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___________________________________________________________________________________________ 
 
Abstract 
 
In this study new theoretical concepts are described concerning the interpretation of economical complex 
dynamics. In addition a summary of an extended algorithm of nonlinear time series analysis is provided which is 
applied not only in economical time series but also in other physical complex systems (e.g. [22, 24]). In general, 
Economy is a vast and complicated set of arrangements and actions wherein agents—consumers, firms, banks, 
investors, government agencies—buy and sell, speculate, trade, oversee, bring products into being, offer services, 
invest in companies, strategize, explore, forecast, compete, learn, innovate, and adapt. As a result the economic 
and financial variables such as foreign exchange rates, gross domestic product, interest rates, production, stock 
market prices and unemployment exhibit large-amplitude and aperiodic fluctuations evident in complex systems. 
Thus, the Economics can be considered as spatially distributed non-equilibrium complex system, for which new 
theoretical concepts, such as Tsallis non extensive statistical mechanics and strange dynamics, percolation, non-
Gaussian, multifractal and multiscale dynamics related to fractional Langevin equations can be used for 
modeling  and understanding of the economical complexity locally or globally. 
 
Kewwords: Economical Dynamics, Time series analysis, Tsallis non-extensive statistics, Fractal Dynamics, Non-equilibrium 
dynamics, Turbulence. 

___________________________________________________________________________________________ 
 
1.Introduction 
 
Economic dynamics from physical point of view can be 
regarded as spatial distributed dynamics and connected to 
the general category of nonlinear distributed systems. 
Analysis of economical time series show underlying 
complex and chaotic dynamics in the phase space. Taken’s 
theorem (with the method of delays) permits the 
reconstruction of an equivalent topologically to the original 
phase space, which preserves significant geometrical and 
dynamical properties such as degrees of freedom, fractal 
dimension, multifractality, Lyapunov exponents, prediction 
matrix etc. Thus, the reconstructed phase space can be used 
in order to estimate all the above quantities, as well as phase 
transitions, statistical behaviors, entropy generation etc. In 
addition, the phase space can have multifractal properties 
and intermittent turbulence characteristics that indicate the 
existence of long range interactions in space and time, as 
well as the interaction in many scales. These characteristics 
also indicate the existence of fractional dynamics in the 
phase space which can be described through fractional 
Fokker-Planck equations and anomalous diffusion equations.  
The solutions of these equations are fractional 

spatiotemporal functions and non-Gaussian distributions 
functions which fall into the category of Levy distributions 
and Tsallis distributions. The nonequilibrium stationary 
states of economical dynamics derive from processes of 
strong self organization which corresponds to local maxima 
of Tsallis entropy, while the changes in the control 
parameters of an economical system can induce a phase 
transition and a shift of the economical dynamics to new 
metaequilibrium steady states of maximum Tsallis entropy. 
This phase transition leads to a multifractal change in the 
formation of the phase space and an alteration in the 
phenomenology of the economical system. Finally, the 
statistics of the dynamics in the multifractal phase space can 
be described by Tsallis distribution functions of power law 
and heavy tails form, which can be used for improved 
prediction methods. In this study, we present complexity 
theory in relation to econophysics, a summary of an 
extended nonlinear time series algorithm, as well as new 
theoretical concepts for the theoretical interpretation and  
management of economic complexity and crises which take 
place in local or global level.  
 Complexity theory considers that the current global 
economical system can act and evolve as an autonomous 
system, open to its environment, including multiscale local 
or global interactions. The physical as well as the 
anthropogenic environment can be incorporated in the 
economical system as influences – effects in the form of 
noise and/or with more intense forms such as external 
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control driven processes.  The culture state of each period, 
including psychological, philosophical, political, religious 
and other ideological states and influences, consists also 
another one complex anthropogenic system which interacts 
directly with the economical system. This feedback and non-
linear relation of the anthropogenic culture system with the 
economical system gives rise to a dynamical coupling, 
reminiscent of the atmosphere and climate dynamics, of the 
global network of cities and countries etc. Namely, there is 
an “economical pollution” of the anthropogenic environment 
from the side effect of the economical system, which is 
similar to the pollution of the physical environment from the 
products of the infrastructure (factories etc) of the advanced 
countries. Similar to the physical environment, the 
economical system can self-evolve absorbing in a significant 
degree the outer “pollution” exploiting new functional 
forms, in order to maintain its autonomy and constitution. 
This is because the economical system has an advanced 
complexity with similar characteristics to physical 
complexity, even though it is not a pure physical system. 
From this point of view, it is reasonable for someone to 
“transfer” into the theoretical description and understanding 
of economical complexity terms from the description of 
biological complexity and intelligence. This is in accordance 
to the general scheme of scientific methodology enriched by 
Complexity theory.  
 According to the previous paragraph, in this paper we 
will try to transfer from knowledge from the physical 
complexity to economical complexity. Of course, this study 
is very introductive and general and aims to present various 
terms which are used to the general science of complex 
systems and can be used for the study of theoretical 
economics and economical systems.   In the following we 
present the theory of Complexity adapted to economical 
complexity (paragraph 2), while in paragraph 3 we 
summarize the algorithm of nonlinear time series analysis. 
In paragraph 4 we present some results concerning the 
analysis of two Stock time series and we introduce new 
theoretical concepts concerning economical complexity in 
relation to Tsallis statistics, fractal topology, phase 
transitions, fractional dynamics, percolation, anomalous 
diffusion etc. Finally, in paragraph 5 we present the 
conclusions of this study. 
 
 
2. Theoretical Concepts 
 
In the following we present some aspects of Complexity 
theory which were developed till today in the physical 
sciences and as we believe could help for a new theoretical 
understanding of economical complexity, based on the 
general and universal theory of self-organization. Already, 
many papers concerning economical complexity are pointing 
to this direction [1-6]. Even though economical complexity 
does not include physical interactions with energy transfer 
and local interactions through forces, however analogous 
local interactions through information transferring render 
economical complexity as a specific type of generalized 
physical complexity. At this point, we should emphasize the 
importance of mathematical theory to the physical as well as 
to any other form of complexity. Nonlinear mathematics 
including functional analysis, fractals, fractal functions, and 
fractal topology, as well as nonlinear equations, differential 
or fractional, can produce stochastic and multiscale 
processes independent of the region of their interpretation. 
The existence of the dynamical phase space and the complex 

evolution in it depends upon the general mathematical 
characteristics of the system independently of its special 
character. This character makes the phase space as the tool 
of unification of every complex process which can be 
described mathematically .That is the mathematical essence 
which can produce, or more extremely, can cause the 
observed complexity in a self consistent  way of 
mathematical forms and any other kind of observed form. 
These concepts lead us to the deep fundamentals of the 
mathematical theory including any other mode of scientific 
theory and observed correlations either at physical or 
anthropogenic systems. 
 
. 
2.1 Complexity as a New Physical Theory 
Is Complexity a major revolution in science such as 
Relativity and Quantum Theory? For many scientists 
attempts to explain complexity and self- organization by 
using the basic laws of physics have met with little success. 
Novel forms of self-organization are generally unexpected 
for the classic reductionistic point of view. However, while 
complexity is considered as a new and independent physical 
theory which was developed after the Relativity Theory and 
Quantum mechanics, it must be consistent with these 
theories. It is related to far from equilibrium dynamics and 
concerns the creation and destruction of spatiotemporal 
patterns, forms and structures. According to Nicolis and 
Prigogine [7], complexity theory corresponds to the flow 
and development of space-time correlations instead of the 
fundamental local interactions. According to the classical 
point of view the physical phenomena (macroscopic or 
microscopic) must be reducible to a few fundamental 
interactions. However, since 1960 an increasing amount of 
experimental data challenging this idea has become 
available. This imposes a new attitude concerning the 
description of Nature. Moreover, according to Sornette [8], 
systems with a large number of mutually interacting parts 
and open to their environment can self-organize their 
internal structure and their dynamics with novel and 
sometimes surprising macroscopic emergent properties. 
These general characteristics make the complexity theory, a 
fundamentally probabilistic theory of the non-equilibrium 
dynamics. 
 
