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Abstract 
 
We analyze the monthly sunspot number (SSN) data from January 1749 to June 2013. We use the Average Mutual In-
formation and the False Nearest Neighbors methods to estimate the suitable embedding parameters. We calculate the 
correlation dimension to compute the dimension of the system’s attractor. The convergence of the correlation dimen-
sion to its true value, the positive largest Lyapunov exponent and the Recurrence Quantitative Analysis results pro-
vide evidences that the monthly SSN data exhibit deterministic chaotic behavior. The future prediction of monthly 
SSN is examined by using a neural network-type core algorithm. We perform ex-post predictions comparing them 
with the observed SSN values and the predictions published by the Solar Influences Data Analysis Center. It is shown 
that our technique is a better candidate for the prediction of the maximum monthly SSN value. We perform future 
predictions trying to forecast the maximum SSN value from July 2013 to June 2014. We show that the present cycle 
24 is yet to peak. Finally, the negative economic impacts of maximum solar activity are discussed. 
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1. Introduction 
 
The Sun’s magnetic field appears concentrated in flux tubes 
or ropes that appear on the surface of the photosphere as 
sunspots, pores, plages, and surface networks. Sunspots have 
a magnetic field, which results from the solar dynamo that 
includes all solar motions from rotation to turbulent convec-
tion (Ruzmaikin, 2001; Rogachevskii & Kleeorin, 2007). In 
particular, the sunspots are transient features in the photo-
sphere. They have vertically directed magnetic fields of the 
order of 1000 to about 4000 Gauss (de Jager, 2005). Some 
basic characteristics of the sunspots according to de Jager 
(2005) are the following: 
 

a. At the location of the fields the convective motions 
are inhibited; hence less energy is carried upward 
than elsewhere in the photosphere. This results in 
the darker appearance of the spots. Yet the spots 
are not dark; their effective temperature is still as 
high as 4200°K. 

b. The majority of the spots do not live longer than 2 
days. The average lifetime is 6 days. Large spots 
may live for weeks and in rare cases even for 
months. 

c. Typically spot diameters range from 2,000km to 
more than 40,000km. While motions are practically 

totally inhibited inside spots, there is a complicated 
velocity field under and around them. 

 
 Sunspots, by themselves, do not emit radiation or parti-
cles that could interact in some way with the Earth, but sun-
spots are markers of the Centres of Activity (de Jager, 2005). 
Hence the variation of the sunspot number shows the activity 
level of the Sun. The knowledge of the level of solar activity 
years ahead is important to Earth. Edmund Halley, following 
the spectacular auroral display in Europe in March 1716, 
made the first step of understanding the Sun-Earth connec-
tion. He suggested that charged particles moving along the 
Earth’s magnetic field lines are the cause of the aurora (Hal-
ley, 1692). The radiation environment of the Earth’s atmos-
phere is very dynamic and consists of several components of 
ionizing radiation: galactic cosmic rays, solar energetic par-
ticles and radiation belt particles. Galactic cosmic rays reach 
their maximum intensity when the Sun is least active and are 
at a minimum intensity during solar maximum. In contrast, 
during maximum solar activity an increased number of Cor-
onal Mass Ejections (CMEs) and solar flares produce high-
energy solar particles (O’Sullivan, 2007). Beyond the pro-
tective shield of the Earth’s atmosphere and magnetosphere, 
there are sources of radiation that can be a serious hazard to 
humans and electronic equipment. These effects can have 
severe negative economic impacts on our society. 
 After 17 years of sunspot observations, the apothecary 
Schwabe (1843, confirmed in 1851) found that the solar 
activity, measured by the number of sunspots, varies in time 
and shows an 11-year periodicity (de Jager, 2005). The last 
recorded solar cycle lasted 12.6 years (1996 – 2008). In that 
order the current cycle (2008 – ) is number 24. In Fig.1 we 
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isualize1 the plot of the monthly sunspot number (SSN) data 
for the last 24 sunspot cycles2 (January 1749 – June 2013).  
 

 
Fig. 1: The time series for the last 24 sunspot number cycles. 
 
