

	

	

	
 	

Journal of Engineering Science and Technology Review 7 (4) (2014) 109- 113	

Efficient Method for Parallel Process and Matching of Large Data set in Grid

Computing Environment

E. Sankar* and K. Ashokkumar

Computer Science and Engineering,Sathyabama University,Chennai,India.

Received 11 March 2014; Accepted 25 September 2014

Abstract

Data management is one of the challenging issues in grid computing and its environments. Because grid computing systems and its
applications deals with huge amount of data sets, due to the heterogeneous grid resources that belongs to different organizations and
various locations with many access policies. Here To achieve the promising potentials of tremendous distributed resources, useful and
capable Scheduling Algorithms are important. Task Scheduling is the mapping of tasks to a selected group of resources which may be
distributed in different administrative domains. In this the Parallel Processing of the distributed systems will works using the grid
scheduling algorithms. Genetic Algorithm which is a type of scheduling algorithm used for task scheduling to the various resources are
working as parallel in the distributed systems.Basically, a Grid scheduler receives applications from Grid users, selects sufficient
resources for these applications according to acquired information from the Grid Information Service module, and in conclusion
generates application to resource mappings based on assured objective functions and predicted resource performance. Information about
the status of available resources is very important for a Grid scheduler to make a proper scheduling, particularly when the heterogeneous
and self motivated nature of the Grid is taken into account .The function of the Grid information service is to provide such information
to Grid schedulers.

 Keywords: grid computing, parallel processing, task scheduling, heterogeneous resources.

 __

1. Introduction

1.1 Grid Computing:
It is a collection of computer resources from various and
multiple location to reach a common destination .The grid
can be thinking of as a distributed system’s with non-
interactive workloads that involve a large number of files.
What distinguish grid computing from usual high
performance computing systems like cluster computing is
that grids tend to be more loosely coupled, various, and in
nature dispersed. Even a single grid can be committed to a
exacting application, usually a grid is used for a selection of
purpose. Grids are often constructed with general-purpose
grid middleware software databases.
 Grid size varies a substantial amount. Grids are the form
of distributed computing where a Super Virtual Computer is
composed of different networked loosely coupled computers
acting together to perform many tasks. For certain
applications, Distributed or grid computing, which will be
seen as a particular type of parallel computing that relies on
complete computers connected to a network by a
conventional network interface, such as Ethernet .This an
difference to the usual concept of a supercomputers, which
has many processors connected by a local high-speed
computer bus.

 Grid computing allows the use and alignment of
computer and data resources to solve compound arithmetical
problems. This is the latest development in an evolution that
earlier brought onward such advances as distributed
computing, the worldwide web, and mutual computing.
 We need one supervised system with enough memory
and well computation power, but in this world no single
system has been such kind of things as like our expectation.
So we need to combine together few systems to make one
cluster system. This cluster system can run the application
with more size. But our problem is we are having all data set
in different place. Cluster formation can happen with few
systems only. And also we need more processing power and
computation power. We can’t expect such things from
cluster system.
 To avoid this problem we go for grid system. We may
call this as group of cluster can form a grid system. In this
grid system we have multiple clusters in each and every data
set. So, implementation in the form of searching, matching
everything is possible in data set. Because each dataset has
their cluster system, so execution is effortless.

 Grid Architecture
Efficient access to and movement of huge quantities of data
is required in more and more fields of science and skill.
With this data sharing is vital, for example enable access to
information stored in databases that are managed and
administered in parallel. In trade areas, archiving of data and
data management are essential requirements.

Jestr
	

JOURNAL	
 OF	

Engineering	
 Science	
 and	

Technology	
 Review	

	

	
 www.jestr.org	

 * E-mail address: Sankar.cse28@gmail.com
ISSN: 1791-2377 © 2014 Kavala Institute of Technology. All rights reserved.

	

E. Sankar and K. Ashokkumar/Journal of Engineering Science and Technology Review 7 (4) (2014) 109 - 113

	
 110

Data grid -- provides the data management features to
enable data access, synchronization, and distribution of a
grid.

Fig. 1. Grid Computing

1.2 Data Management:

Data Services. A grid necessarily consists of two distinct
parts, compute and data.

Compute grid provides the core resource and task
management services for grid computing: sharing,
management, and distribution of tasks based on configurable
service-level policies.

2. Existing information recovery methods in Grid
Computing:

Information Retrieval & Search Algorithms
This will provide the following characteristics:

Accuracy: The total amount of information now stored in
electronic media shows deficiency in recall .the percentage
of significant information retrieved. Giving the user
reasonable-sized response with high accuracy can mean lost
hundreds of significant texts.

Speed: As the amount of text that must be searched
increases, the speed of searching can become a store
blockage. In practical terms, the need for fast search means
that more computational-intensive processing such as NLP
techniques must either apply very selectively or run as batch
indexing tool prior to retrieval.