2.2 Complexity as a Form of Macroscopic Quanticity 
The central point of complexity theory is the possibility for a 
physical system, which includes a great number of parts or 
elements, to develop internal long-range correlations leading 
to macroscopic ordering and coherent patterns. These long-
range correlations can also appear at the quantum level. In 
particular, according to the general entanglement character 
of the Quantum theory, the quantum mechanical states of a 
system with two or more parts cannot be expressed as the 
conjunction of quantum states of the separate parts. This 
situation generally reflects the existence of non-local 
interactions and quantum correlations while the 
measurements bearing on either part correspond to random 
variables which are not independent and can be correlated 
independently with the spatial distance of the parts [9]. This 
means that the quantum density operator cannot be factored 
while the quantum state corresponds to the global and 
undivided system. The macroscopic manifestation of the 
quantum possibility for the development of long-range 
correlations is the spontaneous appearance of ordered 
behavior in a macroscopic system, examples of which are 
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phenomena like super-fluidity and superconductivity or 
lasers. 
 These quantum phenomena display coherent behavior 
involving the collective cooperation of a huge number of 
particles or simple elements and a vast number of degrees of 
freedom. They correspond also to equilibrium or 
nonequilibrium phase transition processes which constitute 
the meeting point of quantum theory and complexity. Here 
the development of quantum long- range correlations leads 
to a macroscopic phase transition process and macroscopic 
ordering. It is not out of logic or physical reality to extend 
the (unifying) possibility of quantum process to developed 
long-range correlations, according to the quantum 
entanglement character, into a macroscopic self-organizing 
factor causing also the far-from equilibrium symmetry 
breaking and macroscopic pattern formation. From this point 
of view we can characterize complexity as a form of a 
macroscopic quanticity [9]. 
 
2.3 Complexity Theory and the Cosmic Ordering 
Principle 
The conceptual novelty of complexity theory embraces all 
the physical reality from equilibrium to non-equilibrium 
states. This is stated by Castro [10] as follows: “…it is 
reasonable to suggest that there must be a deeper 
organizing principle, from small to large scales, operating 
in nature which might be based in the theories of complexity, 
non-linear dynamics and information theory in which 
dimensions, energy and information are intricately 
connected”. Tsallis non-extensive statistical theory [11] can 
be used for a comprehensive description of complex 
physical systems, as recently we became aware of the drastic 
change of fundamental physical theory concerning physical 
systems far from equilibrium.  
 The dynamics of complex systems is one of the most 
interesting and persisting modern physical problem, 
including the hierarchy of complex and self-organized 
phenomena such as: anomalous diffusion – dissipation and 
strange kinetics, fractal structures, long range correlations, 
far from equilibrium phase transitions, reduction of 
dimensionality, intermittent turbulence etc [12].  
 For complex systems near equilibrium the underlying 
dynamics and the statistics are Gaussian as they are caused 
by a normal Langevin type stochastic process with a white 
noise Gaussian component. The normal Langevin stochastic 
equation corresponds to the probabilistic description of 
dynamics related to the well-known normal Fokker – Planck 
equation. For Gaussian processes only the moments-
cumulants of first and second order are non-zero, while the 
central limit theorem (CLT) inhibits the development of long 
range correlations and macroscopic self-organization, since 
any kind of fluctuation quenches out exponentially to the 
normal distribution. Also at equilibrium, the dynamical 
attractive phase space of the distributed system is practically 
infinite dimensional as the system state evolves in all 
dimensions according to the famous ergodic theorem of 
Boltzmann – Gibbs statistics. However, according to Tsallis 
statistics, even for the case of Gaussian process, the non-
extensive character permits the development of long range 
correlations produced by equilibrium phase transition multi-
scale processes.  
 Generally, the experimental observation of a complex 
system presupposes non-equilibrium process of the physical 
system which is subjected to observation, even if the system 
lives thermodynamically near to equilibrium states. Also, 
experimental observation includes discovery and 

ascertainment of correlations in space and time, since the 
spatiotemporal correlations are related to or caused by the 
statistical mean values fluctuations. The theoretical 
interpretation and prediction of observations as spatial and 
temporal correlations – fluctuations is based on statistical 
theory which relates the microscopic underlying dynamics to 
the macroscopic observations, indentified to statistical 
moments and cumulants. Moreover, it is known that 
statistical moments and cumulants are related to the 
underlying dynamics by the derivatives of the partition 
function to the external source variables [13]. From this 
point of view, the main problem of complexity theory is how 
to extend the knowledge from thermodynamical equilibrium 
states to the far from equilibrium physical states. The non-
extensive statistics introduced by Tsallis [11], as the 
extension of Boltzmann – Gibbs equilibrium statistical 
theory, is the appropriate base for the non-equilibrium 
extension of complexity theory. The far from equilibrium 
statistics can produce the partition function and the 
corresponding moments and cumulants, in correspondence 
with Boltzmann – Gibbs statistical interpretation of 
thermodynamics. 
 The observed miraculous consistency of physical 
processes at all levels of physical reality, from the 
macroscopic to the microscopic level, as well as the 
inefficiency of existing theories to produce or to predict this 
harmony and hierarchy of structures inside structures from 
the macroscopic or the microscopic level of cosmos reveals 
the nessecity of new theoretical approaches. In this direction, 
in his book “Randomicity” T. Tsonis [14] presents a 
significant sinthesis of holistic and reductionistic (analytic) 
shientific approach. The word randomnicity includes both 
meanings: chance (randomness) and memory (determinism).   
According to the fractal generalization of dynamics and 
statistics we maintain the continuity of functions but abolish 
their differentiable character based on the fractal calculus 
which is the non-differentiable generalization of 
differentiable calculus. At the same time, the deeper physical 
meaning of fractal calculus is the unification of microscopic 
and macroscopic dynamical theory based at the space – time 
fractality [15]. Also, the space-time is related to the 
fractality – multi-fractality of the dynamical phase – space, 
which can be manifested as non-equilibrium complexity and 
self-organization.  
 After all, we conjecture that the macroscopic self-
organization connected with the novel theory of complex 
dynamics, as it can be observed at far from equilibrium 
dynamical physical states, is the macroscopic emergence of 
the microscopic complexity which can be enlarged as the 
system arrives at bifurcation or far from equilibrium critical 
points. That is, far from equilibrium the observed physical 
self-organization manifests at the globally active ordering 
principle are in priority from local interactions processes. 
We could conjecture that the concept that local interactions 
themselves are nothing else than a local manifestation of the 
universal and holistically active ordering principle, is not far 
from truth. Namely, what until now is known as 
fundamental physical laws is nothing else than the 
equilibrium manifestation or approximation of a universal 
and globally active ordering principle. This conjecture 
concerning the fractal unification of macroscopic and 
microscopic dynamics can be strongly supported by the 
Tsallis nonextensive q-statistics theory which is verified 
almost everywhere from the microscopic to the macroscopic 
level. From this point of view it is reasonable to support that 
the q-statistics and the fractal generalization of the system’s 
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dynamics is the appropriate framework for the description of 
non-equilibrium complexity. Furthermore, this 
generalization of Boltzmann – Gibbs statistical mechanics 
and Newtonian dynamics can be the base of the physical 
theory for the scientific interpretation of the behavior of 
many other physical systems as we show in this study.  
  
2.4 Chaotic Dynamics and Statistics 
The macroscopic description of complex systems can be 
approximated by non-linear partial differential equations of 
the general type: 
 

( , ) ( , )U x t F u
t

λ
∂

=
∂

r r rr r

 

(1) 

 
where ur  belongs to a infinite dimensional state (phase) 
space which is a Hilbert functional space. Among the 
various control parameters, the Reynold’s number is the one 
which controls the quiet- static or the turbulent states. 
Generally, the control parameters measure the distance from 
the thermodynamical equilibrium as well as the critical or 
bifurcation points of the system for given and fixed values, 
depending upon the global mathematical structure of the 
dynamics. As the system passes its bifurcation points a rich 
variety of spatio-temporal patterns with distinct topological 
and dynamical profiles can be emerged such as: limit cycles 
or torus, chaotic or strange attractors, turbulence, vortices, 
percolation states and other kinds of complex spatiotemporal 
structures [16]. 
 Generally chaotic solutions of the mathematical system 
(1) transform the deterministic form of this equation to a 
stochastic non-linear stochastic system: 
 

( , ) ( , )u u x t
t

λ δ
∂

=Φ +
∂

r r rr r r
 

 