 
 The 11-year periodicity rule is not strict; as we observe 
in Fig.1 there are short and long cycles, weak and strong 
ones. Moreover we observe that the most active SSN cycle 
since 1749 is the cycle 19; its maximum value deviates the 
most. Furthermore, we observe that the data trend supports 
Waldmeier (1961) hypothesis that lower activity cycles rise 
to peak latter in time. Observing the 10 prior cycles (14-23) 
the observed timelines fall into 2 categories (Ahluwalia & 
Jackiewicz, 2012): (a) the cycles 14, 15, 17, 20 and 23 are 
slow risers like the cycle 24, (b) the cycles 16, 18, 19, 21 and 
22 rise relatively steeply and exhibit above average activity. 
Further, Gnevyshev & Ohl (1948) found that there exists 
good correlation between the properties of the even and the 
next following odd cycle, and not the preceding odd one. 
Beginning with cycle 10, Gnevyshev & Ohl (1948) noted 
that there is a pattern such that even cycles of the even-odd 
pairing are less active; this pattern disappears after cycle 21 
(the even-odd symmetry in SSN cycles broke down with 
cycle 22). The physical cause for this pattern is unknown. 
They might reappear in the future. 
 
 
2. Sunspot Number (SSN) data analysis 
 
The behavior of solar activity dynamics has been investigat-
ed by many researchers. The daily sunspot numbers, the 
monthly means and yearly means may be from a stochastic 
process (Siscoe, 1976) or from a deterministic chaotic pro-
cess (Feynman & Gabriel, 1990). Morfill et al. (1991) ana-
lyzed the sunspot record over time scales of weeks or 
months. They consider a stochastic model, a heuristic model 
and a Lorenz model to represent the data. They showed that 
the deterministic chaos model (Lorenz) provides the best fit 
of the data. Mundt et al. (1991) studied the variable solar 
activity over the time period from January 1749 to May 
1990 using 2897 monthly sunspot numbers. They showed 
that the attractor does not fill the space and is a sheet much 
like the Rössler and Lorenz attractors with a dimension ∼2.3. 
The solar dynamo can be expressed with three differential 
equations identical to the Lorenz equations. Thus the solar 
cycle appears to be chaotic of low dimension and can only 
be predicted for a short term. Zhang (1996) performed a 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  The	
  data	
  visualization	
  has	
  been	
  exhibited	
  using	
  the	
  software	
  package	
  
GMDH	
  Shell	
  3.0.1	
  (http://www.gmdhshell.com/).	
  
2	
   The	
  monthly	
   sunspot	
  number	
  data	
  were	
   taken	
   from	
   the	
  Solar	
   Influ-­‐
ences	
  Data	
  Analysis	
  Center	
  (SIDC)	
  (http://sidc.oma.be/sunspot-­‐data/).	
  	
  

nonlinear analysis of the smoothed monthly sunspot num-
bers to obtain nonlinear parameters to predict the numbers. 
The analysis of the monthly smoothed numbers from Janu-
ary 1850 to May 1992 indicates the numbers are chaotic and 
of low dimension described by three to seven parameters. 
Ostryakov & Usokin (1990) examined the structural charac-
ter and inherent stochastic behavior of the monthly mean 
sunspot numbers. They calculated that the fractal dimension 
for the periods 1749 – 1771, 1792 – 1828 and 1848 – 1859 is 
4.3, 3.0 and 4.0 respectively. Zhang (1994, 1995) calculated 
the fractal dimension   D = 2.8± 0.1  and the largest Lya-
punov exponent  λmax = 0.023± 0.004  bits/month, for the 
monthly mean sunspot numbers for the period January 1850 
to May 1992 using the methods given by Grassberger & 
Procaccia (1983b) and Wolf et al. (1985). 
In this section we analyze3 the sunspot record over time 
scales of months using 3174 monthly sunspot numbers (Jan-
uary 1749 – June 2013). Packard et al. (1980) outline a sim-
ple method (time lag) developed by Ruelle & Takens (1971) 
for reconstructing a phase space from one dynamical varia-
ble: let   x1,x2 ,...,xN  be measurements of a physical variable 

at the time   ti = t0 + iΔt ,   i = 1,..., N . From this sequence 
one can construct a set of m-dimensional vectors 

  ui = 1,..., N − m−1( )T , of the form: 

