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Abstract 
 

The main goal of soft computing technologies (fuzzy logic, neural networks, fuzzy rule-based systems, data mining 
techniques…) is to find and describe the structural patterns in the data in order to try to explain connections between data 
and on their basis create predictive or descriptive models. Integration of these technologies in sensor nodes seems to be a 
good idea because it can significantly lead to network performances improvements, above all to reduce the energy 
consumption and enhance the lifetime of the network. The purpose of this paper is to analyze different algorithms in the 
case of fire confidence determination in order to see which of the methods and parameter values work best for the given 
problem. Hence, an analysis between different classification algorithms in a case of nominal and numerical data sets is 
performed with the goal to realize which of applied techniques obtain higher accuracy and less error 
 

 Keywords: fuzzy logic, data mining, fire confidence, classification algorithms 
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1. Introduction  
 
The advancement in sensors’ technology has increased 
sensor networks applications in many domains such as 
industrial monitoring, building and home automation, 
medicine, environmental monitoring, urban sensor networks, 
intelligent transportation. These networks can also be used 
for security, military defense, disaster monitoring, 
prevention, etc [1]. Two main applications of wireless sensor 
networks (WSNs) to indoor environmental monitoring 
include: collecting information on environmental physical 
parameters in order to better control environmental systems 
such as HVAC (heating, ventilation, and air-conditioning), 
and emergency services such as fire and smoke detection 
[2]. A critical event, like fire can cause heavy structural 
damage to the indoor area and life threatening conditions so 
early residential fire detection is important for prompt 
extinguishing and reducing damages and life losses.  
 Sensor data mining is a relatively new area but it already 
reached a certain level of maturity. Data mining in sensor 
networks is the process of extracting application-oriented 
models and patterns with acceptable accuracy from a 
continuous, rapid, and possibly non ended flow of data 
streams from sensor networks [3]. But the extraction of 
useful knowledge from raw sensor data is a difficult task and 
traditional data mining techniques are not directly applicable 
to WSNs due to the distributed nature of sensor data and 
their special characteristics (the massive quantity and the 
high dimensionality), and limitations of the WSNs and 
sensor nodes [4]. This is the reason for exploring novel data 
mining techniques dealing with extracting knowledge from 
large continuous arriving data from WSNs [5]. The main 
goal of data mining techniques is to find and describe the 
structural patterns in the data in order to attempt to explain 

connections between data and create predictive models 
based on them. It draws upon ideas from diverse disciplines 
such as statistics, machine learning, pattern recognition, 
database systems, information theory, and artificial 
intelligence [6]. For such reasons, in recent years a great 
interest emerged in the research community in applying data 
mining techniques to the large volumes of sensor data. Input 
data for applying data mining techniques are presented in the 
form of a set of examples, and the output can be expressed 
in the predictive or descriptive form of the analyzed data 
structure. Thus, techniques used in data mining are 
categorized into two classes [2]: 
 

• Predictive algorithms - these algorithms usually 
build a mapping function based on a set of input 
and output observations (regression modeling, 
decision trees, neural networks, K-nearest 
neighbor, and Bayesian learning algorithms). 

• Descriptive algorithms - used for exploratory data 
analysis to discover individual patterns, such as 
associations, clusters, and other patterns that can be 
of interest to the user. 
 

 The process of a typical data mining project is shown in 
Fig. 1.  
 Data mining, as an iterative process of extracting hidden 
patterns from large data sets and a critical component of the 
knowledge discovery process, consists of three main steps:  
 

• Pre-processing – includes cleaning of raw data in 
order to become suitable for mining (removing 
noises and abnormalities, handling too large data, 
identifying and removing irrelevant attributes, etc.)  
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• Data mining – the process of applying data mining 
algorithm that will produce patterns or knowledge. 

• Post–processing – Among all discovered patterns 
or knowledge, it is necessary to discover ones that 
are useful for the application. For making the right 
decision there are many evaluation and 
visualization techniques that can be used. 

 

 
Fig. 1. The overall process of knowledge discovery from data includes 
data pre-processing, data mining, and post-processing of the data 
mining results. 
 
