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Abstract 
 
A third order phase locked loop incorporating a resonant type second order filter is a conditionally stable system and 
shows complicated dynamics including chaotic oscillations for a range of loop parameters. In the face of two co-channel 
signals, an otherwise stable loop may be thrown into a chaotic state, depending on the relative strength and mutual 
frequency offset of the input signals. We have predicted the parameter zone for chaotic state of the loop through 
numerical studies and verified the prediction by hardware experiment. Then we modify the loop structure to incorporate 
an additional control signal which stabilizes the loop dynamics and removes the chaotic oscillations. The improved 
response of the loop is established numerically and experimentally. 
 
Keywords: Third order Phase Locked Loop, chaotic dynamics, co-channel interference, proportional-Integrating-derivative control,     
Lyapunov exponent. 
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1. Introduction 
 
The application of phase locked loops (PLLs) in several 
electronic systems is well documented in the literature [1, 2]. 
Particularly, they are integral parts of communication 
systems for carrier regeneration, angle demodulation or 
clock and data recovery. Generally second order PLLs with 
first order loop filters are predominantly used in practical 
systems, but third order PLLs having second order filters 
also find applications in specific cases [2]. Besides in 
conventional analog PLLs, the phase locking principle based 
systems are implemented using charge pump type filters or 
digital building blocks. The dynamics of these charges pump 
PLLs and digital PLLs in third order varieties has been 
extensively studied in the literature [3-6].  

In real life communication systems the presence of co-
channel interference signals is highly probable and it 
modifies the amplitude and phase statistics of the received 
signal [7]. The phase error dynamics of conventional PLLs 
gets perturbed because of the presence of the interference 
signal and modified loops incorporating a derivative type 
control signal in the loop structure is proposed to combat the 
effects of interference in digital PLLs [8]. Moreover chaotic 
oscillations have been observed in autonomous third order or 
higher order analog PLLs [9- 11]. Even second order PLLs 

subjected to more than one input signals [12] have been 
found to become chaotic. Also the second order PLLs 
employed to demodulate frequency/ phase modulated input 
signals [13] show chaotic response under certain conditions. 
When the propagation delay of signals in a PLL is not 
negligible, chaotic oscillations of the control signal may be 
observed.  

In this work we study the dynamics of a third order PLL 
comprising of a Sallen-Key type second order resonant loop 
filter. This system is potentially chaotic as has been reported 
in the literature [9, 11]. However, by a suitable choice of the 
loop design parameters it can be operated in a stable zone of 
operation for a single input signal. But when driven by two 
co-channel signals the dynamics may become chaotic and 
may cause problems for a system designer. In the context of 
ever increasing number of radio channel users, the 
possibility of having more than one signal at the input of a 
PLL receiver is very likely. In this paper we have obtained 
the conditions of chaotic oscillation for the loop driven by 
two signals in terms of their frequency difference and 
amplitude ratio. Then we propose a circuit modification to 
control the chaos. For this, the control signal applied to the 
loop voltage controlled oscillator (VCO) is modified to get 
both frequency and phase modulation of the loop VCO.  

The   paper  is  organized   in   the  following  way.   The 
functional structure and the system equation of the third 
order PLL with resonant type filter is given in the next 
section. We have studied the dynamics of the loop by 
numerically finding the time evolution of the state variables 
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of the PLL with two input signals. It shows the chaotic 
transition of the VCO control signal when the frequency 
offset and the amplitude of the second signal cross limiting 
values. We calculate the Lyapunov exponent (LE) spectrum 
of the loop state variables to examine the influence of the 
signal parameters on the transition to a chaotic state of the 
loop quantitatively. Then a modification of the circuit is 
proposed to control the chaotic oscillations is given in 
section 3. In the same section the dynamics of the modified 
system has been numerically studied and also compared with 
that of the conventional PLL. Experimental results are given 
in section 4 to establish the ability of chaos control of the 
modified circuit. In section 5 some concluding remarks on 
the study have been given.  

