigms of 3-D 
chaotic systems. It is described by the following normalized 
state equations: 
 
!!!
!"

= 𝑥!
!!!
!"

= 𝑥!
!!!
!"

= −𝑎𝑥! − 𝑥! + 𝑏 − exp  (𝑥!)

  (1) 

 
where x1, x2, x3 are the states and a, b are positive 
parameters.  

The WINDMI system (1) depicts a strange chaotic 
attractor when the parameter values are taken as: 
 
𝑎 = 0.7 and 𝑏 = 2.5    (2) 
 

Also, we take the initial conditions as: 
 

𝑥! 0 = 1.4, 𝑥! 0 = 0.8, 𝑥! 0 = 2.5  (3) 
 
The 3-D phase portrait of the WINDMI chaotic attractor 

is shown in Fig. 1. 
The Lyapunov exponents of the WINDMI chaotic 

system are numerically obtained as: 
 

𝐿! = 0.0845,   𝐿! = 0,   𝐿! = −0.7870  (4) 
 
Thus, the maximal Lyapunov exponent (MLE) of the 

WINDMI chaotic system is given by L1 = 0.0845. 
The spectrum of the Lyapunov exponents of the 

WINDMI chaotic system (1) is depicted in Fig. 2. 
The Lyapunov dimension of the WINDMI system is 

calculated as follows: 
 
𝐷! = 2 + !!!!!

!!
= 2.1074    (5) 

 
which is fractional.  

Since the sum of the Lyapunov exponents in (4) is 
negative, the WINDMI chaotic system is a dissipative 
chaotic system. 

 

 
 
Fig. 1.The strange attractor of the WINDMI chaotic system. 
 

 
 

Fig. 2.The spectrum of the Lyapunov exponents of the WINDMI 
chaotic system. 
 
 
3. Adaptive Anti-Synchronization of WINDMI Chaotic 
Systems via Backstepping Control 
 
In this section, new results are derived for the anti-
synchronization of WINDMI chaotic systems with unknown 
parameters via adaptive backstepping control method.  

As the master system, we consider the WINDMI system 
of Eq.(1), while as the slave system, the following controlled 
WINDMI system is considered. 

 
!!!
!"

= 𝑦!
!!!
!"

= 𝑦!
!!!
!"

= −𝑎𝑦! − 𝑦! + 𝑏 − exp  (𝑦!) + 𝑢

  (6) 

 
In (6), the parameters a and b are unknown, and u(t) is a 

feedback control to be determined using the states of (1) and 
(6), and estimates A(t) and B(t) of the unknown parameters a 
and b, respectively. 

The anti-synchronization error between the states of the 
WINDMI systems (1) and (6) is defined by  

 
𝑒!(𝑡) = 𝑦! 𝑡 + 𝑥! 𝑡
𝑒!(𝑡) = 𝑦! 𝑡 + 𝑥! 𝑡
𝑒!(𝑡) = 𝑦! 𝑡 + 𝑥! 𝑡

    (7) 
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A simple calculation yields the error dynamics as: 
 

!!!
!"

= 𝑒!
!!!
!"

= 𝑒!
!!!
!"

= −𝑎𝑒! − 𝑒! + 2𝑏 − exp 𝑦! − exp 𝑥! + 𝑢

 (8) 

 
We define the parameter estimation errors as: 
 

𝑒!(𝑡) = 𝑎 − 𝐴(𝑡)
𝑒!(𝑡) = 𝑏 − 𝐵(𝑡)    (9) 

 
In (10), A(t) and B(t) are estimates for the unknown 

parameters a and b respectively, which will be determined 
using adaptive control theory. 

It follows from (9) that 
 

!!!
!"

= − !"
!"

!!!
!"

= − !"
!"

     (10) 

 
Next, we shall state and prove the main result of this 

section. 
 
Theorem 1. The identical WINDMI chaotic systems (6) and 
(7) with unknown parameters a and b are globally and 
exponentially anti-synchronized by the adaptive 
backstepping control law 
 
𝑢 𝑡 = −2𝐵 𝑡 − 3𝑒! − 4𝑒! − 𝑘𝑧!   (11) 

                                + 𝐴 𝑡 − 3 𝑒! + exp 𝑦! + exp  (𝑥!) 
 
where k > 0 is a gain constant, with 

 
𝑧! = 2𝑒! + 2𝑒! + 𝑒!    (12) 

 
and the update law for the parameter estimates is given by 

 
!"
!"

= −𝑒!𝑧!
!"
!"

= 2𝑧!
     (13) 

 
Proof. We prove this result via backstepping control method 
and Lyapunov stability theory. 