 

 
The knowledge discovery process needs to coordinate 

adaptive predictive analysis with real-time analysis and 
decision support systems. The ability to detect precursors 
and signatures of rare events and change from massive and 
disparate data in real time is a challenge [7]. The goal of 
predictive modeling is to build a model that can be used to 
predict - based on known examples collected in the past - 
future values of a target attribute. There are many predictive 
modeling methods available, including tree-based, rule-
based, nearest neighbor, logistic regression, artificial neural 
networks, graphical methods, and support vector machines. 
These methods are designed to solve two types of predictive 
modeling tasks: classification and regression [5]. Using 
these prediction models the number of sensors that need to 
report their measurements is reduced by reducing both node 
activity and bandwidth. 
 Sensor data brings numerous challenges with it in the 
context of data collection, storage and processing and 
variety of data mining methods such as clustering, 
classification, frequent pattern mining, and outlier detection 
are often applied to sensor data in order to extract actionable 
insights. On the one hand, massive volumes of disparate 
data, typically dimensioned by space and time, are being 
generated in real time or near real time. On the other hand, 
the need for faster and more reliable decisions is growing 
rapidly in the face of emerging challenges like fire. One 
critical path to enhanced threat recognition is through online 
knowledge discovery based on dynamic, heterogeneous data 
available from strategically placed wide-area sensor 
networks.  

The massive streams of sensor data generated in some 
applications make it impossible to use algorithms that must 
store the entire data into main memory. Using data mining 
techniques in process of patterns discovery in large data sets 
it's not often so easy. A several algorithms must be applied 
to application before a suitable algorithm for selected data 
types can be found. Online algorithms provide an attractive 
alternative to conventional batch algorithms for handling 
such large data sets. The selection of a correct data mining 
algorithm depends on not only the goal of an application, but 
also on the compatibility of the data set.  

The framework shown in Fig. 2 consists of two sub-
frameworks [8]: 

 
Fig. 2. A holistic approach to knowledge discovery 
 
 

• Offline predictive analysis (data integration, 
pattern detection and process detection); 

• Online decision making (includes online (real-
time) analysis from models and observations, 
algorithmic efficiency for dynamic, distributed 
processing of sensor observations, resiliency, 
vulnerability, and impacts of observations, 
visualization and decision or policy aids models). 

 
This paper focuses on comparative analysis of various 

data mining techniques and algorithms with primary goal to 
see which of them has the best classification accuracy and is 
the most appropriate for a particular application of fire 
detection uncovering useful information hidden in large 
quantities of sensor data. This kind of analysis provide an 
opportunity for data mining researchers to develop more 
advanced methods for handling some of the issues specific 
to sensor data [9]. 

The rest of this paper is organized as following. Second 
section presents data preparation file while third section 
provides an implementation of selected data mining 
techniques. The experimental results including comparative 
analysis of selected algorithms are shown in fourth section. 
Fifth section gives the conclusion.  
 
 
2. Fire Detection – Preparing the Input Files 
 
Preparing input for a data mining investigation usually 
consumes the most of the effort invested in the entire data 
mining process. Data cleaning is very labor-intensive 
procedure but it is absolutely necessary step for successful 
data mining. 

In this work different experiments for fire confidence 
determination will be presented. The proposed experiment 
were created with main goal to show how chosen algorithms 
predicting power depends on type of data and the fire 
detection method. 

Early detection of critical events, like residential fire, is 
crucial for life saving and reduction of potential damages so 
WSN should be able to detect if fire has occurred or is about 
to. But just like many other human-recognizable events, the 
phenomenon fire has no real meaning to a sensor node. 
Therefore, suitable techniques that would allow describing 
events in ways that sensor nodes would be able to 
"understand" are needed [10]. One of them is fuzzy 
technique. What makes fuzzy logic suitable for use in WSNs 
is that it can tolerate unreliable and imprecise sensor 
readings, it is much closer to human way of thinking than 
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crisp logic and compared to other classification algorithms 
based on probability theory, fuzzy logic is much more 
intuitive and easier to use [4]. It allows using linguistic 
variables whose values are not numbers but words or 
sentences in a natural or artificial language. Fuzzy rules are 
conditional statements in the form of IF-THEN which: 

 
• Require less computational power than 

conventional mathematical computational methods,  
• Require few data samples in order to extract the 

final result, 
• and the most important, it can be effectively 

manipulated since they use human language to 
describe problems (based on heuristic information 
that mainly comes from expert knowledge of the 
system) and making the creation of rules simple, 
independently of the previous knowledge in the 
field of fuzzy logic. 

