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Abstract 
 
In this study we investigate the dynamics of a nonlinear discrete-time duopoly game, where the players have 
heterogeneous expectations linear demand and cost functions. Two players with different expectations are 
considered; one is boundedly rational and the other thinks with adaptive expectations.  We show that the model 
gives more complex chaotic and unpredictable trajectories as a consequence of change in the marginal costs of 
the players. The chaotic features are justified numerically via computing Lyapunov numbers, sensitive 
dependence on initial conditions and the box dimension of the chaotic attractor. 
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1. Introduction 
 
An Oligopoly is a market structure between monopoly and 
perfect competition, where there are only a few number of 
firms in the market producing homogeneous products. The 
dynamic of an oligopoly game is more complex because 
firms must consider not only the behaviors of the consumers, 
but also the reactions of the competitors i.e. they form 
expectations concerning how their rivals will act. 
 Cournot, in 1838 [9] has introduced the first formal 
theory of oligopoly. He treated the case with naive 
expectations, so that in every step each player (firm) 
assumes the last values that were taken by the competitors 
without estimation of their future reactions.  
 Expectations play an important role in modelling 
economic phenomena. A producer can choose his 
expectations rules of many available techniques to adjust his 
production outputs. In this paper we study the dynamics of a 
duopoly model where each firm behaves with different 
expectations strategies. This kind of beliefs is common in 
real world problems such as economic, biology and social 
sciences problems. We consider a duopoly model where 
each player forms a different strategy in order to compute 
his expected output. We take firm 1 to represent a boundedly 
rational player while firm 2 has adaptive expectations. Each 
player adjusts his outputs towards the profit maximizing 
amount as target by using his expectations rule.  
 Some authors considered duopolies with homogeneous 
expectations and found a variety of complex dynamics in  
their games, such as appearance of strange attractors 

[1,2,5,13,18,20]. Also models with heterogeneous agents 
were studied [3,4,10,21]. The main purpose of this paper is 
to investigate the effect of the marginal cost in the dynamic 
behavior of the duopoly examined in Agiza and Elsadany 
[3]; representing two firms using heterogeneous expectations 
rules. The plan of the paper is as follows: In Section 2, the 
dynamics of a duopoly game with boundedly rational player 
and adaptive player is analyzed. The existence, local 
stability and bifurcation of the equilibrium points are also 
analyzed. In Section 3 numerical simulations are used to 
show complex dynamic via computing Lyapunov numbers, 
sensitive dependence on initial conditions and the box 
dimension of the chaotic attractor is calculated. 
 
 
2. The model 
 
In oligopoly game players can choose simple expectation 
rules such as naïve or complicated as adaptive expectations 
and bounded rationality. The players can use the same 
strategy (homogeneous expectations) or can use different 
strategy (heterogeneous expectations). In this study we 
consider heterogeneous players such that each player think 
with different strategy to maximize his output. Two different 
players expectations are proposed; boundedly rational player 
and adaptive player.  
 We consider a simple Cournot-type duopoly market 
where firms (players) produce homogeneous goods which 
are perfect substitutes and offer them at discrete-time 
periods 0,1,2,...t = on a common market. At each period 
t, every firm must form an expectation of the rival’s output 
in the next time period in order to determine the 
corresponding profit-maximizing quantities for period 1t + .  
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 The inverse demand function of the duopoly market is 
assumed linear and decreasing: 
 

1 2( ) ( )P f Q a b q q= = − +      (1) 
 
where 1 2Q q q= + is the industry output and  , 0a b > . It 
is supplied by two firms with linear cost function 
	
  

( ) ,  i=1,2i i i iC q c q=                                         (2) 

	
  
where  ic  is the marginal cost of  ith firm. With these 
assumptions the single profit of ith firm is given by 
 

1 2( , ) ( ) ,  i=1,2i i i iq q q a bQ c qΠ = − −     (3) 
 
 Then the marginal profit of ith firm at the point 

1 2( , )q q  of the strategy space is given by 
 

2 ,  i,j=1,2,i ji
i i j

i

a c bq bq
q

∂Π
= − − − ≠

∂
   (4) 

	
  
	
   This optimization problem has unique solution in the 
form 
 

( )1( )
2i j i jq g q a c bq
b

= = − −      (5) 

	
  
2.1. Duopoly game with heterogeneous players 
The first firm decides to increase its production  if it has a 
positive marginal profit, or decreases its production if the 
marginal profit is negative ( boundedly rational player).  
Then the dynamical equation of player 1 has the form 
 