Consistency: Many information retrieval environments
require indexing of the text by the groups of indexers or by
the authors. This leads to a decrease in accurateness from the
inevitable inconsistencies, which automatic processing could
help to avoid.

Ease of use: The growth of individual computer has made
outdated the usual model of information rescue with a

trained human agent, giving systems receptiveness of high
speed.

3. Existing System

In the existing system a Grid will act as a set of sites where
each comprising a number of processors and a restricted
amount of storage and a set of users which associated with a
site and a set of files, each of a specified size, initially
mapped to sites according to some distribution. It assumes
that all processors have the same performance and that all
processors at a site can access any storage at that site. Each
user generates jobs according to some allocation. Each job
requires that a specified set of files be available before it can
execute. It then executes for a specific amount of time on a
single processor, and finally generates a specific set of files
which may leads huge processing and parallel searching
cannot be done.

4. Proposed System

The proposed system provides a secured and optical
replication of task scheduling in grid computing process is
shown. Basically, a scheduler receives applications from
Grid users, selects reasonable resources for these
applications according to acquired information from the
Grid Information Service module, and finally generates
application-to-resource mappings, based on certain objective
functions and predicted resource performance. Our system is
developed for efficient and optimal replication of task
scheduling in grid computing.

Fig. 2. Grid Computing Parallel task Schedule

 The system is built upon the related work on Grid
security, trust management, and job scheduling. The system
matches trust requirements by user jobs with a judicious
security index at Grid sites, which extends security-aware
Grid job scheduling in the direction of delay tolerance and
job replications. Parallel communication of SD and TL
values, trusted execution of replicated jobs, trusted
propagation of job results after various delayed executions.
Execution of replicated jobs and propagation of delayed job
results can be implemented by having the Grid sites digitally
sign the data and code so that the recipients can verify the
data integrity and authenticate all parties involved.

E. Sankar and K. Ashokkumar/Journal of Engineering Science and Technology Review 7 (4) (2014) 109 - 113

	
 111

Parallel Computing:
Parallel computing is the concurrent use of multiple
processors to do computational works.
 In traditional programming, a single processor executes
program information in a step-by-step behavior. Some
operations, may have multiple steps that do not have time
dependency and therefore it can be separated into multiple
tasks which to be executed concurrently. For example,
adding a number to all the elements of a matrix does not
require the result obtained from summing one element be
acquire before summing the next element. Elements in the
matrix can be made available to numerous processors, and
the sums performed concurrently, with the results available
faster than if all operations had been performed
consecutively.
 Parallel computations can be performed on shared-
memory systems with multiple processors, distributed
memory clusters made up of smaller shared memory
systems, or single processor systems. Coordinating the
simultaneous work of the multiple processors and
synchronizing the results are taken care by program calls to
parallel libraries.

Grid Scheduling
Schedulers are responsible for the management of jobs, such
as allocating Resources required for any particular job,
partitioning of jobs to schedule parallel execution of tasks
,data management ,event association, and service-level
management capabilities. These schedulers then form a
hierarchical structure, with meta-schedulers that form the
root and other lower level schedulers, while providing
specific scheduling capabilities that form the leaves. The
objective of scheduling is to minimize the completion time
of a parallel application by properly allocating the tasks to
the processors. In a wide sense, the scheduling problem
exists in two forms: static and dynamic. In static scheduling,
the characteristics of a parallel program (task processing
times, communication, data dependencies, etc.) are known
prior to program execution. In dynamic scheduling
algorithms, the goal includes not only the minimization of
the program completion time but also the minimization of
the scheduling overhead which constitutes a significant
portion of the cost paid for running the scheduler .We have
experimented with four algorithms – Hill climbing
algorithm, simulated annealing, Taboo search and Genetic
algorithm. The criteria used for evaluating the performance
were the time for schedule preparing and execution time.

Working and Proposed Algorithm:
Genetic algorithm is a search technique used in computing
to find exact or approximate solutions to optimization and
search problems. GA algorithms are categorized as global
search heuristics.

1. Initialization: convert random generated schedule S
to vector V

2. (of binary values), add it to the input population
Pin

- Set V best=V, best Cost=F(V best)
- Generate next X binary vectors (schedules) and add them
to Pin
3. Copy Pin to the new population P new
4. Make Y mutations on random members of Pin and new
members add to P new

5. Make Z crossovers using 2 members of the population
Pin; add new offspring to P new
6. Select X+1 members of P new with min. Cost and create
new population Pin with them.
7. Find member of P new with min. objective function; if
Cost < best Cost, update V best
8. If stop condition is fulfilled - terminate; else go to step 2.
Typical Structure of Genetic Algorithm is follows

GeneticAlgorithm for Parallel Process and Match:
 Evolutionary algorithms
 {
 initialize the resources;
 calculate the initial resources;
 while (termination criterion not reached)
 {
 select solutions for next;
 resources;
 perform crossover and alteration;
 evaluate resources;
 }
 }