 

  
ui = xi ,xi+T ,xi+2T ,...,x

i+ m−1( )T( ) 	
   	
   	
   	
  	
  (1)	
  

 
where the time delay (time lag), T, is an integer multiple of 
Δt. This method fills the other dimensions with lagged ver-
sions of one dynamical variable. Thus in order to examine 
the dynamics of our system in space defined by delayed 
vectors of dimension m, we have to estimate the embedding 
parameters (i.e. the time delay and the embedding dimen-
sion).  
 
2.1 Estimation of the suitable time delay and embedding 

dimension 
Fraser & Swinney (1986) suggested the Average Mutual 
Information (AMI) as a method to determine a reasonable 
delay for nonlinear systems. The AMI is a generalization 
from the correlation function, which measures the linear 
correlations, to the case of nonlinear correlations between 
measurements. So, in order to find the suitable time delay τ  
for the embedding, we use the Average Mutual Information 

as a function of the time delay  I = I T( )  (Fig.2). The lag at 

which the first minimum of the AMI function occurs is 

  Tm = 29  and it is chosen as a delay time  τ = 29 . 
 In order to find the suitable dimension (m), we use the 
False Nearest Neighbors (FNN) method, which has been first 
introduced by Kennel et al. (1992) as a convenient method to 
determine the minimal sufficient embedding dimension. 
Fig.3 illustrates the FNN as a function of the embedding 
dimension m. The suitable embedding dimension should not 
be smaller than the first dimension at which the number of 
false nearest neighbors drops to zero. Thus the suitable em-
bedding dimension to unfold dynamics is estimated to be 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  The	
  data	
  analysis	
  has	
  been	
  integrated	
  by	
  using	
  the	
  software	
  package	
  
Auguri	
  3.14.354.1482	
  (http://aag-­‐auguri.com/index.html).	
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about m = 7, 8 (i.e. at an embedding of 7 to 8 dimensions the 
attractor of the sunspot series is unfolded). 
 

 
Fig. 2: The Average Mutual Information as a function of the time delay

 
I = I T( )  for   T = 0,1,...,50 . 

 
 

 
Fig. 3: The False Nearest Neighbors as a function of the embedding 
dimension

 
FNN = FNN m( )  for   m = 1,2,...,10 embedding steps. 

 
 
2.2 Estimation of the correlation dimension 
 
The correlation dimension has been introduced by Grass-
berger & Procaccia (1983a, 1983b) to compute a fractal di-
mension measurement of an attractor. In particular Grass-
berger & Procaccia (1983a) for several model systems 
showed that   ν  Dc , where  Dc  is the dimensional of sys-
tem’s attractor and ν  is the correlation dimension. So ν  is 
expected to be a good estimate of the exact dimensionality 
 

 Dc :
  
Dc m( )∝ lim

r→0

lnC m( ) r( )
lnr

      (2) 

 

where   lnC m( ) r( )  is the logarithm of the correlation inte-

gral for m dimension;   lnr  is the logarithm of the distance 
in phase space. We plot the graph of 

  lnC m( ) r( )  as a func-

tion of   lnr  for various embedding dimensions  m  for the 
monthly SSN data (Fig.4). By finding the slope of 

  lnC m( ) r( )  versus   lnr , through least squares regression, 

we estimate the correlation dimension  Dc m( )  for the em-

bedding dimension m. 
 