 
 Input data in the first experiment are defined as IF-
THEN rules based on heuristic information that mainly 
comes from expert knowledge of the fire detection systems. 
In other words, detection of fire is based on two successively 
measured values of heat detector. A fixed temperature heat 
detector utilizes a temperature sensing element which 
generates an alarm condition if the temperature within the 
protected area reaches a predetermined level (e.g. 57 ºC, 63 
ºC, 74 ºC or 90 ºC).  Instead of using these crisp values, 
fuzzy logic proposes use of linguistic variables. Therefore, 
data obtained from temperature detector according to fuzzy 
technique and above mentioned thresholds, for the purpose 
of the experiment are described with values: very low (VL), 
low (L), medium (M), high (H) and very high (VH) and 
presented with membership functions shown in Fig. 3 a). 
Due to their simple formulas and computational efficiency, 
both triangular and trapezoidal membership functions have 
been used extensively, especially in real-time 
implementations as it is fire detection.  
 

 
(a) 

 
(b) 

Fig. 3. The membership functions of a) input variables previous 
temperature and current temperature, b) output variable fire confidence 
 
 
 Confidence of fire is defined as output variable and is 
described with very low (VL), low (L), medium (M), high 
(H) and very high (VH) linguistic variables as it shown in 

Fig. 3 b). This linguistic variable represents the system's 
confidence in the presence of fire.  
 With 2 variables each of which can take 5 values, the 
number of rules in the full fuzzy rule-base of the first 
experiment is 25 (5*5). Tab. 1 shows first 10 rules for 1st 
experiment. 

 
Table 1. The 1st fire data test (first 10 rules) 

Previous 
temperature 

Current 
temperature 

Fire confidence 
(class) 

VL VL VL 
VL L L 
VL M M 
VL H M 
VL VH H 
L VL VL 
L L L 
L M M 
L H H 
L VH VH 

 
To test the proposed approach a sensor node prototype 

is created, precisely a prototype of Sensor Web node. This 
sensor node was exposed to temperature changes created to 
simulate an environment of temperature rise in real time. 
Thus, in the second experiment, detection of fire is based on 
26 successively measured fixed heat temperature detector 
crisp data shown in Fig. 4. 

 
Fig. 4. Measured values of previous and current temperature and 
obtained fire confidence using rules presented in 1st experiment. 

 
 
For the sake of clarity of machine learning domain the 

correlated output sensor data used for a detection of fire are 
converted to nominal types. First 10 measured values and 
converted output are presented in Tab. 2. 
 
Table 2. The 2nd fire data test (first 10 measurements) 

Previous 
temperature  

Current 
temperature 

Fire 
confidence 

Fire 
confidence– 

nominal (class) 
19.4 19.4 19.98 VL 
19.4 21.95 22.03 L 

21.95 23.87 23.96 L 
23.87 31.51 36.37 L 
31.51 35.44 40.35 M 
35.44 46.54 61.41 H 
46.54 55.49 75.53 H 
55.49 62.08 81.37 VH 
62.08 53.17 69.49 H 
53.17 44.27 58.6 M 
 

 For further analysis Excel .csv data files are formed 
based on data given in Tables 1 and 2. The next step is their 
exporting to WEKA data mining tool [11] in order to apply 
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chosen predictive models which can be built to estimate 
physical parameters (temperature, fire confidence) or 
descriptive algorithms for finding the relationship between 
different variables.   
 