(2) 

where ( , )x tδ
r r

corresponds to the random fields produced 

by strong chaoticity [17]. The variables ur  describe various 
variables which characterize economical dynamics as a field 
in the economical space, which can present different 
dynamics and phenomena. 
 These forms of the non-linear mathematical systems 
(1,2) correspond to the original version of the  new science 
known today as complexity science. This new science has a 
universal character, including an unsolved scientific and 
conceptual controversy which is continuously spreading in 
all directions of the mathematical descriptions of the 
physical reality concerning the integrability or computability 
of the dynamics. The concept of universality was supported 
by many scientists, after the Poincare’s discovery of chaos 
and its non-integrability, as is it shown in physical sciences 
in many regions of the physical sciences by the work of 
Prigogine, Nicolis, and others [16, 18]. Moreover, non-
linearity and chaos are the top of a hidden mountain 
including new physical and mathematical concepts such as 
fractal calculus, p-adic physical theory, non-commutative 
geometry, fuzzy anomalous topologies, fractal space-time 
etc [19]. These novel physical-mathematical concepts obtain 
their physical power when the physical system lives far from 
equilibrium.  
 Furthermore and following the traditional point of view 
of physical science, we arrive at the central conceptual 

problem of complexity science. That is, how is it possible 
the local interactions in a spatially distributed physical 
system can cause long range correlations or how they can 
create complex spatiotemporal coherent patterns, as the 
previous non-linear mathematical systems reveal, when they 
are solved arithmetically, or as the analysis of in situ 
observations of physical systems shows.  
This question is important for the physical complexity as 
well as for the economical complexity. The answer of the 
Complexity theory in this question is based on the principle 
that there are no fundamental laws neither processes but the 
dynamics is manifested simultaneously in all scales. This is 
the basic feature of the complex dynamics which shows the 
holistic character of the complex systems. 
For non-Gaussian processes it is possible for long range 
correlations to be developed as the cumulants of higher than 
two order are non-zero [13]. This is the deeper meaning of 
non-equilibrium self-organization and ordering of complex 
systems. The characteristic function of the dynamical 
stochastic field system is related to the partition functions of 
its statistical description, while the cumulant development 
and multipoint moments generation can be related with the 
statistical hierarchy of the statistics. For dynamical systems 
near equilibrium only the second order cumulants are non-
vanishing, while far from equilibrium field fluctuations with 
higher – order non-vanishing cumulants can be developed. 
Finally, using previous descriptions we can now understand 
how the non-linear dynamics correspond to self-organized 
states as the high-order (infinite) non-vanishing cumulants 
can produce the non-integrability of the dynamics. From this 
point of view, the linear stochastic dynamics is inefficient to 
produce the non-Gaussian, holistic (non-local) and self-
organized complex character of non-equilibrium dynamics. 
That is, far from equilibrium complex states can be 
developed including long range correlations with non-
Gaussian distributions of their dynamic variables.  
 
2.5 Strange attractors and Self-Organization  
 
In this section we present the general theory of multifractal 
structures which describe the economical dynamics in the 
state space as a multiscale process. In particular, when the 
dynamics is strongly nonlinear then far from equilibrium it 
is possible to occur strong self-organization and intensive 
reduction of dimensionality of the state space, by an 
attracting low dimensional set with parallel development of 
long range correlations in space and time. The attractor can 
be periodic (limit cycle, limit m-torus), simply chaotic 
(mono-fractal) or strongly chaotic with multiscale and 
multifractal profile as well as attractors with weak chaotic 
profile known as SOC states. This spectrum of distinct 
dynamical profiles can be obtained as distinct critical points 
(critical states) of the nonlinear dynamics, after successive 
bifurcations as the control parameters change. The fixed 
points can be estimated by using a far from equilibrium 
renormalization process as it was indicated by Chang [20]. 
From this point of view phase transition processes can be 
developed between different critical states, when the order 
parameters of the system are changing. The far from 
equilibrium development of chaotic (weak or strong) critical 
states include long range correlations and multiscale internal 
self organization. Now, these far from equilibrium self 
organized states, cause the equilibrium BG statistics and BG 
entropy, to be transformed and replaced by the Tsallis 
extension of q − statistics and Tsallis entropy. The 
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extension of renormalization group theory and critical 
dynamics, under the q − extension of partition function, free 
energy and path integral approach has been also indicated 
[11]. The multifractal structure of the chaotic attractors can 
be described by the generalized Rényi fractal dimensions: 
 

1

0

log
1 lim
1 log

N
q
i

i
q

p
D

q

λ

λ λ
=

→
=

−

∑

 

(3) 

 
where ( )i

ip
αλ: is the local probability at the location ( i ) 

of the phase space, λ is the local size of phase space and 

( )a i is the local fractal dimension of the dynamics. The 
Rényi q numbers (different from the q − index of Tsallis 
statistics) take values in the entire region ( ,−∞ +∞ ) of real 
numbers. The spectrum of distinct local pointwise 
dimensions ( )iα is given by the estimation of the function 

( )f α  defined by the scaling of the density 

( ) ( )afan −λλ ~, , where ( )daan λ,  is the number of 
local regions that have a scaling index between a  and 

daa + . This reveal ( )af  as the fractal dimension of 

points with scaling index a . The fractal dimension ( )af  
which varies with a  shows the multifractal character of the 
phase space dynamics which includes interwoven sets of 
singularity of strength a , by their own fractal measure 

( )af  of dimension [21]. The multifractal spectrum qD  of 

the Renyi dimensions can be related to the spectrum ( )af  
of local singularities in the phase space of the complex 
dynamics. 
It is also known the Renyi’s generalization of entropy 

according to the relation: 
1 log
1

q
q i

i
S P

q
=

− ∑ . 

However, the above description presents only a weak or 
limited analogy between multifractal and thermodynamical 
objects. The real thermodynamical character of the 
multifractal objects and multiscale dynamics was discovered 
after the definition by Tsallis [11] of the q − entropy related 
with the q − statistics as it is summarized in the next 
section. As Tsallis has shown Renyi’s entropy as well as 
other generalizations of entropy cannot be used as the base 
of the non-extensive generalization of thermodynamics. 
 
2.6 Universality of Tsallis non-extensive statistical 
mechanics 
 
According to Tsallis, Boltzmann-Gibbs statistical mechanics 
and standard thermodynamics do not seem to be universal. 
Tsallis extended the Boltzmann- Gibbs statistics and 
Boltzmann-Gibbs entropy to non-extensive statistical me- 
chanics and non-extensive q-entropies. The classical 
Boltzmann-Gibbs extensive thermostatistics constitutes a 
powerful tool when microscopic interactions and memory 
are short ranged and space-time is a continuous and 
differentiable Euclidean manifold. However, far from 
equilibrium these characteristics are changed as multiscale 

coupling and non-locality characteristics appear. In 
turbulence for example, the presence of long-range 
correlations imply non-local interactions between large and 
small scales as the relation between them is not local in 
space and time but functional. This indicates that small-scale 
fluctuations in each time space point depend on the large 
scale motions in the whole time-space domain and vice 
versa. Generally, the non-extensive statistical mechanics 
introduced by Tsallis rather than being just a theoretical 
construction it is relevant to many complex systems at the 
macroscopic or the microscopic level with long-range 
correlations-interactions or multifractal behavior. A crucial 
property of Tsallis entropy Sq is the pseudo-additivity for 
given subsystems A and B in the sense of factorizability of 
the microstate. 
 
2.6.1 The Highlights of Tsallis Theory. 
In our understanding, Tsallis theory, which is more than a 
simple generalization of thermodynamics for chaotic and 
complex systems or a non-equilibrium generalization of BG 
statistics, can be considered as a strong theoretical 
foundation for the unification of macroscopic and 
microscopic physical complexity. From this point of view, 
Tsallis statistical theory is the other side of the fractional 
generalization of dynamics, while its essence is merely the 
efficiency of nature for its self-organization and the 
development of long-range correlations of coherent 
structures in complex systems. 
 
2.6.2 Non-extensive entropy (Sq ) 
Any extension of physical theory is usually related to some 
special type of mathematics. Non-extensive Tsallis statistical 
theory is connected to the q-extension of exponential and 
logarithmic functions and the q-extension of a Fourier 
transform (FT) [11].  
Tsallis, inspired by multi-fractal analysis proposed that the 
BG entropy  
 

ln ln(1/ )BG i i iS k p p k p= − = < >∑
 

(4) 

 
cannot describe all of the complexity of non-linear dynamic 
systems. BG statistical theory presupposes ergodicity of the 
underlying dynamics in the system phase space. The 
complexity of dynamics is far beyond simple ergodic 
complexity and can be described by non-extensive Tsallis 
statistics based on the extended concept of q-entropy: 

( )
1

1 / 1 ln (1/ )
N

q
q i q i

i
S k p q k p

=

⎛ ⎞
= − − = < >⎜ ⎟

⎝ ⎠
∑

 
(5) 

 
For a continuous state space, we have 
 

[ ] ( )1 ( ) / 1q
qS k p x dx q⎡ ⎤= − −⎣ ⎦∫

 
 (6) 

 
For a system with short-range correlations the Tsallis q-
entropy qS asymptotically leads to BG entropy ( BGS ) 

corresponding to q = 1. For probabilistically dependent or 
correlated system A and B, it can be proven that 

( ) ( ) ( / ) (1 ) ( ) ( / )

( ) ( / ) (1 ) ( ) ( / )
q q q q q

q q q q

S A B S A S B A q S A S B A
S B S A B q S B S A B

+ = + + −

= + + −

 
 
  (7) 
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where 

{ }( )( ) A
q q iS A S p≡ , { }( )( ) B

q q iS B S p≡ ,

( / )qS B A and ( / )qS A B  are the conditional entropies of 

systems ,A B . When the systems are probabilistically 
independent, then relation (7) changes to  
 
( ) ( ) ( ) (1 ) ( ) ( )q q q q qS A B S A S B q S A S B+ = + + −

 
(8) 

  

The first part of ( )qS A B+  is additive 

( ( ) ( )q qS A S B+ ) while the second part is multiplicative 

including long – range correlations supporting the 
macroscopic ordering phenomena. According to Tsallis, if 
the correlations are either strictly or asymptotically 
nonexistent, the BG entropy is extensive, whereas qS  for 

1q ≠ is non extensive. Oppositely, for strong correlated 
states BG entropy is non-extensive while for a special q-
value qS  is extensive. 