 We calculate the correlation dimension as a function of 

the embedding dimension  Dc = Dc m( )  in order to deter-

mine the fractal dimension of the attractor of the monthly 
sunspot numbers (Fig.5). By increasing m, the correlation 

dimension  Dc m( )  will eventually converge to its true value 

  ν  Dc . In Fig.5, we observe that, when the embedding 

dimension exceeds   mc ≈ 7  the correlation dimension con-

verges to the value   Dc ≈ 3.8 . The embedding dimension 
value at which the convergence begins is about twice the 
attractor dimension   mc ≈ 2Dc . Thus, the dimension of the 

attractor is estimated to be about   Dc ≈ 3.8  (low dimension-
al). The attractor’s dimension defines the number of varia-
bles of the system. Therefore, the time series of the monthly 
sunspot numbers can be described by   v = 4  independent 
variables. 

 The convergence of the correlation dimension  Dc m( )  

with increasing values of the embedding dimension  m  to its 
true value  Dc  is an indication of chaotic behavior. A corre-
lation dimension that does not converge corresponds to a 
white noise signal. 
 

 
Fig. 4: The graph of   

lnC m( ) r( )  for increasing values of   ln r  for 

  m = 1,2,...,10  embedding dimensions. 
 

 
Fig. 5: The Correlation dimension as a function of the embedding di-
mension 

 
Dc = Dc m( )  for   m = 1,2,...,10 embedding steps. 

 
2.3 The Largest Lyapunov Exponent 
 
In order to determine the presence of a deterministic chaos 
in the time series, we calculate the largest Lyapunov expo-

nent  
λmax( ) . In order to calculate  λmax , we used the Kantz 

algorithm, which calculates the largest Lyapunov exponent 
by searching for all neighbors within a neighborhood of the 
reference trajectory and computes the average distance be-
tween neighbors and the reference trajectory as a function of 
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time (Kantz, 1994). The largest Lyapunov exponent is 

  λmax  0.0195 > 0 ; the positive value of the largest Lya-
punov exponent indicates the presence of chaos in solar ac-
tivity dynamics. In this case we have the so-called exponen-
tial instability where two arbitrary close trajectories will 
diverge apart exponentially; that is the hallmark of chaos 
(Bershadskii, 2009). The small largest Lyapunov exponent 
value indicates that the chaos for the monthly sunspot num-
bers is weak. The predictive power can be estimated by 

  Δt = 1 λmax (Sprott, 2003). So the upper limit of the theo-
retical time scale on which the monthly sunspot number can 
be used to make deterministic predictions is 

   Δt = 1 λmax = 1 0.0195  51  months. We observe that 
long-term predictions are not possible most likely due to the 
fact that the chaotic nature of the system results a high sensi-
tive dependence on initial conditions for the monthly sun-
spot numbers. 
 
2.4 Recurrence Quantitative Analysis 
 
Recurrence Plots (RPs) and Recurrence Quantitative Analy-
sis (RQA) are numerical analysis methodologies that can be 
used in order to inform about the dynamic properties of a 
time series (Fabretti & Ausloos, 2005). RPs are 2D graphs, 
which are based on the phase space reconstruction intro-
duced by Eckmann et al. (1987), in order to visualize the 
recurrences of trajectories of dynamical systems. RQA is a 
statistical quantification of RPs introduced later by Zbilut & 
Webber (1992) and Webber & Zbilut (1994) in order to 
quantify the diagonal (and vertical) line structures in recur-
rence plots. 
 We plot the RP (Fig.6) and use the RQA to study the 
recurrent patterns that exist within the time series of the 
monthly SSN data. Table 1 summarizes the RQA results. The 
high values of %DET, Maxline and ENT indicate the deter-
ministic chaotic behavior of our system. In particular, the 
high value of Determinism4 (  %DET = 98.31% ) indicates 
that most of the recurrent points are found in deterministic 
structures. The high value of the variable Maxline5 (Lmax = 
247) is consistent with the small value of the largest Lya-
punov exponent (  λmax  0.0195 ) indicating that the signal 
of the system’s attractor is only slightly chaotic and the sys-
tem is more stable. Moreover, the value of Trend6 (TND = –
1.99) does not deviate significantly from zero, indicating the 
system’s stationarity. The large value of Entropy7 (ENT = 
4.8694) indicates the high complexity of the deterministic 
structure in the recurrence plot. Finally, the small value of 
Recurrence rate8 (%REC = 21.76%) indicates that the 
monthly SSN data exhibit aperiodic dynamics. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
   The	
  Determinism	
  allows	
  distinguishing	
  between	
  dispersed	
   recurrent	
  
points	
  and	
  those	
  that	
  organized	
  in	
  diagonal	
  patterns	
  (Belaire-­‐Franch	
  et	
  
al.,	
  2002);	
  it	
  is	
  a	
  measurement	
  of	
  determinism.	
  