 
3. Temperature sensors’ data mining - Classification 
algorithms implementations  
 
The massive streams of sensor data which could be 
generated in fire detection applications make it impossible to 
use algorithms that must store the entire data into main 
memory. For that purpose, on full rule-base consisted of 
fuzzy rules for detection of fire, presented in the Tab. 1, 
FURIA (Fuzzy Unordered Rule Induction Algorithm) [12] 
will be applied. Other four chosen algorithms will be 
compared to results obtained using FURIA with aim to 
realize which of them generate the best prediction models 
uncovering useful information hidden in large quantities of 
sensor data in a case of fire detection. 
 Clustering is probably the most frequently used data 
mining algorithm, used as exploratory data analysis or 
included in other data mining techniques like regression or 
classification. In simulation process presented in this paper 
four widely used classification algorithms [13] are 
implemented for comparative analysis with FURIA on given 
fire data sets. Thus, the comparative analysis is based on 
following algorithms: 

 
• FURIA 
• J48 decision tree 
• Naive Bayes 
• Support Vector Machines (SVM) 
• Neural Network classifier 

 
3.1. FURIA 
FURIA (Fuzzy Unordered Rule Induction Algorithm) is a 
fuzzy rule-based classification method which extends the 
well-known RIPPER algorithm preserving its advantages, 
such as simple and comprehensible rule sets. In addition, 
FURIA includes a number of modifications and extensions. 
It obtains fuzzy rules instead of the usual strict rules, as well 
as an unordered rule set instead of the rule list. Moreover, to 
deal with uncovered examples, it makes use of an efficient 
rule stretching method. The idea is to generalize the existing 
rules until they cover the example [12].  
 
3.2. Decision Tree Classifier 
WEKA uses the J48 decision tree which is an 
implementation of the C 4.5 algorithm. The decision tree 
classifier is a tree based classifier which selects a set of 
features and then compares the input data with them and its 
main advantage is classification speed. Learned patterns are 
represented as a tree where nodes in the tree embody 
decisions based on the values of attributes and the leaves of 
the tree provide predictions [13].  
 
3.3. Naïve Bayes 
The Naïve Bayes classifier (based on Bayes’ theorem.) for 
each class value, estimates the probability that a given 
instance belongs to that class. It is a statistical classifier and 
performs probabilistic prediction, i.e., predicts class 
membership probabilities. The Naïve Bayes Classifier has 
comparable performance with decision tree and selected 
neural network classifiers. Each training example can 
incrementally increase/decrease the probability that a 

hypothesis is correct - prior knowledge can be combined 
with observed data. Even when Bayesian methods are 
computationally intractable, they can provide a standard of 
optimal decision [14]. Naïve Bayes gives a simple approach, 
with clear semantics, for representing, using, and learning 
probabilistic knowledge and it can achieve impressive 
results [13].  
 
3.4. Support vector machine (SVM) 
The SVM classifiers work by generating functions from the 
input training data. This function is used as a classification 
function. They operate by finding a hypersurface in the 
space of possible inputs. This hypersurface attempt to split 
the positive examples from the negative examples i.e., low 
from high. If the dimensionality of the input data is high 
then the SVM takes more time for training [15].  

 
3.5. Neural network classifier 
The Neural network classifier is used for many pattern 
recognition purposes. It uses the backpropogation algorithm 
to train the network. The accuracy of the neural network 
classifiers does not depend on the dimensionality of the 
training data [13]. Weakness of neural network classifier can 
be summed up into: long training time, requiring a number 
of parameters typically best determined empirically, and 
poor interpretability. On the other side strength of this 
classifiers are: high tolerance to noisy data, ability to classify 
untrained patterns, well-suited for continuous-valued inputs 
and outputs, successful on a wide array of real-world data, 
etc. 
 
3.6. Measures for estimation the strength and the 
accuracy of a classification/predictive models 
There are many methods and measures for estimation the 
strength and the accuracy of a classification/predictive 
model. The main measure is the classification accuracy 
which is the number of correctly classified instances in the 
test set divided by the total number of instances in the test 
set. Some of the common methods for classifier evaluation 
are holdout set, Multiple Random Sampling and Cross-
validation [13].  