 
2.6.3 The q- extension of statistics  
According to the Tsallis q-extension of the entropy 
principle, any stationary random variable can be described as 
the stationary solution of a generalized fractional diffusion 
equation. For metastable stationary solutions of a stochastic 
process, the maximum entropy principle of BG statistical 
theory can faithfully be described by the maximum 
(extreme) of the Tsallis q-entropy function. Extremization of 
Tsallis q-entropy corresponds to the q-generalized form of 
the normal distribution function 
 

 
2( )( ) qx x

q q qp x A e ββ − < >=     (9) 

 

where Aq = (q−1) / πΓ(1/ (q−1)) / Γ((3− q) / [2 / (q−1)])  for 

1q > , 
and (1 ) / ((5 3 ) / [2(1 )]) / ((2 ) / (1 ))qA q q q q qπ= − Γ − − Γ − −  

for 1q < , ( )zΓ being the Riemann function. 
The q-extension of statistics also includes q-extension of the 
central limit theorem, which can faithfully describe non-
equilibrium long-range correlations in a complex system. 
The normal central limit theorem concerns Gaussian random 

variables ( )ix  for which the sum  
1

N

i
i

Z x
=

=∑  gradually 

tends to a Gaussian process as N → ∞, while its fluctuations 
tend to zero, in contrast to the possibility of non-equilibrium 
fluctuations with long-range correlations. Using the FT q-
extension, we can prove that q-independence means 
independence for q = 1 (normal central limit theorem), but 
for 1q ≠ it means strong correlation (q-extended central 

limit theorem). In this case ( 1q ≠ ), the number of allowed 

states 
1 2 . . . NA A AW + + +   in a system composed of 

1 2( , ,. . . , )NA A A  subsystems is expected to be less than 

1 2 ... 1N i

N
A A A i AW W+ + + ==Π  where 

1 2
, ,. . . ,

NA A AW W W  are 

the possible states of the subsystems. This means self 
organization of dynamics for q ≠ 1 and development of long 
range correlations in space and time. 
 
 
3. Extended Algorithm of Nonlinear analysis of 
economical data 
 
In general, far from equilibrium spatially extended 
dissipative physical systems reveal self organized 
complexity and chaotic dynamics or other complex 
dynamics at the edge of chaos, as well as non–equilibrium 
statistical profile according to Tsallis non–extensive 
statistical theory [11]. The attempt to understand the 
complex deterministic motion of spatially extended 
nonlinear dissipative systems, so–called spatiotemporal 
chaos (STC), is at the forefront of research in nonlinear 
dynamics. In contrast to simple chaotic systems in the time 
domain, in which few degrees of freedom are nonlinearly 
coupled, spatially extended systems include an infinite 
number of spatially distributed degrees of freedom. 
Spatiotemporal chaos involves intermediate situations 
between chaos and turbulence or to fully developed 
turbulence when the system is sufficiently confined. In these 
states it is possible to characterize the dynamics from a local 
time series alone estimating fractal dimensions, or Lyapunov 
exponents in the reconstructed phase space. Moreover, 
defect turbulence and intermittent turbulence, self organized 
criticality (SOC), avalanche threshold dynamics, spinodal 
and nucleation phenomena and far from equilibrium phase 
transition, Tsallis entropies and non–Gaussian fluctuations 
as well as diffusion or Levy motion, are some of the 
different manifestations of spatiotemporal complexity and 
multiscale – multifractal phenomena that must be studied 
using nonlinear signal analysis [22-24]. 
 The universal economical system includes local sub-
systems and therefore can be regarded as a complex 
spatiotemporal distributed system. From this point of view, 
we can study the spatiotemporal dynamics of an economical 
system with the same way that we study the physical 
complex distributed systems. In this paragraph we present a 
possible algorithm of nonlinear time series analysis of 
economical data.  
 
3.1. Analysis at the domain of time  
(a) Autocorrelation Coefficient and Power Spectrum (Linear 
correlations, periodicities, scaling laws) 
(b) (Mutual Information (Linear and Nonlinear Correlations) 
(c) Probability Distributions (Power Laws) 
(d) Hurst exponent (Persistence, anti-persistence, white 
noise) 
(e) Flatness Coefficient F (Intermittent turbulence) 
(f) Structure Functions (Turbulence, anomalous diffusion) 
(g) Phase portrait (Low Dimensionality) 
(h) Entropy, energy, multifractal structures 
(i) Estimation of q-Tsallis Statistics 
(j) Wavelet analysis (Spatiotemporal structures) 
 
3.2  Computation of Geometrical characteristics in the 
reconstructed state space  
(a) Correlation Dimension (Degrees of freedom) 
(b) Generalized Dimension (Multifractals) 
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(c) False Neighbors (Degrees of Freedom) 
(d) Singular values spectrum (SVD components, filtering) 
 
3.3 Computation of Dynamical Characteristics in the 
reconstructed state space 
(a) Maximum Lyapunov Exponent (Sensitivity in initial 
conditions) 
(b) Power Spectrum of Lyapunov Exponents (Sensitivity in 
initial condi- 
tions in all dimensions in space state) 
(c) Nonlinear modeling and nonlinear prediction algorithms 
 
3.4 Testing of Null Hypothesis in order to discriminate 
between low dimensional chaotic dynamics and linear 
high dimensional stochastic dynamics 
(a) Surrogate data 
(b) Discriminating statistics 
 
3.5 Singular Value Analysis 
(a) Estimate Degrees of Freedom 
(b) Filter signals from White or Colored Noise 
(c) Search for input-output dynamics 
 
3.6 Recently in the above algorithm significant new tools 
were added 
(a) Fuzzy analysis of time series 
(b) Cellular automata, genetic algorithms and neural network 
modeling 
(For spatiotemporal modeling and prediction of complexity) 
 
 
4. Tsallis q-triplet of economical data and theoretical 
framework  
 
Iliopoulos et al. [25] estimated statistical features of two 
time stock market time series, Standart & Poor’s 500 (S & 
P) 500 and TVIX, based on the previously described 
algorithm and on Tsallis statistics. In summary, the results 
showed that the statistics of the dynamics in the multifractal 
phase space can be described by Tsallis distribution 
functions of power law and heavy tails forms, related to the 
existence of long range interactions in space and time, as 
well as the interaction in many scales. In addition, the 
existence of non-equilibrium phase transitions were found 
depicted clearly in the variations of Tsallis q-triplet values, 
which correspond to multi-fractal changes in the formation 
of the phase state and an alteration in the phenomenology of 
the economical system. Finally, the results revealed that 
underline the inefficiency of classical statistical theories 
based on the classical central limit theorem to explain the 
complexity of the economic system dynamics, since these 
theories include smooth and differentiable spatial-temporal 
functions or Gaussian statistics (Boltzmann-Maxwell 
statistical mechanics). On the contrary, the results of this 
study indicate the presence of non-Gaussian non-extensive 
statistics with heavy tails probability distribution functions, 
which are related to the q-extension of central limit theorem. 
The afore mentioned results can be better understood in the 
framework of modern theoretical concepts concerning non-
extensive statistical mechanics [11], fractal topology [26], 
turbulence theory [27], strange dynamics [15], percolation 
theory [28], anomalous diffusion theory and anomalous 
transport theory [29-30], fractional dynamics [31] and non-
equilibrium RG theory [20].  
 

4.1 The q-extension of Central Limit Theorem (CLT) 
and the q-triplet of Tsallis 
 
The results of this study showed clearly the non-extensive 
character of the economical system and the multi-scale 
strong correlations from the microscopic to the macroscopic 
level indicating the inefficiency of classical statistical 
theories, based on the classical CLT, to explain the 
complexity of the economical system dynamics. According 
to the classical CLT the probability density function of a 
sum of independent random variables is Gaussian, even 
when the single variables have long range tails. However, 
the non-Gaussian with heavy tails probability distribution 
functions, which were observed in the economical system  
statistics, are related to the q-extension of CLT. 
 Tsallis non-extensive statistical mechanics includes the 
q-generalization of the classic CLT as a q-generalization of 
the Levy – Gnedenko central limit theorem. Umarov et al. 
[32] applied for globally correlated random variables. The q-
generalization of CLT based at the q-Fourier transform of a 
q-Gaussian can produce an infinite sequence (qn) of q-

parameters by using the function
1( )
3
sZ s
s

+
=

−
, 

( ,3)s∈ −∞ and its inverse 1( ), ( 1, )z t t− ∈ − ∞ . It can be 

shown that (1/ ( )) 1/z z s s= and 1(1/ ) 1/ ( )z s z s−= , 

as well as if 1 ( )q z q=  and 1
1 ( )q z q−

− =  it follows that: 

1

1 1 1 1,
1

z z
q q q q
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟ −⎝ ⎠⎝ ⎠
 and 1

1

1 2q
q− + = .  

