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Abstract	  
	  
Markovian	   and	   non-‐Markovian	  models	   are	   presented	   to	  model	   the	   futures	  market	   price	   formation.	  We	   show	  
that	  the	  waiting-‐time	  and	  the	  survival	  probabilities	  have	  a	  significant	  impact	  on	  the	  price	  dynamics.	  This	  study	  
tests	  analytical	  solutions	  and	  present	  numerical	  results	   for	   the	  probability	  density	   function	  of	   the	  continuous-‐
time	  random	  walk	  using	  tick-‐by-‐tick	  quotes	  prices	  for	  the	  DAX	  30	  index	  futures.	  
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1. Introduction 
 
Continuous-time random walk (CTRW) is an extension of 
the classical random walk model initiated by Montroll and 
Weiss in 1965 [1]. CTRW was introduced as a theoretical 
approach to describe the diffusion process in solid-state 
physics, where the waiting-time between two sequential 
space jumps of a moving particle is modelled stochastically. 
It models the dynamics of the probability density function of 
observing a particle in the space point x at time t. Similar 
processes take place in financial markets, where the time 
between transactions is stochastic and where trades induce 
price jumps [2]. Nowadays the CTRW framework is widely 
used in finance to predict and analyse the price behaviour of 
stock and derivatives [3,4,5] by calculating the probability 
density function (pdf) p of finding a certain price at a given 
time t. 
 Two main forms of CTRW have been recently described 
to model the price of financial assets [3,4,6]: a Markovian 
(memoryless) and a non-Markovian model. The present 
study tests the two models. It compares analytical solutions 
with numerical results for the price probability density 
function using tick-by-tick mid-quote prices for the German 
DAX 30 futures. We find a significant difference between 
the solutions of the Markovian and non-Markovian 
equations. In addition we show that market liquidity has a 
meaningful impact on future market price formation. 
 
 
2. Continuous-time Random Walk 
 
We follow the same approach as Scalas, et al [4,6,7]. Let 

𝑥(𝑡) be the log-price of asset S at time t. The time between 
two transactions, called waiting-time is 𝜏! = 𝑡!!! − 𝑡!. The 
log-return is 𝜉! = 𝑥 𝑡!!! − 𝑥 𝑡! . The joint probability of 
returns and waiting-time is defined as 𝜑 𝜉, 𝜏 . The two 
marginal distributions, 𝜓 𝜏 = 𝜑 𝜉, 𝜏 𝑑𝜉!

!!  and 
𝜆 𝜉 = 𝜑 𝜉, 𝜏 𝑑𝜏!

! , represent the waiting-time and asset 
return probability density functions, respectively. We call 
𝑝(𝑥, 𝑡) the probability of finding a lot price x at time t. The 
Laplace transform of 𝑓(𝑡) is denoted by  
 
𝑓 𝑠 = 𝑒!!"𝑓 𝑡 𝑑𝑡!

! .  
 
 The non-Markovian form of the CTRW solves the 
following master equation:  
 
𝜙 𝑡 − 𝑡! !

!!!
𝑝 𝑥, 𝑡! 𝑑𝑡! = −𝑝 𝑥, 𝑡 + 𝜆 𝑥 −!

!!
!
!
𝑥! 𝑝 𝑥!, 𝑡 𝑑𝑥!         (1) 
 
where the kernel 𝜙(𝑡) is defined through its Laplace 
transform  𝜙 𝑠 = !  !(!)

!!!(!)
. As  𝜙 𝑠 = 1 the master equation 

for the CTRW becomes Markovian: 
 
!
!"
𝑝 𝑥, 𝑡 = −𝑝 𝑥, 𝑡 + 𝜆 𝑥 − 𝑥! 𝑝 𝑥!, 𝑡 𝑑𝑥′!