The output of the simulator proposed in this paper is 
used to learn the difference between a subject that is VL, L, 
M, H and VH. For these experiments averaging and 10-fold 
cross validation testing techniques are used. During the 
process the data set is divided into 10 subsets. Then the 
classification algorithms are fed with these subsets of data. 
The left-out subsets of the training data are used to evaluate 
classification accuracy. When seeking an accurate error 
estimate it is standard procedure to repeat the cross-
validation process 10 times (that is 10 times tenfold cross-
validation) and average the results. This involves invoking 
the learning algorithm 100 times on data sets that are all 
nine-tenths the size of the original. Getting a good measure 
of performance is a computation-intensive undertaking [13]. 

In applications with only two classes two measures 
named Precision and Recall are usually used. Their 
definitions are:  
 

TPP
TP FP

=
+

                        (1) 

 
TPR

TP FN
=

+
                                      (2) 
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 TP, FP and FN used in Eq. (1) and Eq. (2) are the 
numbers of true positives, false positives and false negatives, 
respectively. These measures can be also used in case of 
larger number of classes, which in this case are seen as a 
series of problems with two classes. It is convenient to 
introduce these measures using a confusion matrix. A 
confusion matrix contains information about actual and 
predicted results given by a classifier. However, it is hard to 
compare classifiers based on two measures, which are not 
functionally related [13]. If a single measure to compare 
different classifiers is needed, the F-measure is often used:  
 

2 P RFM
P R
⋅ ⋅

=
+

                                                               (3) 

 
Another measure is the receiver operating characteristic 

(ROC). It is a term used in signal detection to characterize 
the tradeoff between hit rate and false-alarm rate over a 
noisy channel. ROC curves depict the performance of a 
classifier without regard to class distribution or error costs. 
They plot the true positive rate on the vertical axis against 
the true negative rate on the horizontal axis.  

In addition, it is possible to evaluate attributes by 
measuring their information gain with respect to the class 
using Info-Gain Attribute Evaluation and measuring their 
gain ratio with respect to the class using Gain-Ratio 
Attribute Evaluation [13]. Information gain is biased 
towards multivalued attributes while gain ratio tends to 
prefer unbalanced splits in which one partition is much 
smaller than the others. 

There are many other methods and measures for 
estimation the strength and the accuracy of a 
classification/predictive model. Performance measures for 
numeric prediction are given in Tab. 3.  
 
Table 3. Performance measures for numeric prediction 

 
 
In rest of the paper comparative analysis, using FURIA as 
base predictive model will be performed. 
 
4. Simulation results 
 
Implementations of chosen classification algorithms are 
performed in WEKA, which is a collection of machine 
learning algorithms for data mining tasks [11]. The 
algorithms in WEKA can be applied directly to previous 
formed data sets as it is used in this paper. The main 
advantage of using WEKA is to apply the learning methods 
to a data set and analyze its output to extract information 
about the data. These learning methods are called classifiers. 

In simulation process the classifiers from WEKA in order to 
analyze the classification accuracy of simulation data are 
used. Classification here means the problem of correctly 
predicting the probability that an example has a predefined 
class from a set of attributes describing the example [13]. 
The purpose is to apply the learning algorithms and then to 
choose the best one for prediction purposes.  

Simulation results (performances and classifier error) of 
above described experiments and chosen algorithms are 
shown in rest of the paper. It will be shown which of applied 
algorithms has the highest percentage of correct classified 
instances (CCI), the minimal of incorrect classified instances 
(ICI), the highest precision (P) and the classification above 
ROC curve area in function of chosen experiment and its 
number of data. 

Attributes evaluation of data given in Tab. 1 are shown 
in Tab. 4.  

 
Table 4. Attributes evaluation – 1st experiment 

Attribute InfoGainAttributeEval GainRatioAttributeEval 
Previous 

temperature 0.0684 0.0294 

Current 
temperature  2.0215 0.8706 

Applying FURIA classifier to existing rules shown in 
Tab. 1, 25 rules are generalized into only 5 (Tab. 5). It can 
be seen that in rules generated by FURIA output depends 
only of current temperature values. 
 