5	
   The	
  Maxline	
   is	
   the	
   length	
   of	
   the	
   longest	
   diagonal	
   line	
   in	
   the	
   recur-­‐
rence	
  plot	
   (Marwan	
  et	
   al.,	
   2007).	
   This	
   quantity	
   is	
   proportional	
   to	
   the	
  
inverse	
  of	
  the	
  largest	
  Lyapunov	
  exponent	
  (Trulla	
  et	
  al.,	
  1996).	
  
6	
   Trend	
   provides	
   information	
   about	
   the	
   non-­‐stationarity	
   of	
   the	
   time	
  
series	
  (Marwan	
  et	
  al.,	
  2007).	
  High	
  values	
  of	
  Trend	
  are	
  associated	
  with	
  a	
  
non-­‐stationary	
  process	
  having	
  strong	
  trend	
  (Fabretti	
  &	
  Ausloos,	
  2005).	
  
7	
  The	
  Entropy	
  reflects	
  the	
  complexity	
  of	
  the	
  RP	
  in	
  respect	
  of	
  the	
  diago-­‐
nal	
   lines	
   (Marwan	
   et	
   al.,	
   2007).	
   A	
   high	
   Entropy	
   value	
   indicates	
   that	
  
much	
  information	
  are	
  required	
  in	
  order	
  to	
  identify	
  the	
  system	
  (Fabretti	
  
&	
  Ausloos,	
  2005).	
  
8	
  The	
  Recurrence	
  rate	
  measures	
  the	
  recurrence	
  density	
  (Marwan	
  et	
  al.,	
  
2007).	
  

 
Fig. 6: The Recurrence Plot for the monthly SSN data (January 1749-
June 2013). 
 
Table 1: Recurrence Quantitative Analysis results for the monthly SSN 
data (January 1749 – June 2013). 

Recurrence Analysis 

Seri
es 

Epo
ch DIS REC DET ENT 

MA
XLI
NE 

TRE
ND 

1 

Entir
e 
Seri
es 

135.
4786
567 

0.21
7594
32 

0.98
3094
045 

4.86
9374
122 

247 

-
1.99
0353
611 

 
 Thus the results of our data analysis indicate that the 
monthly sunspot numbers for the period January 1749 to 
June 2013 is a system of low dimensional deterministic cha-
os. Although chaotic systems are theoretically unpredictable 
in the long term, their underlying deterministic nature allows 
accurate short-term predictions (Mundt et al., 1991). 
 
3. Sunspot numbers prediction 
 
heng (1993) used the leap-step threshold autoregressive 
model and technique in nonlinear time series to obtain pre-
dictions from 1 month to 12 months ahead. De Meyer (2003) 
attempted to forecast the values of sunspot numbers (RZ) on 
the basis of his model of the solar cycle consisting of a se-
quence of independent overlapping events. He predicted that 
the 24th cycle would start in 2007 to reach in 2011 a peak 
height in the range 95 – 125. Predicting solar activity is quite 
challenging, but there are indications that solar activity may 
decrease in coming decades. Clilverd et al. (2003) suggested 
a nearly constant level of solar activity till about 2050 and a 
slow decrease thereafter. However, this approach was criti-
cized by Tobias et al. (2004): “The future of such a chaotic 
system is intrinsically unpredictable”.  
 In this chapter we try to forecast the peak cycle-24 activ-
ity. The results have been analyzed by using the software 
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GMDH Shell (GS). GS is a predictive modeling tool that 
produces mathematical models and makes predictions. As a 
model selection criterion we define the Root-Mean-Square 
Error (RMSE), which selects models with the lowest differ-
ence between values predicted by a model and the values 
actually observed. We also select ranking variables accord-
ing to their ability to predict testing data (variables ranking 
by error). As a core algorithm we define the polynomial 
neural networks. A core algorithm generates models from 
simple to complex ones until the testing accuracy increases. 
The GMDH-type neural networks algorithm iteratively cre-
ates layers of neurons with two or more inputs. Every neuron 
in the network applies to a transfer function that allows ex-
haustive combinatorial search. Thus, the transfer function is 
suitably chosen that can predict testing data most accurately. 
We use two input variables and a linear transfer function for 
neurons. 
 