 
 
2. Dynamics of the Conventional PLL 
 
The functional block diagram of a third order PLL with two 
co-channel input signals is shown in Fig. 1. The figure 
incorporates the modification circuit proposed in this paper, 
however we discuss with that circuit in Section 3. First we 
consider one input signal written as, )sin( iitA θω + , where 
A, iω and iθ represent the amplitude, the angular frequency 
and the constant phase of the signal. The output of the loop 
VCO is taken as, ),tcos( rr θω +2 where rω is the free 
running angular frequency of the VCO and, in the closed 
loop condition rθ is the time integrated version of the VCO 
control signal, multiplied by the VCO sensitivity (kv). The 
multiplier type phase detector detects the phase error 
between its inputs. In the absence of the second input signal, 
we write the phase difference between two inputs as 

)]()[( riri t θθωωϕ −+−= , or equal to )]([ rit θθ −+Ω .   
Here Ω is the frequency difference between the input 

signal and the VCO signal. The loop filter as shown in Fig. 
1, is a resonant type second order filter and in terms of the 
Heaviside operator p (= d/dt), we write the time domain 
representation of the filter as,  

 

1322 +−+
=

pT)g(Tp
g)p(F      (1) 

 
Here the filter gain g (=1 + (R2/R1)) and the filter time 

constant T (= RC) are used as loop design parameters. Using 
the definition of rθ , one can write the phase error equation 
of the PLL as: 
 

)sin()p(FAkp vr ϕθ =     (2a) 
 

This can be reduced to the following form: 
 

)sin()p(FAk
dt
d

v ϕϕ −Ω=     (2b) 

 
Now we consider the input to the PLL as a sum of two 

signals of respective amplitudes A and mA (m is a number 
less than one), angular frequencies ωi and (ωi+Δω)                     
(Δω << ωi) and constant phase angle θi. Hence we can write 
the resultant input signal with a time varying amplitude and 
phase angle as ))t(tsin()t(A ii ψθωρ ++ , where,  

 

))tcos(mm()t( ωρ Δ++= 21 2    (3a) 
 

)))tcos(mA/()tsin(mAarctan()t( ωωψ Δ+Δ= 1   (3b) 
 

When two co-channel signals are present at the input of 
the loop, the output of the phase detector is proportional 
to ( ) ( )ρ t sin φ ψ+ . Using the phase domain model of the loop 
shown in Fig 1, the phase governing equation for the loop, in 
the operator notation would be, 

( ) ( ) ( )v
d Ω Ak F p ρ t sin φ ψ
dt

= − +n      (4) 

Note that, here the modification circuit has not been 
taken into account to formulate the equations. Knowing the 
form of F(p) as given in (1) we get the system equation as: 

Ω=+++−+ )sin()t(gAkT)g(T v ψϕρϕϕϕ !!!!!! 32
 (5) 

This is a third order differential equation in φ with time 
dependent loop parameters and it indicates a complicated 
dynamics.  

 
Fig. 1.  Functional structure of the third order PLL with resonant second 
order LPF. The proposed circuit modification is shown in the dotted 
box. The state variables x, y and z are depicted in the figure. 
 

To proceed further, we introduce three new state 
variables x, y and z for the loop. The loop phase error φ is 
taken as a quantity reduced within –π to +π and it is chosen 
as the first state variable x of the loop. The other two 
variables y and z are defined by following relations. One of 
the reasons of choosing y and z as state variables is that they 
could be directly measured at appropriate nodes of the 
circuit as shown in the block diagram of the loop. We take,  

 

))(sin()(]
1)3(

)1([)( 22 ψϕρ +
+−+

+= tt
pTgTp

Tpty   (6a) 

 

))(sin()(]
1)3(

[)( 22 ψϕρ +
+−+

= tt
pTgTp

gtz   (6b) 

 
Using these state variables we decompose (5) into a set of 
state equations. These equations are written in terms of the 
normalized loop parameters Ωn, kn, Ωi and τ which are ΩT, 
AkvT, (Δω)T and (t/T) respectively. The set of state equations 
are as follows: 
 



B. C. Sarkar and S. Chakraborty/Journal of Engineering Science and Technology Review 8 (2) (2015) 68 – 73  
	  

 
	  