 
Table 5. The fire data test obtained using FURIA in 1st 
experiment 

Previous 
temperature 

Current 
temperature 

Fire confidence 
(class) 

/ VL VL 
/ L L 
/ M M 
/ H H 
/ VH VH 

 
J48 decision tree for presented fire data in 1st 

experiment is shown in Fig. 5. The attribute with the 
maximum gain ratio, as it is showed in Tab. 4, is Current 
temperature and it is selected as the splitting attribute. 

 
Fig. 5. J48 decision tree – 1st experiment 
 
Classifiers evaluation is presented in Tab. 6. 
 
Table 6. Classifier evaluation – 1st experiment 

 CCI 
(%) 

ICI 
(%) TP FP P R FM ROC 

FURIA 92 8 0.92 0.018 0.928 0.92 0.92 0.951 

J48 92 8 0.92 0.018 0.928 0.92 0.92 0.935 

NB 92 8 0.92 0.018 0.928 0.92 0.92 0.904 

SVM 92 8 0.92 0.018 0.928 0.92 0.92 0.928 

NN 84 16 0.84 0.043 0.859 0.84 0.842 0.929 



Mirjana Maksimović, Vladimir Vujović and Vladimir Milošević/Journal of Engineering Science and Technology Review 7 (4) (2014) 89 - 96 
 

 94 

From Tab. 6 it can be seen that first four classifiers 
generate the same prediction model with 92% correctly 
classified instances (CCI), a precision of 92.8% (0.928) but 
the FURIA has the best classification above the ROC curve 
area (0.951).  

In multiclass prediction, the result on a test set is often 
displayed as a two-dimensional confusion matrix with a row 
and column for each class. Each matrix element shows the 
number of test examples for which the actual class is the row 
and the predicted class is the column. Good results 
correspond to large numbers down the main diagonal and 
small, ideally zero, off-diagonal elements [13]. The results 
are shown in Tab. 7. FURIA, J48, Naïve Bayes and SVM 
have the same confusion matrix. 
 
Table 7. Confusion matrices – 1st experiment 

FURIA, J48, NB, SVM 
Predicted class  

a b c d e Real 
class 

5 0 0 0 0 a=VL 
0 5 0 0 0 b=L 
0 0 5 1 0 c=M 
0 0 0 4 1 d=H 
0 0 0 0 4 e=V

H 
 

Neural Network 
Predicted class  

a b c d e Real 
class 

4 0 1 0 0 a=VL 
0 4 1 0 0 b=L 
0 0 5 1 0 c=M 
0 0 0 4 1 d=H 
0 0 0 0 4 e=V

H 
 

 Performance measures for applied algorithms according 
to Tab. 3 are given in Tab. 8. 

 
Table 8. Performance measures for applied algorithms  

FURIA 
Correctly 
Classified 
Instances 

23 

Incorrectl
y 

Classified 
Instances  

2 

Kappa 
statistic 0.9 

Mean 
absolute 

error 
0.032 

Root mean 
squared 

error 

0.178
9 

Relative 
absolute 

error 

9.82 
% 

Root 
relative 
squared 

error 

43.83 
% 

Coverage 
of cases 

(0.95 
level) 

92 % 

Mean rel. 
region 

size (0.95 
level) 

20 % 

 

J48 

Correctly Classified Instances 23 
Incorrectly Classified Instances 2 

Kappa statistic 0.9 
Mean absolute error 0.064 

Root mean squared error 0.2 
Relative absolute error 19.64 % 

Root relative squared error 49 % 
Coverage of cases (0.95 level) 92 % 

Mean rel. region size (0.95 level) 26.4 % 
 

Naïve Bayes  
Correctly 
Classified 
Instances  

23 

Incorrectl
y 

Classified 
Instances  

2 

Kappa 
statistic 

0.9 

Mean 
absolute 

error 

0.263
4 

Root mean 
squared 

error 

0.336
9 

Relative 
absolute 

error 

80.85 
% 

Root 
relative 
squared 

error 

82.55 
% 

Support Vector Machine 
Correctly Classified Instances 23 

Incorrectly Classified Instances  2 
Kappa statistic 0.9 

Mean absolute error 0.2496 
Root mean squared error 0.3284  

Relative absolute error 76.6 % 
Root relative squared error 80.46 % 

Coverage of cases (0.95 level) 96 % 
Mean rel. region size (0.95 level) 84.8 % 

 