 
Fig. 7: Ex-post predictions of 6 steps (months) back in time (January 
2013 – June 2013); the grey curve corresponds to the actual monthly 
SSN data; the blue curve corresponds to the proposed neural network 
model; the red curve corresponds to the ex-post forecasts. 
 

 
Fig. 8: Time series of the actual SSN data (blue curve), predictions of 
the proposed neural network model (red curve) and predictions pub-
lished by SIDC (green curve) from January 2013 to June 2013. 
 
3.1 Ex-post sunspot numbers predictions 
In order to reduce further the drop of predictions’ accuracy 
caused by chaotic behavior, we perform ex-post simulations 
and we are taking into account the Mean Absolute Error 
(MAE) and the Root Mean Square Error (RMSE) obtained 
by comparing the predicted to the observed values. In par-
ticular we perform ex-post predictions of 6 steps (months) 
back in time (January 2013 – June 2013) and we compare 
them with the observed values (Fig.7) and the corresponding 
predictions given by the Solar Influences Data Analysis 
Center9 (SIDC) (Fig.8). 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9	
  We	
   are	
   using	
   the	
   predictions	
   of	
   the	
  monthly	
   SSN	
   published	
   by	
   the	
  
Solar	
   Influences	
   Data	
   Analysis	
   Center	
   (SIDC)	
   based	
   on	
   the	
   Combined	
  

 In Fig.7 we observe that the differences between the 
predicted and observed values (residuals) are quite small. So 
the ex-post predictions of the proposed neural network mod-
el fit the values of the actual data quite well. Moreover, in 
Fig.8 we observe that the values of MAE10 and RMSE11 for 
the post-processed predictions of the proposed neural net-
work model (MAE = 11.22 and RMSE = 12.26) are con-
sistent with those of the predictions published by SIDC 
(MAE = 11.5 and RMSE = 13.38).  

However, the oscillations in the observed SSN values 
seem to be predicted better by the proposed neural network 
model than the method used by SIDC (Fig.8); i.e. the time 
series of our neural network model predictions (red curve) 
fits better the actual sunspot data (blue curve) than the SIDC 
predictions (green curve). Furthermore, we observe that the 
maximum observed value from January 2013 to June 2013 
was 78.7 in May 2013. Although the SIDC predicted maxi-
mum was in May 2013, the predicted value was 66.1, while 
the predicted maximum of our neural network model was 
75.46 (much closer to the observed value 78.7) in March 
2013. Thus our proposed neural network model seems to 
predict better the maximum SSN value (with a deviation of 
±2 months) than the method used by SIDC.  

 
Fig. 9: Future predictions of 12 time steps (months) ahead (July 2013 – 
June 2014); the grey curve corresponds to the actual monthly SSN data; 
the blue curve corresponds to the proposed neural network model; the 
red curve corresponds to the future forecasts. 
 
