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Abstract 
 
In this study we investigate the dynamics of a nonlinear discrete-time duopoly game, where the players have 
heterogeneous expectations linear demand and quadratic cost functions. Two players with different expectations 
are considered; one is boundedly rational and the other thinks with adaptive expectations.  We show that the 
model gives more complex chaotic and unpredictable trajectories as a consequence of change in the slope of the 
marginal costs. The chaotic features are justified numerically via computing Lyapunov numbers, sensitive 
dependence on initial conditions and the box dimension of the chaotic attractor. 
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1. Introduction 
 
An Oligopoly is a market structure between monopoly and 
perfect competition, where there are only a few number of 
firms in the market producing homogeneous products. The 
dynamic of an oligopoly game is more complex because 
firms must consider not only the behaviors of the consumers, 
but also the reactions of the competitors i.e. they form 
expectations concerning how their rivals will act. 
 Cournot, in 1838 [9] has introduced the first formal 
theory of oligopoly. He treated the case with naive 
expectations, so that in every step each player (firm) 
assumes the last values that were taken by the competitors 
without estimation of their future reactions. Expectations 
play an important role in modelling economic phenomena. A 
producer can choose his expectations rules of many 
available techniques to adjust his production outputs. Some 
authors considered duopolies with homogeneous 
expectations and found a variety of complex dynamics in 
their games, such as appearance of strange attractors 
[1,2,5,14,19,21]. Also models with heterogeneous agents 
were studied [3,4,11,22]. In this paper we study the 
dynamics of a duopoly model where each firm behaves with 
different expectations strategies, so we are going to apply 
this kind of beliefs to a duopoly game. This kind of beliefs is 
common in real world problems such as economic, biology 
and social sciences problems. We consider a duopoly model 
where each player forms a different strategy in order to 
compute his expected output. We take firm 1 to represent a 
boundedly rational player while firm 2 has adaptive 

expectations. Each player adjusts his outputs towards the 
profit maximizing amount as target by using his expectations 
rule.  
 The main purpose of this paper is to investigate the 
effect of the slope of the marginal cost in the dynamic 
behavior of the duopoly examined in Dubiel- Teleszynski 
[10]; representing two firms using heterogeneous 
expectations rules, linear inverse demand and quadratic cost 
functions. The plan of the paper is as follows: In Section 2, 
the dynamics of a duopoly game with boundedly rational 
player and adaptive player is analyzed. The existence, local 
stability and bifurcation of the equilibrium points are also 
analyzed. In Section 3 numerical simulations are used to 
show complex dynamic via computing Lyapunov numbers, 
sensitive dependence on initial conditions and the box 
dimension of the chaotic attractor is calculated. 
 
 
2. The model 
 
We consider a simple Cournot-type duopoly market where 
firms (players) produce homogeneous goods which are 
perfect substitutes and offer them at discrete-time periods 
0,1,2,...t = on a common market. At each period t, every 

firm must form an expectation of the rival’s output in the 
next time period in order to determine the corresponding 
profit-maximizing quantities for period 1t + .  
The inverse demand function of the duopoly market is 
assumed linear and decreasing: 
 

1 2( ) ( )P f Q a b q q= = − +      (1) 
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where 1 2Q q q= + is the industry output and  , 0a b > . It 
is supplied by two firms with quadratic cost function 
 

2( ) ,  i=1,2i i i iC q c q=                                                 (2) 
 
 With these assumptions the single profit of ith firm is 
given by 
	  

2
1 2( , ) ( ) ,  i=1,2i i i iq q q a bQ c qΠ = − −     (3) 

	  
 Then the marginal profit of ith firm at the point 

1 2( , )q q  of the strategy space is given by 
 

2( ) ,  i,j=1,2,i ji
i i j

i

a b c q bq
q

∂Π
= − + − ≠

∂
   (4) 

	  
 This optimization problem has unique solution in the 
form 
	  

( )1( )
2( )i j j

i

q g q a bq
b c

= = −
+

       (5) 

	  
2.1. Duopoly game with heterogeneous players 
The first firm decides to increase its production  if it has a 
positive marginal profit, or decreases its production if the 
marginal profit is negative ( boundedly rational player).  
Then the dynamical equation of player 1 has the form 
 

1 1 1
1

( 1) ( ) ( ) ,  t=0,1,2,...iq t q t uq t
q

∂Π
+ = +

∂
   (6) 

where u is a positive parameter which represents the relative 
speed of adjustment. Another expectation rule that firm can 
use to revise their beliefs according to the adaptive 
expectations rules. If the firm 2 think with adaptive 
expectations it computes its outputs with weights between 
last period’s outputs and his reaction function 1( )g q . 
Hence the dynamic equation of the adaptive expectation 
player 2 has the form, 
 

2 2 2( 1) (1 ) ( ) ( ( ))q t v q t vg q t+ = − +     (7) 

	  
 Where [0,1]v∈ is a speed of adjustment of adaptive 
player. Hence the dynamic duopoly game in this case is 
formed from combining Eqs. (6) and (7). Then the 
dynamical system of heterogenous players is described by 
 

( )

( )

1 1 1 1 1 2

2 2 1
2

( 1) ( ) ( ) 2( )

( 1) (1 ) ( ) ( )
2( )

q t q t uq t a b c q bq
vq t v q t a bq t
b c

⎧ + = + − + −
⎪
⎨

+ = − + −⎪ +⎩

   (8) 

	  
 We will focus on the dynamics of the system (8) to the 
parameters , 1,2ic i = . 
 