Coverage 
of cases 

(0.95 
level) 

100 % 

Mean rel. 
region 

size (0.95 
level) 

100 % 

 

Neural Network 
Correctly Classified Instances 21 

Incorrectly Classified Instances  4 
Kappa statistic 0.7992 

Mean absolute error 0.0866 
Root mean squared error 0.209 

Relative absolute error 26.57 % 
Root relative squared error 51.21 % 

Coverage of cases (0.95 level) 92 % 
Mean rel. region size (0.95 level) 35.2 % 

 

 
If fire confidence of 2nd experiment is presented as a 

class and with nominal values according to Fig. 3, applying 
above mentioned classifiers next results are obtained.  
The attribute with the maximum gain ratio is again Current 
temperature and it is selected as the splitting attribute in J48 
decision tree (Fig. 6) 

 
Fig. 6. J48 decision tree – 2nd experiment 
 
 
Classifiers evaluation in 2nd experiment is presented in Tab. 
9. 
 

 
Table 9. Classifier evaluation – 2nd experiment 

 CCI 
(%) 

ICI 
(%) TP FP P R FM ROC 

FURIA 84.61 15.38 0.846 0.064 0.82 0.846 0.822 0.947 

J48 84.61 15.38 0.846 0.055 0.828 0.846 0.827 0.868 

NB 65.38 34.61 0.654 0.123 0.658 0.654 0.654 0.867 

SVM 50 50 0.5 0.439 0.271 0.5 0.351 0.523 

NN 80.76 19.23 0.808 0.104 0.808 0.808 0.791 0.899 

From Table 9 it can be seen that FURIA and J48  
generate the same prediction model with 84.6% correctly 
classified instances (CCI), a precision of 82% (0.928) but 
the FURIA has the best classification above the ROC curve 
area (0.947).   

For a more detailed analysis of the class attribute 
distribution, in Table 10 are shown confusion matrices of the 
2nd experiment.   
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Table 10. Confusion matrices – 2nd experiment 

FURIA 
Predicted class  

a b c d e Real 
class 

0 1 0 0 0 a=VL 
0 13 0 0 0 b=L 
0 0 5 0 0 c=M 
0 0 2 2 0 d=H 
0 0 0 1 2 e=VH 

 

J48 
Predicted class  

a b c d e Real 
class 

0 1 0 0 0 a=VL 
0 13 0 0 0 b=L 
0 0 4 1 0 c=M 
0 0 0 2 2 d=H 
0 0 0 0 3 e=VH 

 

NB 
Predicted class  

a b c d e Real 
class 

0 1 0 0 0 a=VL 
1 11 1 0 0 b=L 
0 1 2 2 0 c=M 
0 0 1 2 1 d=H 
0 0 0 1 2 e=VH 

 

SVM 
Predicted class  

a b c d e Real 
class 

0 1 0 0 0 a=VL 
0 13 0 0 0 b=L 
0 5 0 0 0 c=M 
0 4 0 0 0 d=H 
0 1 1 1 0 e=VH 

 

Neural network 
Predicted class  

a b c d e Real 
class 

0 1 0 0 0 a=VL 
0 12 1 0 0 b=L 
0 1 4 0 0 c=M 
0 0 2 2 0 d=H 
0 0 0 0 3 e=VH 

 

Performance measures for applied algorithms according 
to Tab. 3 are given in next table. 

 
Table 11. Performance measures for applied algorithms in 
2nd experiment  

FURIA 
Correctly Classified 

Instances 22 

Incorrectly Classified 
Instances  4 

Kappa statistic 0.7642 
Mean absolute error 0.0579 

Root mean squared error 0.1965 

Relative absolute error 20.39 
% 

Root relative squared 
error 

52.25 
% 

Coverage of cases (0.95 
level) 

96.15 
% 

Mean rel. region size (0.95 
level) 

24.61 
% 

 

J48 
Correctly Classified 

Instances 
22 

Incorrectly Classified 
Instances 

4 

Kappa statistic 0.7673 
Mean absolute error 0.0763 

Root mean squared 
error 

0.2505 

Relative absolute error 26.88 
% 

Root relative squared 
error 

66.6 % 

Coverage of cases (0.95 
level) 