70 

zk
d
dx

nn −Ω=
τ

     (7a) 

z
g
gygx

d
dy )1()2()sin( −−−++= ψρ
τ

  (7b) 

zgy
d
dz −=
τ

     (7c) 

)sin(ψ
τ
ρ

id
d Ω=      (7d) 

])cos(1[ 2

2

ρ
ψ

ρτ
ψ +−Ω= m
d
d

i     (7e) 

In the absence of the second signal at the input (m = 0), 
we put ρ(t) and ψ(t) as 1 and 0 respectively in (7a), (7b) and 
(7c) while other two equations need not be considered. For a 
given value of Ωn and kn, we examine the effect of variation 
of g on the loop dynamics. The loop becomes self 
oscillatory when the value of g  becomes equal to a critical 
value [11]. For example, with Ωn = 0 and kn = 0.63, one gets 
the condition of self oscillation in the PLL for a minimum 
limiting value of g = 1.84. The frequency of self oscillation 
is a characteristic frequency, ΩC, of the third order PLL. An 
approximate estimate of this frequency can be obtained from 
the linearized loop equations at the condition of zero initial 
detuning. We assume a sinusoidal type oscillatory solution 
of the loop equation and apply the method of harmonic 
balance to obtain the frequency of self oscillation. This gives 
the value of 2/1)]3/([ ggknC −=Ω . Thus, with g  = 1.705 
and kn = 0.63 we have the characteristic frequency ΩC = 0.9. 

In this work we keep the loop parameters in the stable 
zone of operation and consider the effect of a second signal 
having a frequency offset Ωi , with respect to that of the 
strong input signal. In this situation, the loop dynamics is 
described by the set of five equations given in (7). In 
presence of the second input signal, the VCO control signal 
would become time varying. For low values of m the nature 
of the signal would be sinusoidal and its frequency is same 
as that of off-set frequency, Ωi . Increasing the value of m for 
a fixed value of Ωi, comparable to ΩC , we note the 
amplitude of the oscillatory VCO control signal and plot the 
amplitude as a function of m. As shown in Fig. 2, with                   
g = 1.705 and kn = 0.63, when m is 0.668, the control signal 
becomes a combination of two oscillations. It is evident 
from two instantaneous amplitude values in time domain. 
For increasing values of m the sequence of period doubling 
continues and ultimately the control signal of the VCO 
becomes chaotic in nature. We calculate different Lyapunov 
exponents (LEs) associated with the five state variables used 
in the state equations (7) of the system applying the 
algorithm suggested by Wolf et al [14]. The three largest 
LEs thus obtained are plotted in Fig. 3 as functions of m. 
The nature of the curves indicates the occurrence of period 
doubling bifurcation at specific values of m and for                      
m > 0.769 we get one of the LEs positive. In this range of m, 
the chaotic oscillation of the VCO control signal is observed 
in Fig. 2. Thus the numerical studies of evaluating LEs and 
finding the time evolution of loop state variable give 
consistent results. We study the effects of variation of Ωi 
keeping m value fixed and it is observed that the loop 
dynamics becomes very much susceptible to the second 

signal when Ωi is close to ΩC. The numerically observed 
results are summarized through bifurcation diagram in                
Fig. 4. The corresponding LE spectrum has been calculated 
as a function of Ωi and three largest LEs are plotted in Fig. 5. 
One of the LEs become positive in between 0.69 
< iΩ <0.86 indicating the chaotic nature of the system. 

 

 
Fig. 2. Numerically obtained variation of the instantaneous maximum 
amplitude of the oscillatory control signal zmax as a function of m for a 
CTOPLL. The values of other loop parameters are 0=Ωn , 63.0=nk , 

705.1=g and 84.0=Ωi . 

 

 
 

Fig. 3. Variation of three largest Lyapunov exponents of the CTOPLL 
with m as the control parameter obtained applying Wolf’s algorithm in 
state equations (3). The values of other loop parameters are 0=Ωn , 

63.0=nk , 705.1=g and 84.0=Ωi . 