 The q-generalization of the CLT consistent with non-
extensive statistical mechanics is as follows: 
For a sequence ,kq k∈¢ with [1,2]kq ∈ and a sequence 

1 2, , ,. . .Nx x x of kq -independent and identically 
distributed random variable then the 

1 2 . . .n Nz x x x= + + + is also a 1kq − -normal distribution 

as N →∞ , with corresponding statistical attractor 

1
( )

k jq kG xβ
−

. 

 The q-independence corresponds to the relations: 
 
( )( ) [ ]( ) [ ]( )q q q qF x y F x F yξ ξ ξ+ = ⊗                 (10) 

 

1 1( )( ) [ ]( ) [ ]( )q q q qF x y F x F yξ ξ ξ− −+ = ⊗           (11) 

 
where 1( )q z q−= . The q-independence means 

independence for 1q =  and strong correlation for 

1q ≠ [11]. 
The q-CLT states that an appropriately scaled limit of sums 
of qk correlated random variables is a −−1kq Gaussian, 

which is the *
kq -Fourier image of a   *

kq - Gaussian. The qk , 
*
kq are sequences: 

 
2 (1 )
2 (1 )k
q k qq
k q
+ −

=
+ −

 and  
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*
1k kq q −=       (12) 

 
for 0, 1, 2,...k = ± ±     
 
including the triplet (Patt, Pcor, Pscl), where Patt, Pcor and Pscl 
are parameters of attractor, correlation and scaling rate 
respectively and corresponds to the q-triplet (qsens, qrel, qstat) 
according to the relations[32] : 
 

1 1( , , ) ( , , ) ( , , )att cor scl k k k sens rel statP P P q q q q q q− +≡ ≡  
       (13) 
 
The parameter 1att sens kP q q −≡ ≡ describes the non-
ergodic q-entropy production of the multiscale correlated 
process as the system shifts to the state of the qatt – Gaussian, 
where the q-entropy is extremized in accordance with the 
generalization of the Pesin’s theorem [11]: 

( ( )) /
lim lim lim q i

qsen qsent W M

S P t k
K

t
λ

→∞ →∞ →∞
≡ =   (14) 

 
The parameter cor rel kP q q≡ ≡ describes the q-correlated 
random variables participating to the dynamical process of 
the q-entropy production and the relaxation process toward 
the stationary state.  
The parameter 1slc stat kP q q +≡ ≡ describes the scale 
invariance profile of the stationary state corresponding to the 
scale invariant q-Gaussian attractor as well as to an 
anomalous diffusion process mirrored at the variance scaling 
according to general, asymptotically scaling, from: 
 

( ) ~ ( )D
x D

xN P x G
N

     (15) 

 
Where ( )xP x is the probability function of the self similar 
statistical attractor G and D is the scaling exponent 
characterizing the anomalous diffusion process [33]: 
 

2 2~ Dx t       (16) 

 
The non-Gaussian multi-scale correlation can create the 
intermittent multi-fractal structure of the phase space 
mirrored also in the physical space multi-fractal distribution 
of the turbulent dissipation field. The multi-scale interaction 
at critical non-equilibrium steady states (NESS) creates the 
heavy tail and power law probability distribution function 
obeying the q-entropy principle. The singularity spectrum of 
a critical NESS corresponds to extremized Tsallis q-entropy. 
In this framework of theoretical modeling of distributed 
random fields, the fractal – multifractal character of the 
economical system at every NESS as it was shown in this 
study, indicate the existence of physical local singularities 
for the spatial-temporal distribution of  economical system 
variables. The singularity behavior of a given random field 
function ( )f x at a given point x* is defined as the greatest 
exponent h so that f is Lipschitz h at x* [34].  The Hölder 
exponent h(x*) measures how irregular f is at the point X* 
according to the relation: 

 

* *( ) ( ) hf x P x x C x x− − ≤ −     (17) 

 
The smaller the exponent h(x*) is the more irregular 
(singular) is the function f at the point x*. On a self similar 
fractal set the singularity strength of the measure µ at the 
point x is described by the scaling relation: 

   

 ( )

( )

( ( )) ( ) ~
x

a x
xB d y

ε

µ ε µ ε
Β
∫;   

  (18) 
Where  ( )xB ε  is a ball of size (ε) centered at x and 

( )xBµ is the fractal mass in the Bx region. Homogeneous 
measures are characterized by a singularity spectrum 
supported by a single point (a0, f(a0)) while multifractal sets 
involve singularities of different strengths (α) described by 
the singularity spectrum f(α).  
The singularity spectrum is defined as the Hausdorff 
dimension of the set of all points x such that ( )a x a= . 

The singularity strength ( )a x of the fractal mass measure is 
related to the local fractal dimension of the fractal set. More 
generally, the singularity spectrum associated with 
singularities h (Hölder exponents) of a distributed random 
variable is given follows: 

 

{ }( ) : ( )HD h d x h x h= =     (19) 

 
That is D(h) is the Hausdorff dimension of the set of all 
points x such as h(x)=h. For the economical system the 
singularity spectrum D(h) corresponds to the scaling 
invariance of the  description according to the scaling 
transformation of the  equations: 

 
1

' '' , ,h h
r r r rr r u u b bλ λ λ− − −→ → →                  (20) 

 
where h is a free parameter and ,r ru b are variables (e.g ur is 
“velocity” and br is “field”) of the economical system. The 
( )h x singularity exponent of the fractal mass measure and 

the F(α) singularity spectrum describe the scaling of the 
“energy” dissipation in the turbulent economical system. 
 
4.2 Fractional Calculus 
 
The fractal-multifractal structure of the economical 
system  indicates the generalization of the  dynamical 
differential equations for the description of the 
economical  dynamics to the fractional dynamics of 
the economical system, since the functions of the distributed 
physical system’s variables are irregular and they are 
produced by fractional dynamics on fractal structures. The 
differentiable nature of magnitudes with smooth 
distributions of the macroscopic picture of the economical 
processes is a natural consequence of the Gaussian 
microscopic randomness which, through the classical CLT, 
is transformed to the macroscopic, smooth and differentiable 
processes.  The classical CLT is related to the condition of 
microscopic and macroscopic time-scale separation, where 
at the long-time limit the memory of the microscopic non-
differentiable character is lost. On the other hand, the q-
extension of CLT induces the nonexistence of time-scale 
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separation between microscopic and macroscopic scales as 
the result of multiscale global correlations which produce 
fractional dynamics and singular functions of spatio-
temporal dynamical economical variables. 
Fractal sets are measurable metric sets with non-integer 
Hausdorff dimension. The elements of a fractal set can be 
represented by n-tuples of real numbers 

1 2( , ,..., )nx x x x= such that a fractal set F is embedded in 
Rn.  A fractal function is defined on a fractal set as follows: 
 

1
( ) ( )

ii E
i

f x X xβ
∞

=

=∑     (21) 

 
where XE is the characteristic function of E. The continuous 
function f(x) is defined as follows: 
lim ( ) ( )
x y
f x f y

→
= whenever ( , ) 0

x y
d x y

→
= for the metric 

( , )d x y defined in Rn and for points ( , )x y f∈ .The 

Hausdorff measure Hµ of a subset E F∈ is defined by: 
 

{ }( ) 0 1
( , ) ( ) lim inf ( )

i i

D
H id E E i
E D W D d Eµ

∞

→
=

= ∑  (22) 

 
 Where 1i iE U E∞

=⊂ , D is the Hausdorff dimension of 

E U⊂ , d(Ei) are the diameters of { }iE and W(D) for 

balls { }iE covering F is given by 

 

( )
2 2( )
12

D D

W D
D

−Π
=
Γ +

                            (23) 

 
 The Lebesque – Stieltjes integral over a D-dimensional 
fractal set of a function f(x) is defined by  
 

1
( )i H i

iF

fd Eµ β µ
∞

=

≡∑∫                     (24) 

 
 

And it can be proved to be given by the relation: 
 

( ) ( )
22 ( )

2

D
D

H o
F

Dfd I f
D

µ
Π Γ

=
Γ

∫                   (25) 

 
 Where 

( ) 11( ) ( ') ( ') '
( )

a a
z x

z

I f z x x f x dx
a

∞
−≡ −

Γ ∫ is the 

Riemann Liouville fractional integral [31]. The last relation 
connects the integral on fractals with fractional integrals and 
permits the application of different tools of the fractional 
calculus for the fractal medium. Respectively to the 
Riemann Liouville fractional integral on a fractal set F we 
can define the Riemann Liouville fractional derivative by  
 

1

1 ( ')( ) '
( ) ( ')

xn
a

z x n a n
z

f xD f x dx
n a x x x − +

∂
=
Γ − ∂ −∫  

1n a n− < <      (26) 
 

The nonlocal character is evident in both cases of fractional 
derivative and integral on a fractal set. The nonlocal 
character of fractional calculus is related to multiscale and 
self-similar character of the fractal structure. The fractional 
extension of integral and differential calculus can be used 
for the description of the non-local multiscale phenomena 
described by fractional  Equations, or the fractional fractal  
states, or the fractional Fokker-Planck Equation (fFPE) of 
fractal media [31]. The solution of the fractional equations, 
correspond to fractional non-differentiable singular self-
similar functions as we can observe at the experimental data. 
Generally, fractional differential integral equations have as 
solutions non-differentiable (singular) spatio-temporal 
distribution functions of physical magnitudes.  
  