1 1 1
1

( 1) ( ) ( ) ,  t=0,1,2,...iq t q t uq t
q

∂Π
+ = +

∂
   (6) 

 
where u is a positive parameter which represents the relative 
speed of adjustment. Another expectation rule that firm can 
use to revise their beliefs according to the adaptive 
expectations rules. 
 If the firm 2 think with adaptive expectations it computes 
its outputs with weights between last period’s outputs and 
his reaction function 1( )g q . Hence the dynamic equation 
of the adaptive expectation player 2 has the form 
 

2 2 2( 1) (1 ) ( ) ( ( ))q t v q t vg q t+ = − +     (7) 
 
where is [0,1]v∈ is a speed of adjustment of adaptive 
player. Hence the dynamic duopoly game in this case is 
formed from combining Eqs. (6) and (7). Then the 
dynamical system of heterogenous players is described by 

( )

( )

1 1 1 1 2 1

2 2 2 1

( 1) ( ) ( ) 2 ( ) ( )

( 1) (1 ) ( ) ( )
2

q t q t uq t a bq t bq t c
vq t v q t a c bq t
b

+ = + − − −⎧
⎪
⎨

+ = − + − −⎪⎩

   (8) 

 

 We will focus on the dynamics of the system (8) to the 
parameters , 1,2ic i = . 
 
2.2. Equilibria and local stability 
The equilibria of the dynamical system (8) are obtained as 
nonnegative solutions of the algebraic system 
 

( )1 1 2 1

2 2 1

( ) 2 ( ) ( ) 0
2 ( ) ( ) 0

q t a bq t bq t c
a c bq t bq t
⎧ − − − =⎪
⎨
− − − =⎪⎩

    (9) 

 
which obtained by setting ( 1) ( ),  1,2i iq t q t i+ = = in 
Eq. (8) and we can have at most two equilibriums 

0 2(0,( ) / 2 )E a c b= − and  * * *
1 2( , )E q q= . The fixed 

point 0E  is called a boundary equilibrium  and have 

economic meaning when 2c a< . The second equilibrium 
*E is called Nash equilibrium where 

 

* *2 1 1 2
1 2

2 2,  
3 3

a c c a c cq q
b b

+ − + −
= =      (10) 

 
provided that 

 

1 2

2 1

2
2
c c a
c c a
− <⎧

⎨
− <⎩

                                                (11) 

	
  
	
   The study of the local stability of equilibrium solutions is 
based on the localization on the complex plane of the 
eigenvalues of the Jacobian matrix of the two dimensional 
map (Eq. (8)). In order study the local stability of 
equilibrium points of the model (8), we consider the 
Jacobian matrix along the variable strategy 1 2( , )q q . 

According to [3] 0E is saddle point of the system (8) and the 

Nash equilibrium *E is locally stable if the following 
conditions are hold 
 

( )  1 0
( )  1 0
( )  1 0

i T D
ii T D
iii D

− + >⎧
⎪

+ + >⎨
⎪ − >⎩

                                      (12) 

  
where T is the trace and D is the determinant of the Jacobian 
matrix 
 

* *
1 1

*
1 2

( )
1

2

ubq ubq
J E v v

⎡ ⎤− −
⎢ ⎥= −⎢ ⎥−
⎢ ⎥⎣ ⎦

   (13) 

	
  

The first condition is always satisfied, whereas the other two 
conditions (ii) and (iii) define a bounded region of stability 
in the parameters space ( , )u v .Then the second and third 
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conditions are the conditions for the local stability of Nash 
equilibrium which becomes: 
 

* *
1 1

* *
1 1

32 4 4 0
2

3 2 0
2

v ubq uvbq

uvbq v ubq

⎧ + − − <⎪⎪
⎨
⎪ − − <
⎪⎩

   (14) 

 
 
3. Numerical simulations 
 
To provide some numerical evidence for the chaotic 
behavior of the system Eq. (8), as a consequence of change 
in the marginal costs of the players, we present various 
numerical results here to show the chaoticity, including its 
bifurcations diagrams, strange attractors, Lyapunov 
numbers, sensitive dependence on initial conditions [14].  In 
order to study the local stability properties of the equilibrium 
points, it is convenient to take the parameters values as 
follows: 10, 0.5a b= =  Numerical experiments are 
computed to show the bifurcation diagram with respect to 