2.2. Equilibria and local stability 

The equilibria of the dynamical system (8) are obtained as 
nonnegative solutions of the algebraic system 
 

( )

( )

1 1 2

1 2
2

( ) 2( ) 0
1 ( ) ( ) 0

2( )

iq t a b c q bq

a bq t q t
b c

⎧ − + − =
⎪
⎨

− − =⎪ +⎩

      (9) 

	  
 Which obtained by setting 

( 1) ( ),  1,2i iq t q t i+ = = in Eq. (8) and we can have at 

most two equilibriums ( )0 20, / 2( )E a b c= + and  
* * *

1 2( , )E q q= .  

 The fixed point 0E  is called boundary equilibrium. The 

second equilibrium *E is called Nash equilibrium where 
 

* 2
1 2

1 2 1 2

( 2 )
3 4 ( ) 4

a b cq
b b c c c c

+
=

+ + +
   

* 1
2 2

1 2 1 2

( 2 )
3 4 ( ) 4

a b cq
b b c c c c

+
=

+ + +                                 
 (10)

 
  
 The study of the local stability of equilibrium solutions is 
based on the localization on the complex plane of the 
eigenvalues of the Jacobian matrix of the two dimensional 
map (Eq. (12)). In order study the local stability of 
equilibrium points of the model (8), we consider the 
Jacobian matrix along the variable strategy 1 2( , )q q . 

According to [10] 0E is saddle point of the system (8) and 

the Nash equilibrium *E is locally stable if the following 
conditions are hold 
	  

( )  1 0
( )  1 0
( )  1 0

i T D
ii T D
iii D

− + >⎧
⎪

+ + >⎨
⎪ − >⎩

                                              (11) 

 
where T is the trace and D is the determinant of the Jacobian 
matrix 
 

* *
1 1 1

*

2

1 2 ( )
( )

1
2( )

u b c q ubq
J E vb v

b c

⎡ ⎤− + −
⎢ ⎥= −⎢ ⎥−
⎢ ⎥+⎣ ⎦

                (12) 

	  
 
 Conditions (i) and (iii) is always satisfied, whereas 
condition (ii) define an unbounded region of stability in the 
parameters space ( , )u v .Then the second condition is the 
condition for the local stability of Nash equilibrium which 
becomes: 
 

* 2
1 1

2

( 2 )4 2 4 ( ) 0
2( )
uva b cv u b c q

b c
+

− − + + >
+

            (13) 
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3. Numerical simulations 
 
To provide some numerical evidence for the chaotic 
behavior of the system Eq. (8), as a consequence of change 
in the slope of the marginal costs of the players, we present 
various numerical results here to show the chaoticity, 
including its bifurcations diagrams, strange attractors, 
Lyapunov numbers and sensitive dependence on initial 
conditions [15].  In order to study the local stability 
properties of the equilibrium points, it is convenient to take 
the parameters values as follows: 10, 0.5a b= =  
Numerical experiments are computed to show the 
bifurcation diagram with respect to 1 2,c c , strange attractor 
of the system (8) in the phase plane of the quantity 
outputs 1 2( , )q q , the Lyapunov numbers and the box 
dimension of the chaotic attractor. Figs. 1 shows the 
bifurcation diagrams with respect to the parameter 1c and for 
u=0.3, v=0.6, c2= 0.8. Figs. 2 show the bifurcation diagrams 
with respect to the parameter 2c and for u=0.35, v=0.6, c1= 
0.6. In these figures for very small values of the parameter ci 
one observes complex dynamic behavior such as cycles of 
higher order and chaos. Figs. 3, 4 shows the graph of strange 
attractor and Lyapunov numbers of the orbit of (0.1, 0.1) for 
u= 0.35, v=0.5, c1 =1, c2 =0.4. From these results when all 
parameters are fixed and only ci is varied the structure of the 
market of duopoly game becomes complicated through 
period doubling bifurcations, more complex bounded 
attractors are created which are aperiodic cycles of higher 
order or chaotic attractors.  
 
3.3.1. Sensitive dependence on initial conditions 
 
To demonstrate the sensitivity to initial conditions of the 
system (8), we compute two orbits with initial points (0.1, 
0.2) and (0.1, 0.2001), respectively and with the parameters 
values u=0.35, v=0.5, c1= 0.7, c2= 0.8. The results are shown 
in Figs. 5. At the beginning the time series are 
indistinguishable; but after a number of iterations, the 
difference between them builds up rapidly. From Figs. 5 we 
show that the time series of the system Eq. (8) is sensitive 
dependence to initial conditions, i.e. complex dynamics 
behaviors occur in this model. 
 