4.3 Anomalous diffusion and strange dynamics  
 
In this section we present the significant phenomenon of 
anomalous diffusion. Normal diffusion is connected to 
Gaussian dynamics, while the results obtained by the 
nonlinear time series analysis of economical time series 
showed non-Gaussian statistics. Thus, it is reasonable to 
consider that the stochastic dynamics of economics can be 
related to anomalous diffusion, which generates long range 
correlations described by the maximization of Tsallis 
entropy and to Boltzmann – Gibbs – Shannon entropy. In 
addition, as in physical turbulence phenomena, in economics 
we can also have phenomena of symmetry scaling which 
produce the self-organized character of the economical 
complexity.   
 In particular, nonlinear dynamics can create fractal 
structuring of the phase space and global correlations in the 
nonlinear system. For non-extensive systems the entire 
phase space is dynamically not entirely occupied (the system 
is not ergodic), but only a scale-free –like part of it is visited 
yielding a long-standing (multi)-fractal-like occupation. 
According to [35] Tsallis entropy can be rigorously obtained 
as the solution of a nonlinear functional equation referred to 
the spatial entropies of the subsystems involved including 
two principal parts. The first part is linear (additive) and 
leads to the extensive Boltzman-Gibbs entropy. The second 
part is multiplicative corresponding to the non-extensive 
Tsallis entropy referred to the long range correlations. The 
fractal –multifractal structuring of the phase space makes the 
effective number Weff of possible states, namely those whose 
probability is nonzero, to be smaller (Weff  < W) than the 
total number of states. This is the statistical manifestation of 
self-organization process. 
 According to [15] the topological structure of phase 
space of nonlinear dynamics can be highly complicated 
including trapping and flights of the dynamics through a 
self-similar structure of islands. The island boundary is 
sticky making the dynamics to be locally trapped and 
“stickiness”. The set of islands is enclosed within the infinite 
fractal set of cantori causing the complementary features of 
trapping and flight being the essence of strange kinetics and 
anomalous diffusion.  
 The dynamics in the topologically anomalous phase 
space corresponds to a random walk process which is scale 
invariant in spatial and temporal self-similarity transform: 
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ˆ : ' , 'tR t t ξλ ξ λ ξ→ =                           (27) 

 
 The spatial-temporal scale invariance causes strong 
spatial and temporal correlations mirrored in singular self-
similar temporal and spatial distribution functions which 
satisfy the fractional generalization of classical Fokker-
Planck-Kolmogorov equation (FFPK – equation) [15]: 
 

2

2

1( ) ( )
( ) 2 ( )

P AP BP
t

β α α

β α αξ ξ
∂ ∂ ∂

= +
∂ ∂ − ∂ −

 (28) 

 
 Where ( , )P P tξ≡ is the probability density of the 
state (ξ) at the time (t). The critical components (α, β) 
correspond to the fractal dimensions of the spatial-temporal 
non-gaussian distributions of the spatial-temporal functions-
processes or probability distributions. The quantities A, B 
are given by  
 

2

0 0
lim , lim

( ) ( )t t
A

t t

α α

β β

ξ ξ

Δ → Δ →

Δ Δ
= Β =

Δ Δ
             (29) 

 
where <<…>> denotes a generalized convolution operator 
[15].  
 The FFPK equation is an archetype fractional equation 
of fractional stochastic dynamics in a (multi)-fractal phase 
space with fractal temporal evolution caused by the self 
similar and multiscale structure of islands around islands, 
responsible for the flights and trappings of the dynamics. 
The “spatial” random variable can be any physical variable 
at a certain position in physical space etc, underlying to the 
nonlinear chaotic dynamics. The fractional dynamics 
includes fractal distribution of variables, as well as fractal 
distribution of “energy” dissipation field.  
 The fractional temporal derivative / tβ β∂ ∂ in 
equations allows one to take fractal-time random walks into 
account, as the temporal component of the strange dynamics 
in fractal-turbulent media. The waiting times follow the 
power law distribution (1 )( ) ~P βτ τ − + since the “Levy 
flights” of the dynamics also follow the power law of 
distribution.  
 The asymptotics (root mean square of the displacement) 

of the transport process is given by 
2 2 tµξ = D , while 

the generalized transport coefficient µ  depends on the 

values of the fractal coefficients ( )βα, , according to the 

relation 
β

µ
α

=  [29]. 

 The solution of the fractal kinetic equation corresponds 
to Levy distributions and asymptotically to Tsallis q-
Gaussians. The set of points visited by the random walker 
can reveal a self-similar fractal structure produced by the 
extremization of Tsallis q-entropy. The q-Gaussian 
distribution of the fractal structure created by the strange 
dynamics and the extremized q-entropy asymptotically 
corresponds to the Levy distribution 1( ) ~P γξ ξ − − where 
the q-exponent is related to the Levy exponent γ by 

3
1

q γ
γ

+
=

+
. The Levy exponent γ corresponds to the fractal 

structure of the points visited by the random walker. 
According to [11] the fractal extension of dynamics includes 
simultaneously the q-extension of statistics as well as the 
fractal extension RNG theory in the fractional Fokker-
Planck-Kolmogorov Equation (FFPK).    
 As far as the economical system dynamics is concerned, 
the ( )ξ  variable in equation (28) could correspond to any 

variable of the economical system, while ( )tP ,ξ  describes 
the probability distribution of the economical variable. The 
variables A(ξ), B(ξ) corresponds to the first and second 
moments of probability transfer and describe the wandering 
process in the fractal space (phase space) and time. The 
fractional space and time derivatives / , /t xβ β α α∂ ∂ ∂ ∂  
are caused by the multifractal (strange) topology of phase 
space which can be described by the anomalous phase space 
renormalization transform [36]. We must notice here that the 
multifractal character of the turbulent field in the physical 
space is the mirroring of the phase space strange topology in 
the spatial multifractal distribution of the dynamical 
variables. 
 The q-statistics of Tsallis corresponds to the meta-
equilibrium solutions of the FFPK equation [37]. Also, the 
metaequilibrium states of FFPK equation correspond to the 
fixed points of Chang non-equilibrium RNG theory for state 
space [15, 20]. The anomalous topology of phase space 
dynamics includes inherently the statistics as a consequence 
of its multiscale and multifractal character.  
 From a wider point of view the FFPK equation is a 
partial manifestation of a general fractal extension of 
dynamics. According to [37], the Zaslavsky’s equation can 
be derived from a fractional generalization of the Liouville 
and BBGKI equations. The fractal extension of dynamics is 
based on the fact that the fractal structure of the spatially 
distributed system can be replaced by a fractional continuous 
model. In this generalization the fractional integrals can be 
considered as approximations of integrals on fractals. Also, 
the fractional derivatives are related to the development of 
long range correlations and localized fractal structures.  
 