1 2,c c , strange attractor of the system (8) in the phase plane 

of the quantity outputs 1 2( , )q q , the Lyapunov numbers 
and the box dimension. Fig. 1a, 1b. shows the bifurcation 
diagrams with respect to the parameter 1c and for u=0.45, 
v=0.7, c2= 3. Fig. 2a, 2b. shows the bifurcation diagrams 
with respect to the parameter 2c and for u=0.45, v=0.7, c1= 
5. In these figures for small values of the parameter ci one 
observes complex dynamic behavior such as cycles of higher 
order and chaos. Fig. 3a show the graph of strange attractor 
and Fig.3b. the Lyapounov numbers of the orbit of (0.1, 0.1) 
for u= 0.5, v=0.7, c1 =2.5, c2 =3.  
 From these results when all parameters are fixed and 
only ci is varied the structure of the market of duopoly game 
becomes complicated through period doubling bifurcations, 
more complex bounded attractors are created which are 
aperiodic cycles of higher order or chaotic attractors.  
 
3.3.1. Sensitive dependence on initial conditions 
To demonstrate the sensitivity to initial conditions of the 
system (8), we compute two orbits with initial points (0.1, 
0.2) and (0.1, 0.2001), respectively. The results are shown in 
Fig. 4a. and Fig. 4b. At the beginning the time series are 
indistinguishable; but after a number of iterations, the 
difference between them builds up rapidly. Fig. 4a. and 
Fig.4b. shows sensitive dependence on initial conditions for 
q2-coordinate of the two orbits, for the system (8), plotted 
against the time with the parameters values u=0.45, v=0.7, 
c1= 2.5, c2= 4. 
 
3.3.2. Box Dimension 
One way to measure the complexity of a set (an orbit of the 
map) is to compute its dimension over different scales of 
magnification [14]. Let S a bounded set in m°  and ( )N r  
the minimum number of boxes of side-length r needed to 
contain all the points of the set. The box dimension BD(S) of 
S is defined to be the number d that satisfies: 
 

0
( ) lim d

r
N r kr−

→
=                                               (15) 

 
 Where k is proportionality constant. In practice, we find 
d by taking the logarithm of both sides of Eq. (15) (before 
taking the limit) to find 
 

0

ln ( )( ) lim
lnr

N rd BD S
r→

= = −   

 (16) 
 
when the limit exists. In most cases, the only practical way 
of calculating the box dimension of an orbit is through 
numerical approximations. If S is the orbit of Fig. 3 and  
 

0.001r =  , ( ) 1.09998BD S =   
 
 

 
Fig.1a. Bifurcation diagram with respect to the parameter c1 against 
variable q1 with 550 iterations of the map Eq. (8) for u=0.45, v=0.7, c2= 
5. 
 

 
Fig.1b. Bifurcation diagram with respect to the parameter c1 against 
variable q2 with 550 iterations of the map Eq. (8) for u=0.45, v=0.7, c2= 
5. 
 

 
Fig.2a. Bifurcation diagram with respect to the parameter c2   against 
variable q1 with 550 iterations of the map Eq. (8)  for u=0.45,v=0.7, c1= 
3 
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Fig.2b. Bifurcation diagram with respect to the parameter c2   against 
variable q2 with 550 iterations of the map Eq. (8) for u=0.45,v=0.7, c1= 
3 
 

 
Fig.3a. Strange attractor with 2000 iterations of the map, with initial 
point  (0.1, 0.1), for u= 0.5, v=0.7, c1 =2.5, c2 =3.           
 
 

 
Fig.3b. Lyapunov numbers, versus the number of iterations , of the orbit 
orb. (0.1, 0.1), for u= 0.5, v=0.7, c1 =2.5, c2 =3.     
       

 
Fig.4a. Sensitive dependence on initial conditions, for q2 –coordinate 
plotted against the time: The orbit of (0.1, 0.2), for the system (8), with the 
parameters values u=0.45, v=0.7, c1= 2.5, c2= 4. 

 

 
Fig.4b. Sensitive dependence on initial conditions, for q2 –coordinate 
plotted against the time: The orbit of (0.1, 0.2001) for the system (8), 
with the parameters values u=0.45, v=0.7, c1= 2.5, c2= 4. 
 
 
4. Conclusion 
 
In this paper we proposed and analyzed the effect of the 
marginal cost in the dynamic behavior of a nonlinear 
duopoly game, which contains two-types of heterogeneous 
players: boundedly rational player and adaptive expectation 
player. We show that the parameter of the marginal cost may 
change the stability of the system and cause a structure to 
behave chaotically. For low (high) values of this parameter 
for the boundedly rational (adaptive) the system becomes 
instable, through period-doubling bifurcation. 
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