First, we define a quadratic Lyapunov function 
 

𝑉! 𝑧! = !
!
𝑧!!     (14) 

 
where 

 
𝑧! = 𝑒!      (15) 

 
Differentiating V1 along the dynamics (8), we get 
 

!!!
!"
= 𝑒!𝑒! = −𝑧!! + 𝑧!(𝑒! + 𝑒!)   (16) 
 
Now, we define 
 

𝑧! = 𝑒! + 𝑒!     (17) 
 
Using (17), we can simplify (16) as: 
 

!!!
!"
= −𝑧!! + 𝑧!𝑧!     (18) 
 
Next, we define a quadratic Lyapunov function 
 

𝑉! 𝑧!, 𝑧! = 𝑉! 𝑧! +   !
!
𝑧!! =   

!
!
(𝑧!! + 𝑧!!)  (19) 

 
Differentiating V2 along the dynamics (9), we obtain 
 

!!!
!"
= −𝑧!! − 𝑧!! + 𝑧!(2𝑒! + 2𝑒! + 𝑒!)  (20) 
 
Now, we define 
 

𝑧! = 2𝑒! + 2𝑒! + 𝑒!    (21) 
 
Using (21), we can simplify (20) as: 
 

!!!
!"
= −𝑧!! − 𝑧!! + 𝑧!𝑧!    (22) 
 
Finally, we define a quadratic Lyapunov function 
 

𝑉 𝒛, 𝑒!, 𝑒! = 𝑉! 𝑧!, 𝑧! + !
!
𝑧!! +

!
!
𝑒!! +

!
!
𝑒!!  (23) 

 
From (23), it is clear that V is a positive definite function 

on R5. 
The time-derivative of V is calculated as: 
 

!"
!"
= −𝑧!! − 𝑧!! − 𝑧!! + 𝑧!𝑆 − 𝑒!

!"
!"
− 𝑒!

!"
!"

  (24) 
 
where 

 
𝑆 = 𝑧! + 𝑧! +

!!!
!"
= 𝑧! + 𝑧! + 2

!!!
!"
+ 2 !!!

!"
+ !!!

!"
 (25) 

 
Simplifying the equation (25), we obtain 
 

𝑆 = 2𝑏 + 3𝑒! + 4𝑒! + 3 − 𝑎 𝑒! − exp 𝑦!
    − exp 𝑥!   + 𝑢   (26) 

 
Substituting the control law (11) into (26), we get 
 

𝑆 = 2 𝑏 − 𝐵 𝑡 − 𝑎 − 𝐴 𝑡 𝑒! − 𝑘𝑧!  (27) 
 
Using (9), we can simplify the equation (27) as: 
 

𝑆 = 2𝑒! − 𝑒!𝑒! − 𝑘𝑧!    (28) 
 

Substituting the value of S from (28) into (24), we obtain 
 
!"
!"
= −𝑧!! − 𝑧!! − 1 + 𝑘 𝑧!! + 𝑒! −𝑧!𝑒! −

!"
!"

 (29)  

                                        +𝑒! 2𝑧! −
𝑑𝐵
𝑑𝑡  

  
Substituting the update law (13) into (29), we obtain 
 
!"
!"
= −𝑧!! − 𝑧!! − 1 + 𝑘 𝑧!!   (30) 

 
Thus, it is clear that !"

!"
 is a negative semi-definite 

function on R5. 
From (30), it follows that the vector z(t) = (z1(t), z2(t), 

z3(t)) and the parameter estimation error (ea(t), eb(t)), are 
globally bounded, i.e. 
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𝑧!(𝑡) 𝑧!(𝑡) 𝑧!(𝑡) 𝑒!(𝑡) 𝑒!(𝑡)   ∈ 𝑳!  (31) 

 
Also, it follows from (30) that  
 

!"
!"
≤ −𝑧!! − 𝑧!! − 𝑧!! = − 𝒛 !   (32) 
 
That is, 
 

𝒛 ! ≤ − !"
!"

     (33) 
 
Integrating the inequality (34) from 0 to t, we get 
 
𝒛(𝜏) !𝑑𝜏   ≤ 𝑉 0 − 𝑉(𝑡)!

!    (34) 
 
From (49), it follows that z(t)∈L2, while from (8), it can 

be deduced that  !𝒛
!"
∈ 𝑳!. 

Thus, using Barbalat’s lemma [125], we can conclude 
that z(t) → 0 exponentially as t→ ∞ for all initial conditions 
z(0)∈R3. 

Hence, it is immediate that the anti-synchronization error 
e(t) → 0 exponentially as t→ ∞ for all initial conditions 
e(0)∈R3. 