 

 
 

Fig. 4. Numerically obtained variation of the instantaneous maximum 
amplitude of the oscillatory control signal zmax as a function of Ωi for a 
CTOPLL. The values of other loop parameters are 0=Ωn , 63.0=nk , 

705.1=g and 77.0=m . 
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Fig. 5. Variation of three largest Lyapunov exponents of the CTOPLL 
with Ωi as the control parameter obtained applying Wolf’s algorithm in 
state equations (7). The values of other loop parameters are 0=Ωn , 

63.0=nk , 705.1=g and 77.0=m . 

 
 
 

3. Dynamics of the Modified Loop 
 
We propose to include an additional sub-circuit in the PLL 
structure to control the adverse effect of the second signal in 
the loop dynamics and improve the stability of the loop. 
When the modification circuit is included, as shown in Fig. 
1, the VCO control signal is changed to zc(t) which is a sum 
of z(t) and km times the time derivative of y(t). Thus, 
remembering the definitions of y(t) and z(t) given in (6), we 
note that the modified VCO control signal has terms 
proportional to sin(x + ψ), as well as first order and second 
order time derivatives of sin(x + ψ). Since the estimated 
phase by the loop VCO is time integrated version of applied 
control signal, it has components directly proportional to, 
integrated version of and time derivative of sin(x + ψ). Thus 
the effective loop filter becomes a proportional-integrating-
derivative type. It can be anticipated that the modified loop 
would have better stability performance. 

With the modification, a new set of state equations 
would be obtained. However in the new set, only the time 
derivative of x variable would be different from (7a) and it is 
given by the following (8). The time derivatives of y, z, ρ 
and ψ would remain same as given in (7b) to (7e) 
respectively. The changed equation of the time derivative of 
x in the modified system is,  

 

2

11

n n m n m

n m

dx Ω k k ρsin( x ψ ) k k ( g )y
dτ

g       k { k ( )}z
g

= − + − − −

−− −
    (8) 

We have studied the dynamics of the proposed modified 
loop for different values of the parameter km and examine the 
relative responses of the CTOPLL (km =0) and modified PLL 
(km 0≠ )with same set of values of m and  Ωi  . The obtained 
responses are depicted through phase plane plots of state 
variables y and z as given in Fig. 6. It shows that the 
CTOPLL has a chaotic attractor but the modified PLL has a 
limit cycle type phase plane plot. In presence of the second 
co-channel signal at the input, the control signal is 
periodically modulated and we get the limit cycle type phase 

plane plot even in the stable mode of operation. Also we 
examine the effect of additional control signal by finding the 
LE spectrum of the system in the chaotic region of operation 
with km as a control variable. The favourable effect of 
additional control signal in taming the chaos is evident from 
Fig.7. It indicates that taking a suitable range of value for km, 
the maximum LE (MLE) of the system could be made non-
positive value. This means that the dynamics of the loop 
could be brought back to non-chaotic state by choosing 
suitable km. The improved response of the modified third 
order PLL is due to the inclusion of effective proportional-
integrating-and-derivative control type filter in the loop. 
 

 
(a)                                               (b) 

Fig. 6. Numerical simulation results showing the phase plane plots of 
conventional and modified PLL. The parameters taken are 0=Ωn , 

63.0=nk , 705.1=g , 78.0=m and 84.0=Ωi . Here, (a) represents 
the chaotic state in CTOPLL(km=0) and (b) represents the periodic state 
of DDCPLL (km=1) with the same second signal. 
 

 

 
 

Fig.7. Variation of MLE of the modified PLL with km as the control 
parameter obtained applying Wolf’s algorithm. The values of other loop 
parameters are 0=Ωn , 63.0=nk , 705.1=g , 78.0=m  and 

84.0=Ωi . 