4.4 Fractal topology, critical percolation and stochastic 
dynamics 
In the following we present the theory of [38] concerning 
fractal topology and topological phase transitions, which can 
describe the economical complexity as is manifested in the 
phase space. This theory is a general description of random 
fields in the physical as well as in the phase space. In 
particular, we present some basic concepts concerning 
topological aspects of percolating random fields, which can 
be used in order to shed light to the complex and non-
extensive character of the  economical system. 
 For any random field distribution ( )xψ

r
in the n-

dimensional space (En) there exists a critical percolation 
threshold which divides the space En into two topological 
distinct parts: Regions where ( ) cx hψ <

r
marked as 

“empty”, and regions where ( ) cx hψ >
r

, marked as 

“filled”. When ( ) cx hψ ≠
r

, one of these parts will include 
an infinite connected set which is said to percolate. As the 
threshold h changes we can find the critical threshold hc 
where the topological phase transition occurs, namely the 
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non-percolating part starts to percolate. The random field 
may be a spatial distribution of physical random magnitudes 
or it can correspond to the random distribution of physical 
properties in the phase space of the underlying dynamics. 
The geometry of the percolating set at the critical state 
( ch h→ ) is a typical fractal set for length scales between 
microscopic distances and percolation correlation length 
which diverges. The statistically self-similar geometry 
includes power-law behavior of the “mass” density of the 
fractal set such as “fractal mass density” ~ xD-n , where x is 
the length scale, D is the Hausdorff fractal dimension which 
must be smaller than the dimensionality (n) of the 
embedding Euclidean space. In addition to the parameter D 
of the fractal dimension, there is the index of connectivity θ 
which describes the “shape” of the fractal set and may be 
different for fractals even with equal values of the fractal 
dimension D. The index of connectivity θ is defined as 
characterizing the shortest (geodesic) line connecting two 
different points on the fractal set by the relation 

(2 ) 2dθ θ= + , where dθ is the minimal Hausdorff 
dimension of the minimal (geodesic) line for all possible 
homeomorphisms that transform the fractal F into a fractal 
F΄. The geodesic line on a self-similar fractal set (F) is a self 
affine fractal curve whose own Hausdorff fractal dimension 
is equal to (2 ) 2θ+ . The index of connectivity plays an 
essential role in many dynamical phenomena on fractals, 
while it is a topological invariant of the fractal set F. 
From the fractal dimension D and the connectivity index θ 

we can define a hybrid parameter 
2
2s
Dd
θ

=
+

which is 

known as the spectral or the fracton dimension which 
represents the density of states for vibrational excitations in 
fractal network termed as fractons. The root mean square 
displacement of the random walker on the fractal set is given 
by 
 

2 2/2 1/~ d dt tθ θξ + =     (30) 

 
 Where dθ is the fractal dimension of the self-affine 
trajectory on the fractal set. Also, the spectral dimension 
which measures the probability of the random walker to 
return to the origin, is given by 
 

2( ) ~
sd

P t t
−

     (31) 
 
while the Hausdorff fractal dimension D is a structural 
characteristic of the fractal structure F, the spectral 
dimension ds mirrors the dynamical properties such as wave 
excitation, diffusion etc. The fractal dimension fd  of the 

fractal structure F of a percolating random field distributed 
in the En Euclidian space is given by /fd n β ν= − , 

where β, ν are the universal critical exponents of the critical 
percolation state. According to the Alexander-Orbach (AO) 
conjecture [28], the spectral dimension ds has been 
established to be equal to the value ds=4/3, for all embedding 
dimensions 2n ≥ . Especially, for embedding dimensions 
2 5n≤ ≤ , [28] has improved the AO conjecture to the 

value 1,327sd C= ; where C is the percolation constant. 
This constant determines the minimal fractional number of 
the degrees of freedom that the random walker must have to 
reach the infinitely remote point in the Euclidian embedding 
space En.  
 At the percolation threshold the probability P  that the 
lattice sites are occupied approach the value cP  ( )cPP→  

while the percolation correlation length ξ  diverges as 
ν

ξ
−

− cPP~ . For cPP >  the probability to belong to 

the infinite cluster is ( ) ( ) ν
β

β ξ
−

∞ − ~~ cPPPP  

whereas the dc  conductivity behaves as 

( ) ν
µ

µ ξσ
−

− ~~ cdc PP . The critical exponents 

( )µνβ ,,  are universal independent of the type of the 
percolation problem, depending only on the ambient 
dimensionality n  (lattice embedding dimension in the 

Euclidean space nR ). The “mass” ( )M  of a connected 
cluster of the percolation set scales as 

( ) ν
β

ξξ
−

∞

nn PPM ~~  leading to the nontrivial 

Hausdorff dimension fd n β
ν= − . The connectivity index 

θ in the case of a fractal percolating set is given by the 

relation ( )µ β
θ ν

−
= , while the anomalous diffusion of a 

random walker on a connected percolation cluster is 
described by average traveled distance 
 

( ) θ+>< 2
22 ~ ttr                                                            (32) 

 
 The averaging over all connected percolation clusters 
replaces the previous relation by  
 

( )
( )

θ
νβ

+
−

>< 2
/2

2 ~ ttr                                                (33) 
 

 The fractional equations,  equations, include fractional 
time derivatives  
 

( )
( ) ( )( ) ( )1

0

1 '... ...
'

tm

m m

dt
t m t t t

β

β ββ + −

∂ ∂
=

∂ Γ − ∂ −
∫     (34) 

 
and space derivatives:  
 

( )
( ) ( )

( )∫
∞− −∂

∂

−Γ
=

∂

∂ ix

a
ii

i

i
a
i

a

xx
dx

xax
...

1
1...

'

'

                (35) 

 
[26]. 
 The parameter ( )β  has the meaning of the fractal 

dimension of an “active” time while the parameter ( )α  is 
related to the spatial fractal dimension in the percolating 
fractal system. In this way, the fractal dimension fd  and 

connectivity index (θ) of dynamical field’s distribution is 
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self-consistently related to the fractal dimension ( )+fd  and 

the index of connectivity (θ+) of  fields. 
 
4.5 The  economical system self-organizing complexity 
According to the experimental data analysis results 
presented previously and the theoretical framework of 
fractional dynamics  the economical system  is a globally 
hierarchical, self-similar and scale invariant physical system 
including nonlinear and non-local internal fractional 
dynamics, maintaining the hierarchical structure of the 
turbulence. Tsallis q-entropy principle included in his non-
extensive statistical mechanics can reliably explain the 
economical system self-similar hierarchical turbulent 
structuring and phase transition processes presented in this 
study. According to [39], the Tsallis entropy principle can 
explain the spatial distribution of multifractal and 
intermittent  economical system turbulent field. 
 The economical system, as any other system which lives 
far from equilibrium, can reveal metaequilibrium stationary 
states NESS as critical percolation states. These 
nonequilibrium states, similar to Boltzmann-Gibbs 
thermodynamical equilibrium states, can be produced as the 
system tends to obtain extremization of Tsallis q-entropy 
(Sq).  The internal mechanism for this is the anomalous 
diffusion process in the physical space or the anomalous 
random walk in a hierarchical and multifractal structured 
phase space. The dynamics in the multifractal phase space is 
described by the fractional Langevin and the corresponding 
FFPK equations applied for variables of the economical 
system.  
 Moreover we conjecture that the metaequilibrium 
stationary states can be obtained also as the fixed points of a 
fractional renormalization flow equation in a fractal 
parameter space. This concept is the extension of the 
Chang’s stochastic dynamics and renormalization group 
theory for space state [20]. Furthermore, the hierarchical, 
self-similar, multiscale and multifractal structure of the 
economical system  at critical percolation and intermittent 
turbulent states can be obtained by the solution of the 
fractional  Langevin equation and its corresponding FFBK 
equation, through N-point integral formulation. According to 
this theoretical modeling of economical system, we can 
estimate correlation functions related to the functional 
derivative of the q-partition function Zq defined in the 
framework of non-extensive Tsallis statistical mechanics-
thermodynamics [11]. In the following we present a more 
analytical sketch of these concepts. 
 
4.6 Renormalization Group (RNG) theory and phase 
space transition 
In this paragraph we present the renormalization theory of 
Chang which concerns with the multiscale and non-
equilibrium behavior of non linear stochastic systems, which 
can be the mathematical basis for the understanding of 
economical crises as phenomena of phase transitions of the 
stochastic economical dynamics.     
 The results obtained by [25]  justify the application of 
RNG theory for the description of the  economical system 
scale invariance and the development of long – range 
correlation of the space  intermittent turbulence state. 
Generally, and according to [20] the state space can be 
described by generalized Langevin stochastic equations of 
the general type:  
  

( ) ( ), , ,i
i if x t n x t

t
ϕ

ϕ
∂

= +
∂

r r r
      1,2,...i =    (36) 

 
 Where if   corresponds to the deterministic process 

concerning the dynamical variables ( , )x tφ
r

 and in  to the 

stochastic components (fluctuations). Generally, if  are 
nonrandom forces corresponding to the functional derivative 
of the free energy functional of the system. According to 
[20] the behavior of a nonlinear stochastic system far from 
equilibrium can be described by the density functional P ,  
defined by path integration of the system’s stochastic 
Lagrangian 
 

P
!
ϕ
!
x,t( )( ) =

D
!
x( )∫ exp −i ⋅ L !