!!     (2) 
 
 The CTRW Markovian equation describes the standard 
dynamic to model the price of financial instruments. The 
model can be seen as a generalisation of the geometric 
Brownian motion as it uses the asset return distribution as 
the unique driver to model the price fluctuation of an asset 
over time. 
 The Figure 1 illustrates the modelled solution of the 
Markovian master equation. At time t=0, the probability 
density function 𝑝(𝑥, 𝑡) is a delta Dirac function because the 
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current price is known. The uncertainty then increases with 
time and broadens 𝑝(𝑥, 𝑡). The skewness of the distribution 
𝜆(𝑥) , modelled in the figure with an exponential 
distribution, orientates 𝑝(𝑥, 𝑡). The cross-sectional view at a 
given point in time t>0 is the distribution of asset returns. 
Thus, 𝑝(𝑥, 𝑡 = 200 sec) reflects the expected distribution of 
the log-price x 200 seconds ahead. 

 
Fig. 1. Modelled probability density function of finding a log-price x at 
time t, p(x,t) for the Markovian master equation (1) 
 
 
 Asset returns are known to be leptokurtic [8] and the 
assumption of independent and identically distributed equity 
returns underestimates the real probability of extreme events 
[9]. The general framework of CTRW supports fat-tailed 
distributions. 
 The non-Markovian CTRW is an extension of the 
Markovian CTRW, where both the time between 
transactions, called waiting-time, and the asset returns are 
modelled stochastically. The waiting-time distribution 
reflects the market liquidity.  A transaction in a very illiquid 
market, i.e. when the waiting-time is abnormally long, 
translates into abrupt price changes while a transaction in a 
very liquid period has very little impact on price [10]. As the 
waiting-time distribution conveys relevant information about 
price formation we can expect the non-Markovian approach 
to outperform the memoryless model.  
 
 
3. Intraday Returns 
 
The high-frequency probability density function of asset 
return 𝜆(𝜉) needs to be evaluated to describe the dynamics 
of the Markovian master equation and the non-Markovian 
space and time convolutions stochastic differential equation. 
To reflect the fat-tailness of asset returns [11,12], the 
probability density function of returns 𝜆(𝜉) of each model is 
approximated with Kou’s double exponential jump-diffusion 
model [13]: 
 
𝑑𝑆(𝑡)/𝑆(𝑡−) = 𝜇𝑑𝑡 + 𝜎𝑑𝑊 𝑡 + 𝑑( (𝑉! − 1)

!(!)
!!! )    (3) 

 
where W(t) is a Wiener process, 𝜎 the volatility and N(t) is a 
Poisson process with rate 𝜈. With high-frequency data, the 
drift is irrelevant and we set 𝜇 = 0. {𝑉!} is a sequence of 
positive random variables such that 𝑌 ≡ log  (𝑉) is defined 
as an asymmetric double exponential distribution: 
 

𝑓! 𝑦 = 𝑞𝜂!𝑒!!!!1{!!!} + 1 − 𝑞 𝜂!𝑒!!!1{!!!}   (4) 
 
 The parameters q represents the probability of positive 
jumps. 𝜂! and 𝜂! control the decrease of the distribution tails 
of positive, respectively negative jumps. For small 𝛥𝑡, the 
solution of the stochastic differential equation can be 
approximated as (𝑆 𝑡 + 𝛥𝑡 − 𝑆 𝑡 )/𝑆(𝑡) = 𝜇𝛥𝑡 +
𝜎 𝛥𝑡  𝜖 + 𝐵 ⋅ 𝑌  with 𝜖~𝑁(0,1)  and 𝐵~Binomial(𝑛, 𝑞) . 
Hence, with probability q the return 𝜉 jumps up to 𝜉!and 
with probability (1-q) 𝜉 jumps down to 𝜉!where 𝜉! and 𝜉! 
follow an exponential random variable with mean 1/𝜂! and 
1/𝜂!. 
 The three coefficients q, 𝜂! and 𝜂!  can either be 
estimated by maximum likelihood method described in [14] 
or, alternatively, the jumps can be detected by performing 
the Lee-Mykland test [15]. The detection technique consists 
of disentangling price jumps due to the Wiener process from 
the pure jump components by computing the realised bi-
power variation on an optimal window size. q is estimated as 
the ratio of all positive jumps to all detected jumps,   𝜂! =
1/𝐸[|jump||jump size > 0]  and 
𝜂! = 1/𝐸[|jump||jump size < 0].  
 Computing the realised volatility 𝜎 = 𝜉!!!! −

!
!!!