3.3.2. Box Dimension 
 
One way to measure the complexity of a set (an orbit of the 
map) is to compute its dimension over different scales of 
magnification [15]. Let S a bounded set in m°  and ( )N r  
the minimum number of boxes of side-length r needed to 
contain all the points of the set. The box dimension BD(S) of 
S is defined to be the number d that satisfies: 
 

0
( ) lim d

r
N r kr−

→
=                                               (14) 

	  
Where k is proportionality constant. In practice, we find d by 
taking the logarithm of both sides of Eq. (14) (before taking 
the limit) to find 
	  

0

ln ( )( ) lim
lnr

N rd BD S
r→

= = −                                

(15) 
	  
When the limit exists. In most cases, the only practical way 
of calculating the box dimension of an orbit is through 
numerical approximation. If S is the orbit of Fig. 5 
and 0.001r = , ( ) 1.09368BD S =  
	  
3.3.3. Figures 
 

 
 
Fig.1(a). Bifurcation diagram with respect to the parameter c1 against 
variable q1and c1 ∈ [0,11] (left), 1c [0,1]∈ for u=0.3, v=0.6, c2= 

0.8 and 550 iterations of the map Eq. (8). 

 
Fig.1(b). Bifurcation diagram  with respect to the parameter c1 against 
variable q2  and 1c [0,1]∈ for u=0.3,v=0.6, c2= 0.8 and 550 
iterations. 
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Fig. 1 (c). Bifurcation diagram  with respect to the parameter c1 against 
variable q2  and 1c [20,23.5]∈ for u=0.3,v=0.6, c2= 0.8 and 550 
iterations. 
 

 
Fig.1(d). Bifurcation diagrams with respect to the parameter c1 against 
variable q2 and 1c [0.6,0.8]∈ for u=0.3, v=0.6, c2= 0.8 and 550 
iterations. 
 
 

 
Fig.1(e). Bifurcation diagrams with respect to the parameter c1 against 
variable q2 and 1c [0.34,0.36 ]∈  for u=0.3, v=0.6, c2= 0.8 and 550 
iterations. 
 
 

 
Fig 2 (a). Bifurcation diagram with respect to the parameter c2   against 
variable q1 and 2c [ 0.1,0.8]∈ −  for  u=0.35,v=0.6,  c1= 0.6 and 550  
iterations. 
 

 
Fig.2(b). Bifurcation diagram with respect to the parameter c2   against 
variable q2 and 2c [0,1]∈ for u=0.35, v=0.6,  c1= 0.6 and 550 
iterations. 
 
 

 
Fig.2(c). Bifurcation diagram with respect to the parameter c2   against 
variable q2 and 2c [0.16,0.25]∈ for  u=0.35,v=0.6,  c1= 0.6 and 
550 iterations. 
 
 

 
Fig.2(d). Bifurcation diagrams with respect to the parameter c2  against 
variable q2 and 2c [0.25,0.26 ]∈ for u=0.35,v=0.6, c1= 0.6 and 550 
iterations. 
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Fig.2 (e). Bifurcation diagrams with respect to the parameter c2  against 
variable q2, 2c [0.268,0.269]∈  for u=0.35,v=0.6, c1= 0.6 and 550 
iterations. 
 
 

 
Fig.3. Strange atractor with 2000 iterations of the map and initial point  
(0.1, 0.1), for  u= 0.35, v=0.5, c1 =1, c2 =0.4.    
 
        

 
Fig.4. Lyapunov numbers versus the number of iterations   of the orbit 
orb. (0.1, 0.1), for u= 0.35, v=0.5, c1 =1, c2 =0.4.    
 

 

 
Fig.5 (a). Sensitive dependence on initial conditions for q2 –coordinate 
plotted against the time: The orbit of the point (0.1, 0.2) for the system 
(8), with the parameters values u=0.35, v=0.5, c1= 0.7, c2= 0.8. 
 
 

 
Fig.5 (b). Sensitive dependence on initial conditions for q2 –coordinate 
plotted against the time: The orbit of the point (0.1, 0.2001) for the 
system (8), with the parameters values u=0.35, v=0.5, c1= 0.7, c2= 0.8. 
 
 
4. Conclusion 
 
In this paper we proposed and analyzed the effect of the 
slope of a linear marginal cost in the dynamic behavior of a 
nonlinear duopoly game, which contains two-types of 
heterogeneous players: boundedly rational player and 
adaptive expectation player. We show that this parameter 
may change the stability of the system and cause a structure 
to behave chaotically. For very small values of this 
parameter the dynamical system becomes unstable, through 
period-doubling bifurcation.  
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