"
ϕ , !ϕ , !x( )d!x∫{ }dt

 (37) 

 

where L !ϕ ,ϕ ,x( )  is the stochastic Lagrangian of the 

system,  which describes the full dynamics of the stochastic 
system. Moreover, the far from equilibrium renormalization 
group theory applied to the stochastic Lagrangian L 
generates the singular points (fixed points) in the affine 
space of the stochastic distributed system. At fixed points 
the system reveals the character of criticality, as near 
criticality the correlations among the fluctuations of the 
random dynamic field are extremely long-ranged and there 
exist many correlation scales.  Also, close to dynamic 
criticality certain linear combinations of the parameters, 
characterizing the stochastic Lagrangian of the system, 
correlate with each other in the form of power laws and the 
stochastic system can be described by a small number of 
relevant parameters characterizing the truncated system of 
equations with low or high dimensionality.  
 According to these theoretical results of Chang’s theory, 
the stochastic economical system can exhibit low 
dimensional chaotic or high dimensional SOC like behavior, 
including fractal or multifractal structures with power law 
profiles. The power laws are connected to the near criticality 
phase transition process which creates spatial and temporal 
correlations as well as strong or weak reduction (self-
organization) of the infinite dimensionality corresponding to 
a spatially distributed system. First and second phase 
transition processes can be related to discrete fixed points in 
the affine dynamical (Lagrangian) space of the stochastic 
dynamics. The SOC like behavior of dynamics corresponds 
to the second phase transition process as a high dimensional 
process at the edge of chaos. The process of strong and low 
dimensional chaos can be related to a first order phase 
transition process. The probabilistic solution of Eq. (36) of 
the generalized Langevin equations may include Gaussian or 
non-Gaussian processes as well as normal or anomalous 
diffusion processes depending upon the critical state of the 
system. 
 From this point of view, a SOC or low dimensional 
economical system, intermittent chaos or distinct q-
statistical states with different values of the Tsallis q-triplet 
depends upon the type of the critical fixed (singular) point in 
the functional solution space of the system. When the 
stochastic system is externally driven or perturbed, it can be 
moved from a particular state of criticality to another 
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characterized by a different fixed point and different 
dimensionality or scaling laws. Thus, the old SOC theory 
could be a special kind of critical dynamics of an externally 
driven stochastic system. After all, in an economical system, 
SOC and low dimensional chaos can coexist in the same 
dynamical system as a process manifested by different kinds 
of fixed (critical) points in its solution space. Due to this 
fact, the economical system dynamics may include high 
dimensional SOC process or low dimensional chaos or other 
more general dynamical process corresponding to various q-
statistical states.  
 The non-extensive character of the economical system 
related to q-statistical metaequilibrium thermodynamics as 
well as the existence of long-range correlations has to be 
harmonized with the nonlinear dynamics of the economical 
system. The experimental results of this study press us to 
look for a dynamical mechanism efficient to explain the 
spontaneous development of the long-range correlations and 
reduction of the infinite degrees of freedom corresponding to 
the distributed character of the economical system. This is 
the base for the development of anomalous diffusion 
processes, long-range correlations and scale invariance 
which can be amplified as the system approaches far from 
equilibrium dynamical critical points. Also, it is known that 
nonlinear dissipative dynamics with finite or infinite degrees 
of freedom includes the possibility of self-organizing 
reduction of the effective degrees of freedom and bifurcation 
to periodic or strange (chaotic) attractors with spontaneous 
development of macroscopic ordered spatiotemporal 
patterns. The bifurcation points of the nonlinear dynamics, 
corresponds to the critical points of far from equilibrium 
non-classical statistical mechanics and its generalizations, as 
well as to the fixed points of the renormalization group 
theory (RGT). The RGT is based in the general principle of 
scale invariance of the physical processes as we pass from 
the microscopic statistical continuum limit to the 
macroscopic thermodynamic limit.  
 According to [41] the dynamics of  system as it 
approaches the critical points includes a cooperation of all 
the scales from the microscopic to macroscopic level. The 
multiscale and holistic dynamics can be produced by scale 
invariance principle included in the RG transformation 
corresponding to the flow:  
 

( ) ( )1 0...n n n
l lK R K R K−= = = ⋅

r r r
0,1,2...n = ,                

       (38) 
 

 where 0K
r

 is the original parameter vector 0K
r

 and lR  is 
the renormalization-group operator of the partition function 

and the density of free energy. The parameter vector K
r

 has 

as components the parameters 1 2, ,..., mK K K
r r r

 the coupling 
constants upon which the free energy depends. The RG flow 

in the dynamical parameter space of vectors K
r

 is caused by 
a spatial change of scale as at every step of flow in the 
parameter space the spatial scale is rescaled according to the 
relation: ' 1r l r−= ⋅

r r
. As the free energy and the partition 

function are rescaled by the RG flow in the parameter space 
the correlation length (ξ) is rescaled also according to the 
relation:  
 

 

( ) ( ) ( )1 1 0...n n nl lξ ξ ξ− − −Κ = ⋅ Κ = = ⋅ Κ
r r r

             (39) 

 
 

At the fixed points *K
r

 of the RG flow, the relation:  
 

( ) ( )* 1 *lξ ξ−Κ = ⋅ Κ
r r

   (40) 

 
implies that the correlation length at the fixed point must be 
either zero or infinite. Also, as the zero value is without 
physical interest we conclude the infinite correlation of the 

system at the fixed point *K
r

 or long-range correlation in 
near the fixed point. The dynamics of the system near the 
physical critical point corresponds to the flow of the 

parameter vector K
r

 at the neighborhood of the fixed point. 

The flow of the parameter vector K
r

 at the neighborhood of 

the fixed point *K
r

 is a nonlinear flow in a finite 
dimensional space which survives the most significant 
physical characteristics of the original dynamics of the 
economical system with infinite degrees of freedom. The 
representation of the infinite dimensional dynamics to a 
finite dimensional is possible at every instant the infinite 
dimensional dynamical state (state of infinite degrees of 
freedom) is transformed by the scale invariance vehicle to a 
finite dimensional dynamics in the parameter space. 
According to this theoretical description the  economical 
system  can exist at district fixed points in the parameter 
points corresponding to the  and  active states. From the 
above theoretical point of view the quantative change of the 
non-extensive Tsallis statistical characteristics corresponds 
to the economical system’s nonequilibrium fixed points 
variations related to the RGT. The change of the dynamical 
RGT fixed points can be identified as topological phase 
transition process. 
 
 
5. Conclusions  
 
In this paper we present various aspects of the general theory 
of Complexity, developed also for physical complex 
distributed systems, and a possible way of how they can be 
applied to the dynamics of economical systems. Nonlinear 
time series analysis of economical time series justifies this 
effort, which is further supported by the universality of the 
theory of Complexity. For the interpretation of the results of 
the nonlinear time series analysis of economical time series 
we need to extend the theoretical framework of economical 
complexity into various ideas such as strange dynamics, 
topological phase transition ,anomalous diffusion, fractal -
multifractal topology and fractional dynamics 
,renormalization and scale invariance ,etc. 
In particular, the estimation of Tsallis q-triplet for the two 
stock time series showed that an economical system can 
have characteristics such as non-extensivity and long range 
correlations, intermittent turbulence, multifractal - 
multiscale and non-equilibrium phase transitions, just like in 
physical complex systems. This experimental evidence 
reveals a need for a new theoretical description of 
economical dynamics, just like the one we described on 
previous paragraphs. Therefore, new theoretical concepts 
such as strange and non-Gausian dynamics, fractal topology 
and fractional dynamics, Tsallis entropy, non extensive 
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dynamics and non equilibrium phase transition processes, 
are some of the most closely related theoretical concepts to 
the complex character of economical system developed in 
this study. 
 Summarizing, Tsallis q-entropy principle can reliably 
explain the economical system self-similar hierarchical 
turbulent structuring and phase transition processes 
presented in this study. The economical system, as any other 
system which lives far from equilibrium, can reveal 
metaequilibrium stationary states (NESS) as critical 
percolation states. These nonequilibrium states, similar to 
Boltzmann-Gibbs thermodynamical equilibrium states, can 
be produced as the system tends to obtain extremization of 
Tsallis q-entropy (Sq). The quantitative change of the non-
extensive Tsallis statistics of the economical system’s 
system can be related to the renormalization group theory 
(RGT) change of the fixed points (NESS) in the dynamical 
parameter space of the economical system dynamics. The 
internal mechanism for this is the anomalous diffusion 
process in the physical space or the anomalous random walk 

in a hierarchical and multifractal structured phase space. The 
dynamics in the multifractal phase or physical space is 
described by the fractional equations (e.g Langevin and the 
corresponding FFPK equations). Moreover, we conjecture 
that the metaequilibrium stationary states can be obtained 
also as the fixed points of a fractional renormalization flow 
equation in a fractal parameter space. Also, the hierarchical, 
self-similar, multiscale and multifractal structure of the 
economical system at critical percolation and intermittent 
turbulent states can be described by the solution of the 
fractional Langevin equation, as the N-point correlation 
functions related to the functional derivative of the q-
partition function Zq defined in the framework of non-
extensive Tsallis statistical mechanics-thermodynamics.  
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