𝜉!!
!
with high-frequency data introduces a bias proportional 

to the number of observations n as shown in [16]. To 
circumvent the problem, we follow the approach suggested 
in [17] and estimate the volatility with a Two Scales 
Realised Volatility (TSRV). The observed log-price at time 
t, 𝜉!, is noisy due to imperfections of the trading process. Let 
us define 𝜉! = 𝑋! + 𝜖! with 𝑋! the unobserved efficient log-
price at time t and 𝜖! the noise level. A generalisation of the 
TSRV for the continuous quadratic variation < 𝑋,𝑋 >!=
𝜎!!𝑑𝑡

!
! is defined as  

 
< 𝑋,𝑋 >!= [𝜉, 𝜉]!

(!) − !!
!!
[𝜉, 𝜉]!

(!), 1 ≤ 𝐽 < 𝐾 ≤ 𝑛     (5) 
 
for the unobserved efficient log-price X from which the 
average lag j realised volatility is given by [𝜉, 𝜉]!

(!) =
!
!

𝜉!!!! − 𝜉!!
!!!!

!!!  where 𝑛! = (𝑛 − 𝐾 + 1)/𝐾 ,  𝑛! =
(𝑛 − 𝐽 + 1)/𝐽. 
 
 
4. Relationship between Markovian and Non-Markovian 
Approaches 
 
The intertrade duration at tick-by-tick level follows a 
mixture of compound Poisson processes 
𝜓 𝜏 = 𝑎!𝜇!𝑒!!!!!

!!!  as described in [18] where 𝑎! !!!
! is 

a set of weights reflecting the intraday activity observed on 
the market. Hence, for each trading period, the waiting-time 
probability density function 𝜓(𝜏) can be modelled as an 
exponential distribution of parameters 𝜃𝑒!!", 𝜏 ≥   0. 
 Modelling 𝜓 𝜏  as an exponential distribution simplifies 
the discretisation of the non-Markovian stochastic 
differential equation. Indeed, the Laplace transform of the 

kernel 𝜙(𝑡)  is constant 𝜙 𝑡 = !  !(!)
!!!(!)

=
! !
!!!

!! !
!!!

= 𝜃  and 

therefore, 𝜙 𝑡 = 𝜃𝛿(𝑡) where 𝛿(𝑡) is the Dirac function at 
t.  
 The discretisation of the non-Markovian master equation 
(1) shows that 𝑝(𝑥, 𝑡 + 1), the probability density function 
of finding a log-price x at a future time t+1, is the sum of the 
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survival probability up to time t times 𝑝(𝑥, 𝑡)  with the 
solution of the Markovian stochastic density function (2): 
 
𝑝 𝑥, 𝑡 + 1
non-Markovian pdf

= 1 − !
!

!"#$%$&'  !"#$.    !

𝑝 𝑥, 𝑡 + !
!
𝑝 𝑥, 𝑡 + 1
Markovian pdf

    (6)  

 
 
5. Empirical data 
 
The analytical solutions of the two forms of CTRW are 
illustrated with the DAX30 futures. The index contains the 
30 biggest German stocks by capitalisation. DAX30 futures 
are traded from 07:50 until 22:00 on Eurex. We use level-1 
tick-by-tick quote data provided by tickmarketdata.com [19] 
spanning the period from 20 December 2010 until 23 
December 2011. The dataset contains the first expiry of the 
March, June, September and December contracts. Figure 2 
shows the four intraday trading periods observed for the 
DAX30 futures. Before the opening of the regional stock 
market at 09:00 CET, the trading activity is very low. In the 
second phase, before the NYSE and NASDAQ open at 
15:30 CET, the activity increases but the time between 
transactions remains higher than between 15:30 and 17:30 
CET when both the US and European stock markets are 
open. Finally, the trading activity declines again after the 
closure of the European stock markets.  
 

 
Fig. 2. Time between transactions τ on 10 January 10 for DAX30 
March 11 expiry.  