Thus, it follows that WINDMI chaotic systems (1) and 
(6) are globally and exponentially anti-synchronized for all 
initial conditions x(0), y(0)∈R3. 

This completes the proof.    n 
 

For numerical simulations, the classical fourth-order 
Runge-Kutta method with step size h = 10-8  is used to solve 
the system of differential equations (1), (6) and (13), when 
the adaptive control law (11) is applied. 

The parameter values of the WINDMI chaotic systems 
(1) and (6) are taken as in the chaotic case, viz. a = 0.7 and  
b = 2.5. The positive gain constant k is taken as k = 6. 

Furthermore, as initial conditions of the master system 
(1), we take x1(0) = 3.8, x2(0) = –4.5 and x3(0) = 6.2. 

 As initial conditions of the slave system (7), we take 
y1(0) = –7.4, y2(0) = –3.6 and y3(0) = 4.9. 

Also, as initial conditions of the estimates A(t) and B(t), 
we take A(0) = 5.1 and B(0) = 6.4. 

In Figs. 3-5, the anti-synchronization of the states of the 
master system (1) and slave system (6) is depicted, when the 
adaptive control law (11) and parameter update law (13) are 
implemented. In Fig. 6, the time-history of the anti-
synchronization errors e1(t), e2(t), e3(t) is depicted. 

 

 
 

 
Fig. 3. Anti-Synchronization of the states x1(t) and y1(t). 

 

 
 

Fig. 4. Anti-Synchronization of the states x2(t) and y2(t). 
 
 

 
 
 

Fig. 5. Anti-Synchronization of the states x3(t) and y3(t). 
 

 
 

 
Fig. 6. Time-history of the anti-synchronization errors e1(t), e2(t), e3(t). 
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6. Circuit Realization of the Adaptive Backstepping 
Controller Design for the Anti-Synchronization of 
WINDMI Chaotic Systems 
 
In this section, we design an electronic circuit 
modellingWINDMI system (1) and the controller (11) used 
for synchronization. The circuits in Figs. 7 & 8 has been 
designed following an approach based on operational 
amplifiers [59,60,70] where the state variables x1, x2, and x3 
of the system (1) are associated with the voltages across the 
capacitors C1, C2, and C3, respectively. In Figs. 7 & 8, there 
are five operational amplifiers, which are connected as 
integrators (U1, U2, U3, U4 and U5) and one as inverting 
amplifier (U6).  The  nonlinear  equations  for  the electronic 
circuit are derived as follows: 
 
𝑑𝑥!
𝑑𝑡

=
1

𝑅1𝐶1
𝑥!

𝑑𝑥!
𝑑𝑡

=
1

𝑅2𝐶2
𝑥!

𝑑𝑥!
𝑑𝑡

= −
1

𝑅3𝐶3
𝑥! −

1
𝑅4𝐶3

𝑥! +
1

𝑅5𝐶3
−

1
𝑅6𝐶3

exp 𝑥!

 

(35) 
 

where the values of components are chosen as: R1 = R2 = R3 
= R5 = R7 = R8 = R9 = R10 = R11 = R12 = R13 = R14 = R15 = R16 
=R17 = R18 = R19 = R20 = 1kΩ, R4 = 0.4kΩ, R6 = 1.428kΩ and 
C1 = C2 = C3 = C4 = C5 = 1mF. The power supplies of all 
active devices are ±15VDC. 

Figures 9, 10 & 11 show the state portraits of x1 versus 
x2, x2 versus x3 and x3 versus x1, respectively. 
 
 
7. Conclusion 
 
In this work the adaptive backstepping controller design for 
the anti-synchronization of identical third-order chaotic 
systems with unknown parameters was studied. For this 
reason, an interesting system, such as the Wind-
Magnetosphere-Ionosphere model (WINDMI) was chosen. 
The proposed controller design has been established by 
applying the Lyapunov stability theory. The simulation 
results,with MATLAB, confirmed the effectiveness of the 
adaptive anti-synchronization controller in the case of 
identical chaotic systems. Finally, the circuitries of the 
chosen dynamical system and the system’s controller have 
been realized and the very satisfactory agreement of the 
SPICE results with those of MATLAB simulations has been 
observed. 
 

Fig.7.LTSpice schematic for master system.  
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Fig.8. LTSpice schematic for controller. 

 

 
 

Fig.9. Phase portrait of x1 vs. x2. 

 

 
 

Fig.10.Phase portrait of x2 vs. x3. 

 

 

 

 
 

 
 

Fig.11. Phase portrait of x3 vs. x1. 
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