84.61 
% 

Mean rel. region size 
(0.95 level) 

29.23 
% 

 

Naïve Bayes  
Correctly Classified 

Instances  
17 

Incorrectly Classified 
Instances  

9 

Kappa statistic 0.488 
Mean absolute 

 error 
0.1399 

Root mean squared error 0.3384 
Relative absolute error 49.27 

% 
Root relative squared 

error 
89.98 
% 

Coverage of cases (0.95 
level) 

80.76 
% 

Mean rel. region size (0.95 
level) 

26.92 
% 

 

Support Vector Machine 
Correctly Classified 

Instances 
13 

Incorrectly Classified 
Instances  

13 

Kappa statistic 0.0479 
Mean absolute error 0.2815 

Root mean squared 
error 

0.3756 

Relative absolute error 99.16 
% 

Root relative squared 
error 

99.88 
% 

Coverage of cases (0.95 
level) 

96.15 
% 

Mean rel. region size 
(0.95 level) 80 % 

 

Neural Network 
Correctly Classified Instances 21 

Incorrectly Classified Instances  5 
Kappa statistic 0.7059 

Mean absolute error 0.1344 
Root mean squared error 0.2516 

Relative absolute error 47.34 % 
Root relative squared error 66.89 % 

Coverage of cases (0.95 level) 96.15 % 
Mean rel. region size (0.95 level) 48.46 % 

 

 
 
5. Conclusion  
 
The main purpose of sensors networks for fire detection is to 
collect the monitored original data, and provide basic 
information and decision support for monitoring center. 
Also, data mining algorithm has to be sufficiently fast to 
process high-speed arriving data. The sensor scenario may 
often require in-network processing, wherein the data is 
processed to higher level representations before further 
processing. On this way, individual nodes access and 
process local information and in order to achieve a collective 
decision, they must communicate to neighbor nodes, to send 
local and partial models and negotiate a common decision. 
In this case, whole data cannot be stored and must be 
processed immediately by their compressing and filtering for 
more effective mining and analysis in order to generate 
actionable insights from massive, disparate and dynamic 
data, in real time or near real time. This reduces the 
transmission costs, and the data overload from a storage 
perspective. 

The aim of this paper was to make a comparative 
analysis between different classification algorithms, applied 
on nominal and real time recorded fire data, and to see 
which of applied techniques has the best prediction 
performances in order to reduce sensor node activity and 
bandwidth. For evaluation of classification methods next 
measures can be used: accuracy, speed, time to construct the 
model (training time), time to use the model 
(classification/prediction time), robustness (handling noise 
and missing values), scalability, interpretability, 
understanding and insight provided by the model and other 
measures (e.g., goodness of rules).  

For simulation results the standard measures for 
evaluation of the accuracy of the predictive model (the 
number of correctly and incorrectly classified examples, TP, 
FP, recall, precision, F-measure, the area of the ROC curve) 
were applied while confusions matrix was used for a more 
detailed analysis of the class attribute distribution. 
According to chosen evaluation measures, FURIA, which 
was used as a base prediction model, has shown the best 
prediction power in both performed experiments. J48 
decision tree algorithm generated second best results with 
same classification accuracy as FURIA but with less 
classification accuracy above the ROC curve area. Even 
applied data mining techniques are efficient, none of them 
can be considered as unique or general solution. On the 
contrary the selection of a correct data mining algorithm 
depends of an application and the compatibility of the 
observed data set. Thus, each situation should be considered 
as a special case and choice of adequate predictor or 
classifier should be performed very carefully based on 
empirical arguments.   

Real time data set used in those experiments is just an 
example, and for getting better and more accurate results the 
larger data sets should be used. Our future work will be 
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based on measuring and combining real data from different 
sensors and selecting the best prediction model for the given 
application classifying large data set at the sensor node level, 
discarding normal values and transmitting only anomaly 

values to the central server what will decrease the potential 
network traffic and prolong network life span making early 
fire detection possible. 

 
 

______________________________ 
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