 Genetic Algorithm is the particular class of evolutionary
algorithms also known as evolutionary
 Computation that use techniques inspired by
evolutionary biology such as inheritance, mutation selection,
and crossover. The most common type of Genetic Algorithm
works like this a population is created with a group of
individuals created at random. The individuals in the
population are then evaluated. The evaluation function is
provided by the programmer and gives the individuals a
score based on how well they perform at the given task. Two
individuals are then chosen based on their fitness, the higher
the fitness, higher the chance of being selected. These
individuals then replicate to create one or more offspring,
after which the offspring are mutated at random. This
continues until a suitable solution has been found or a
certain number of generations have passed, depending on the
requirements of the solution.

Modules Brief Description:

User Interface:
The client will get authorized and authenticated in order to
communicate with the Trust layer Agent. The user window
is designed in which the user feeds inputs in order to
communicate to the Grid Server. The inputs that the user
specifies are the Server Id, the user name and password.
The entered data is given for the registration process. Once
the user is registered, the user can choose a dataset that can
be given as the input data which will be submitted to the
server for processing.

Resource Allocation:
This process is initiated by a Trust Layer Agent. The user
requests and submits the job to the Trust Layer Agent.
Allocation of resources is based on Computational capacity,
Time constraints and Cost limits. The tasks are allotted for
the resources based on their availability. The tasks are
created for the input data that is submitted by the user i.e.,
the data set. After the user selects the input data and clicks
on the submit button, the data will be forwarded to this
window for the resource allocation process.

Parallel Resources:

E. Sankar and K. Ashokkumar/Journal of Engineering Science and Technology Review 7 (4) (2014) 109 - 113

	
 112

The trusted resources are the resources available in the TLA
in order to process the job requested by the user into number
of tasks. The Grid Information System has multiple Grids
that each consists multiple resources. The processing of the
job will be according to these resources.

Job Submission:
When the resource matches the parameters of a particular
resource, then that resource is accepted. If the resource does
not match the user’s satisfaction, then that resource is
rejected. The status of the resources will be identified and
the task will be allocated to that particular resource. In case
the grid is overloaded, the task will be shared by the
neighbor who is idle to receive and process that task.

Performance Evaluation:
The response time and the success rate of execution jobs is
calculated in this module.

Working model and SIMULATION:
 Once we click on the user node it takes to the login and
authentication screen and gets the login name and the
password from the user press submit button which takes to
the user node where the user gets registered.

Results and Efficiency:
After the user got registered provide the input job which
takes to the location of our input which is a biological data.
After getting the input data press submit which takes to the
grid information system where grid scheduler with the
registered user and selected input data will be present.

Fig. 3. Grid infrastructure with selected sample data.

Fig. 4. scheduling starts

 In this the grid scheduler will have the distributed
resources each has a different nodes for which the grid
scheduler allocates the task parallel. After the task got
allocated simultaneously the resource got selected and the
processing starts for that particular resource.

Fig. 5. Result after the task allocation

Fig. 6. The selected tasks will be added to the selected location.

Conclusion

In this proposed method we have executed the large data set
from multiple resources which produced the result within the
estimated time. In this integrating data sets of the data sets
are effective and efficient and those different data sets are
computed by the grid infrastructure in parallel manner.
Here we assumed to design and develop the framework of
this model for grid computing resources as the tool. This
framework will included with grid computing infrastructure
to increase heterogeneous data manipulation of grid
databases and this will do fast and parallel computation
effectively and efficiently in the grid resources.

E. Sankar and K. Ashokkumar/Journal of Engineering Science and Technology Review 7 (4) (2014) 109 - 113

	
 113

References

[1]. Ian Foster, Jens Vo¨ckler, Michael Wilde, and Yong Zhao, “The

Virtual Data Grid: A New Model and Architecture for Data-
Intensive Collaboration,” Proceedings of the 2003 CIDR
Conference.

[2]. http://lbsitbytes2010.wordpress.com/2013/03/20/cluster-computing-
2/

[3]. http://www.wolfram.com/gridmathematica/ integrated extension
system for increasing the power of your Mathematica

[4]. K. Ashok Kumar, M.E, C. Chandra Sekar, PH.D Proceedings of the
2013 CCIIS IEEE Conference.

[5]. F. Guim, I. Rodero, M. Garcia, J. Corbalán Barcelona The
XtreemOS JScheduler: Using Self-Scheduling Techniques in
Large Computing Architectures Supercomputing Center
{francesc.guim, irodero, marta.garcia, julita.corbalan@bsc.es./

[6]. ALiCE Grid Computing Project Department of Computer
ScienceNational University of Singapore 3 Science Drive 2,
Singapore117543 teoym@comp.nus.edu.sg
www.comp.nus.edu.sg/~teoym/alice.htm