	  
	  
 Sudden and large bursts in market liquidity, mainly 
driven by macroeconomic news announcements [20], cause 
jumps in the survival probability. Table 1 presents the 
estimation of the parameters of the Kou model (3) and (4) 
and TSRV volatility (5) used by the two approaches. They 
are computed for the first expiry of each future spanning the 
period from 20 December 2010 until 23 December 2011 for 
both liquid and illiquid periods, i.e. 15:30 – 17:30 and 08:00 
– 09:00. The probability of positive jump q and the 
magnitude of jumps 𝜈  are significantly higher when the 
market is illiquid. 
 

Table 1. Parameters estimation for the first expiry of the 
DAX30 futures 

 
  Time 08:00 - 09:00 

 
  

Time 15:30 - 
17:30   

          DA
X30 

Mar
-11 

Jun
-11 

Sep
-11 

Dec
-11   

Mar
-11 

Jun-
11 

Sep
-11 

Dec
-11 

𝜈 0.99 
1.2

2 2.53 3.13 
 

0.98 1.19 2.18 2.63 

𝜂! 1.27 
0.8

1 0.55 0.32 
 

1.13 0.72 0.50 0.36 

𝜂! 0.86 
0.8

4 0.32 0.32 
 

0.92 0.98 0.44 0.40 

𝜎 0.09 
0.1

7 0.29 0.30 
 

0.09 0.10 0.24 0.21 

𝑞 46% 
54
% 

45
% 58% 

 
50% 46% 

39
% 54% 

 
 Figure 2 compares the Markovian and the non-
Markovian approaches for the DAX 30 June 11 expiry 
futures. The three upper pictures illustrate the cross-sectional 
view at the future time step t=4. The expectation and 
variance of the difference between the two approaches show 
that the uncertainty is larger when the liquidity is low. In 
liquid markets, buy and sell orders are more frequent and the 
execution time is shorter. Illiquidity increases the probability 
of partially filled and missed orders. The non-Markovian 
approach includes the survival probability density function 
as a liquidity measure (6). The expected difference between 
the Markovian and non-Markovian master equations when 
the price is kept unchanged, 𝐸 𝑝! 𝑥 𝑡 = 𝑥!, 𝑡 −
𝐸[𝑝! 𝑥 𝑡 = 𝑥!, 𝑡 ]  depends on market liquidity. The 
difference reaches the levels of 0.02% (or 1.5 basis points) 
and 0.01% or (0.75 basis point) for the DAX30 futures at the 
liquid and illiquid periods, respectively. Such price levels 
are substantial and significantly impact the profitability of 
high-frequency trading strategies. As depicted in the lower 
graph, the distribution of the expected difference exhibits 
fatter tails in illiquid than in liquid markets, indicating an 
enhanced risk of high price movements when the market is 
not active. Table 2 summarises the results of Welch’s t-test 
[21]. The null hypothesis that the mean of the two 
approaches is equal is rejected at 1% confidence level.  
 

 
Fig. 3. On top: The graph on the left illustrates the Markovian PDE at 
t=4 for the DAX30 June 11 futures. The central figure depicts the non-
Markovian PDE. The cross-sectional difference between the non-
Markovian and the Markovian PDEs at t=4 is displayed on the right. 
The survival probability ψ=43%. At the bottom: 3D plot displays the 
differences between the two PDEs over time. 
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Table 2: Difference between the non-Markovian p2(x,t) and 
the Markovian p1(x,t) approaches for DAX JUN11 at time 
t=4 when the market is illiquid (08:00-09:00) and during the 
most liquid period (15:30 – 17:30). (*) The results of the 
Welch’s t-test indicate that the two pdfs differ at 1% 
confidence level. 

 
 
 

6. Conclusion 
 
The present paper tests and compares the joint probability of 
finding a log-price x at a future time t for both the 
Markovian and non-Markovian forms of the CTRW. The 
non-Markovian probability density function is derived in 
terms of the solution of the Markovian equation where the 
waiting-time density function is exponentially distributed. 
The two models are constructed and their parameters are 
estimated with tick-by-tick data for the DAX 30 index 
futures. We find a significant difference between the two 
approaches. Market liquidity, reflected by the waiting-time 
and survival probability density functions is not constant 
throughout the trading day and plays a central role in the 
price formation at a market microstructure level. Further 
research is needed to test if the probability density function 
of the volume traded affects price formation. 
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