 
 
4. Experimental Results 
 
A prototype hardware circuit of CTO-PLL has been 
designed using off-the-shelf ICs like 8038 (voltage 
controlled oscillator), AD532 (multiplier for phase detector), 
µA0741 (op-amp for active filter) etc for experimental 
studies. We design a resonant loop filter whose time 
constant is adjusted at 18µs and the gain is adjustable with 
the help of the resistor R1 and R2 (Fig. 1). The voltage 
sensitivity of the VCO is experimentally measured to be 
29.8 kHz/V. In the experiment we take the amplitude and 
frequency of the desired input signal as 1.1V and 125 kHz 
while those for the VCO output signal as 3.5V and 125 kHz 
respectively. Thus the frequency detuning between the 
desired signal and the VCO signal is taken as zero. The 
adjusted gain value of the CTO-PLL is 1.705 which is in 
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stable zone of operation. Now the frequency of second 
signal applied by adding with the strong input signal is kept 
fixed at 117 kHz while its amplitude is gradually increased. 
Thus the frequency difference between two input signals is 8 
kHz which is nearly equal to the characteristic frequency of 
the loop filter. The experimental variation of y and z 
variables as observed is shown in Fig. 8. Here period-1, 
period-2, period-4 and chaotic type phase-plane diagrams 
are obtained as we increase the amplitude of second signal. 
The results are consistent with the numerical prediction. 
Next we fix the strength of second signal at 0.86 volts (i.e. 

78.0=m ) and vary its frequency. Experimental 
observations show that the conventional PLL becomes 
chaotic when the frequency difference between the two input 
signals is near the characteristic frequency of the resonant 
filter. The experimental results are shown in Fig. 9. The 
chaotic oscillation is obtained for the normalized frequency 
off-set in the range –0.96 < Ωi < –0.73. Thus the 
experimental results are in qualitative agreement with the 
numerical prediction.  

In the second part of the experiment, we have studied the 
dynamics of the proposed modified loop for different values 
of the parameter km. We examine the response of the 
CTOPLL (km = 0) and that of modified PLL (km = 1) with 
same set of values of m and Ωi. In this case the design 
parameters are so chosen that the CTOPLL will give chaotic 
dynamics. Then under same condition we observe the 
dynamics of modified PLL with km as a control parameter.  
The effect of km in controlling chaos is observed. The 
experimentally observed results are given in Fig. 10 and it is 
consistent with the numerical predictions. 
 

 
 

Fig. 8. Experimental results showing the period doubling route to chaos 
of the CTOPLL in presence of two input signals with system 
parameters: 0=Ωn , 63.0=nk , 7.1=g and 9.0=Ωi by varying m; 
(a) 2.0=m  (period-1 limit cycle), (b) 668.0=m (period-2 limit cycle), 
(c) 745.0=m (period-4 limit cycle), (d) 772.0=m  (chaotic state). 
 
 
 
 

 
(a)                      (b)                                (c) 

Fig. 9. Experimental results showing the system dynamics in presence 
of two input signals for the CTOPLL with parameters: 0=Ωn , 

63.0=nk , 7.1=g , 78.0=m and varying the frequency difference (Ωi) 
between two input signals; (a) Ωi = 0.98, (b) Ωi = 0.9, (c) Ωi = 0.2. 
 
 

 

(a)                                                  (b) 
 

Fig. 10. Experimental results showing the phase plane plots of 
conventional and modified PLL. The normalized experimental 
parameter values are 0=Ωn , 63.0=nk , 7.1=g , 78.0=m and 

9.0=Ωi . Here (a) represents the chaotic state of CTOPLL (km = 0) and 
(b) represents the periodic state of DDCPLL (km =1) with same second 
signal. 

 
 

5. Conclusion 
 
We investigate the effects of two co-channel signals on the 
dynamics of a third order PLL having resonant second order 
filter through numerical and experimental studies. It is 
observed that the frequency offset between two signals and 
their relative amplitudes have pronounced effects on the 
steady state dynamics of the loop. For a range of values of 
these parameters a stable PLL enters into chaotic mode 
through a period doubling route. When the off-set frequency 
between two input signals is close to the characteristic 
frequency of the CTOPLL, the susceptibility to chaotic 
oscillation is more pronounced. We have also proposed a 
modification in the loop structure and have shown that the 
modified loop has extended zones of stable operation. The 
chaotic oscillations of the loop control signal could be 
suppressed by proper choice of the design parameter of the 
modified loop. The improved response of the modified third 
order PLL is due to the inclusion of effective proportional-
integrating-and-derivative control type filter in the loop. 
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