 
3.2 Future sunspot numbers predictions 
Finally, we perform future predictions in order to forecast 
the maximum sunspot number value during the next 12 
months. The predictions of 12 time steps (months) ahead, for 
the period from July 2013 to June 2014, are illustrated in 
Fig.9. The proposed neural network model of the 12-
months-ahead prediction is: 
 

  

SSN t⎡⎣ ⎤⎦ = 3.03787 − 0.319168 ⋅SSN t −1428⎡⎣ ⎤⎦ +1.3856 ⋅N116

N116 = −1.13723+ 0.613612 ⋅N154+ 0.41996 ⋅N 264
N154 = −4.40757 + 0.294369 ⋅SSN t − 273⎡⎣ ⎤⎦ + 0.157676 ⋅SSN t − 2098⎡⎣ ⎤⎦
N 264 = −1.11764+ 0.18513⋅SSN t − 771⎡⎣ ⎤⎦ + 0.584038 ⋅SSN t −1154⎡⎣ ⎤⎦

  (3) 

 
 SSN[t] is the predicted value of the monthly sunspot 
number at time period t (for t = 3175, 3176, …, 3186); SSN[t 
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10	
   MAE	
   is	
   the	
   average	
   over	
   the	
   verification	
   sample	
   of	
   the	
   absolute	
  
values	
   of	
   the	
   differences	
   between	
   forecast	
   and	
   the	
   corresponding	
  
observation.	
  
11	
   RMSE	
   is	
   calculated	
   by	
   taking	
   the	
   difference	
   between	
   forecast	
   and	
  
corresponding	
  observed	
  values	
  each	
  squared	
  and	
   then	
  averaged	
  over	
  
the	
  sample.	
  Finally	
  the	
  square	
  root	
  of	
  the	
  average	
  is	
  taken.	
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− 1428], SSN[t − 273], SSN[t − 2098], SSN[t − 771] and 
SSN[t − 1154] are the observed values of SSN at 1428, 273, 
2098, 771 and 1154 steps back in time, before the time peri-
od t respectively (e.g. for the next period, t = 3175, July 
2013, the SSN[t − 1428] = SSN[3175 − 1428] = SSN[1747] 
corresponds to the observed value in July 1894). 
 According to the predictions of the proposed neural net-
work model (Eq.2), the predicted maximum value of SSN for 
the next 12 months for cycle 24 is expected to be 92.4 in 
November 2013 (± 2 months). Moreover, the Mean Absolute 
Error and the Root Mean Square Error are relatively small 
(MAE = 4.898 and RMSE = 6.753) indicating the high pre-
dictive accuracy of our neural network model. Thus the SSN 
cycle 24 is yet to peak. 
 
 
4. Discussion 
 
Space weather has severe impacts on satellites (Hastings & 
Garrett, 1996) and GPS/navigation (Wellenhof et al., 2001). 
During solar events and geomagnetic storms the system may 
give navigators information that is inaccurate by as much as 
several km (Filjar, 2008). The problems of geomagnetically 
induced currents in power lines and flowing in high voltage 
transformers have been recognized at least since the early 
1970s (Albertson et al., 1974), but were brought into serious 
consideration by the widespread failure of the Hydro-
Quebec power grid (Canada) resulting from severe geomag-
netic storm on March 13-14, 1989 (Blais & Metsa, 1993). 

 The first observations of space weather effects on tech-
nological systems were made in telegraph equipment more 
than 150 years ago (Barlow, 1849). Many times since then, 
systems have suffered from peak overvoltages, interruptions 
in the operations and even fires caused by Geomagnetically 
Induced Currents (GICs) flowing through the equipment 
(Boteler et al., 1998). During a magnetic storm in July 1982, 
such an effect made traffic lights turn red without any train 
coming, in Sweden (Wallerius, 1982). Submarine telephone 
cables lying on the ocean floors form a special category of 
systems affected by geomagnetic disturbances (Root, 1979). 
Another consequence of space weather is its effect on hu-
mans and biological systems in space and on aircraft (Baker 
et al., 2006). Solar proton events (SPEs) can knock electrons 
from cell molecules and damage them, especially from the 
skin, eye and blood-forming organs. These damaged cells 
are unrepairable (Crosby et al., 2006). If DNA (deoxyribo 
nucleic acid) is damaged, then cell reproduction is hampered 
and even the effect could be passed to the next generations. 
Biological effects can also be in the form of severe burns, 
sterilization, cancer and damage to other organs.  
 Therefore, trying to predict the maximum of solar cycles 
becomes more and more of an urge, since it can minimize 
economic losses and help society save hundreds of millions 
of money each year. 
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